

DYNAMIC SOUNDSCAPE COMPOSITION IN GAME CONTEXTS

by

DURVAL NUNO SIMÕES PIRES

BSc, University of Coimbra 2012

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF INFORMATICS ENGINEERING

Department of Informatics Engineering

Faculty of Sciences and Technology

UNIVERSITY OF COIMBRA

Portugal

2012/2013

Supervised by:

Licínio Roque

Abstract

Most sound design techniques and tools used today were adopted from linear mediums,

proving insufficient to cope with the dynamic nature of videogames. Moreover, Middleware

tools, which are an alternative to deal with this challenge, can be out of range for indie

developers, due to their price and required know-how.

In this dissertation, we propose a Dynamic Soundscape Composition system, which aims

to enhance soundscapes experienced during gameplay, by means of a holistic approach to Sound

Design. The system implements soundscape composition techniques that follow principles from

Acoustic Ecology, specifically, the notion of healthy soundscape.

This composition module is supported by a set of composition techniques which attempt

to deal with the dynamic nature of the medium. Also, the module composes the soundscape in a

dynamic fashion, by following the designer‟s intentions defined in the game code by a new API,

also presented in this work. The system provides designers the chance to characterize the

soundscape by means of this accessible and intuitive API. This API empowers designers by

allowing intentions for sound design to be materialized using sound design vocabulary, as

opposed to plain programming procedures.

Following specifications for the system‟s architecture, the API was validated by a formal

usability test. Results of the experiment showed the API, although requiring time for an

adaptation process, can be seen as an accessible alternative in terms of describing and

implementing soundscapes in videogame contexts.

iv

Table of Contents

Abstract ... ii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... viii

List of Appendices ... ix

Glossary .. x

Acknowledgements .. xiii

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Context .. 2

1.3 Objectives ... 3

2 State of the Art ... 4

2.1 Videogame Audio History .. 4

2.1.1 The beginning ... 4

2.1.2 Game Audio Evolution ... 5

2.2 Current Practices in the Context of Game Sound Design ... 6

2.2.1 Current Videogame Sound Design Processes ... 7

2.2.2 Mixing ... 7

2.2.3 Dynamic Nature of Game Audio .. 9

2.2.4 Sample Based vs Procedural Audio .. 10

2.3 Sound Computing Architecture .. 12

2.3.1 Middleware Architecture .. 13

2.3.2 Sound Lib/API Architecture ... 14

2.3.3 Procedural/Dataflow Architecture .. 14

2.4 Sound Technologies .. 15

2.4.1 Middleware Tools ... 15

2.4.2 Sound Libs/APIs ... 19

2.4.3 Procedural/Dataflow Tools ... 22

2.4.4 Conclusion .. 25

v

2.5 Related Research ... 25

2.6 Acoustic Ecology .. 27

2.6.1 Soundscape Definition .. 27

2.6.2 Acoustic Communication.. 29

2.6.3 Acoustic Design .. 30

2.6.4 Soundscape Composition .. 32

2.6.5 Acoustic Ecology Ideal ... 32

2.7 Conjecture on Soundscape Composition in Games .. 32

3 Approach .. 35

3.1 Research Objectives .. 35

3.1.1 Soundscape Specification API .. 36

3.1.2 Systematization of Soundscape Composition Techniques 36

3.1.3 Dynamic Soundscape Composition Module ... 37

3.2 Methodology ... 38

3.3 Planning .. 41

3.3.1 Milestones ... 42

3.3.2 Execution .. 44

3.4 Dynamic Soundscape Composition Solution Architecture... 45

3.4.1 API Design .. 45

3.4.2 Soundscape Composition Techniques .. 52

3.4.3 Dynamic Soundscape Composition Module ... 59

4 Results.. 67

4.1 Prototyping Activities ... 67

4.1.1 Activities Developed ... 69

4.1.2 Work prioritization.. 73

4.1.3 Expected behavior ... 75

4.1.4 Requirements .. 75

4.2 Experimental Evaluation ... 78

4.2.1 Testing Technique ... 78

4.2.2 Test Planning .. 79

4.2.3 Test Scenario ... 81

vi

4.2.4 Results, Analysis and Improvements .. 85

5 Conclusions and Future Work ... 91

5.1 Improvements and design errors corrected ... 91

5.2 Limitations and additional features/usage for the project ... 94

5.3 Written Work .. 96

5.3.1 Dynamic Enhancement of Videogame Soundscapes .. 96

5.3.2 The Blindfold soundscape game: a case for participation centered gameplay

experience design and evaluation ... 97

5.4 Lessons Learned.. 98

5.4.1 Reflections and Contributions ... 98

5.4.2 Conclusions related to learning goals of this internship ... 100

5.5 Final Remarks ... 101

References ... 103

vii

List of Figures

Figure 2.1 - Common Game Audio Pipeline [Cavers 2011] .. 8

Figure 2.2 - The mediating relationship of an individual to the environment through sound

(modified from [Truax 2001]) [Acoustic Ecology 2000]. .. 29

Figure 2.3 – Systems of Acoustic Communication Continuum [Truax 2001] 31

Figure 3.1 - DSR's iteration steps ... 38

Figure 3.2 - DSR's Framework ... 39

Figure 3.3 - Milestones Table ... 42

Figure 3.4 - Examples of the effect of the context heuristic ... 55

Figure 3.5 - Walter Murch's Encoded-Embodied spectrum theory .. 59

Figure 3.6 – DSC‟s Framing ... 61

Figure 3.7 - DSCM's Dynamic View Architecture Diagram .. 63

Figure 4.1 - Debug screenshot of Blindfold .. 69

Figure 4.2 - Method's description ... 81

Figure 4.3 - Declaration examples .. 82

Figure 4.4 - Instructions example ... 82

Figure 4.5 - Method with instructions added by a tester... 83

Figure 4.6 - Participant performing the test .. 84

file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524666
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524667
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524668
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524669
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524670
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524671
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524672
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524673
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524675
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524676
file:///C:/Users/Sly-cooper/Dropbox/DurvaLab/Estágio/Kansas%20State%20University%20Template/VERSAO%20DA%20NOITE%20ANTERIOR/masters2012.docx%23_Toc360524677

viii

List of Tables

Table 3.1 - DSR's steps detailed ... 40

Table 4.1 - Soundscape Specification API Requirements .. 75

Table 4.2 - Dynamic Soundscape Composition Techniques Systematization Requirements 76

Table 4.3 - Run-time Dynamic Composition Module Requirements ... 76

Table 4.4 – Header row of the event collection table ... 85

Table 4.5 - Performance-Oriented Analysis Table ... 85

Table 4.6 - Event's Frequency Table .. 87

Table 4.7 - API Concepts Analysis ... 89

ix

List of Appendices

A. Tool Comparison Table ... 108

B. Gantt Diagram ... 109

C. Initial Composition Plan .. 110

D. Dynamic Enhancement of Videogame Soundscapes .. 111

E. The Blindfold soundscape game: a case for participation centered gameplay experience

design and evaluation .. 112

F. API Documentation ... 113

x

Glossary

AC-3 – Audio encoding algorithm.

Acoustic Ecology – Is the study of the relationships between the acoustic environment,

orsoundscape, and those inhabiting that environment, with emphasis on balance and on the sense

of the context.

Ambiance – Sound Layer which represents sounds of the environment.

Audio-only game – Game that consists mainly on sound, usually with no visual

component.

Attenuation – The attenuation that sound suffers according to the distance between the

source and the listener.

Designers – In this dissertation, designers should be interpreted as either game designers,

programmers, sound designers, or any type of designers who have the required programming

skills to use the API.

Dialogue – Sound Layer which represents all forms of discourse presented along the

game.

Diegetic - Sound whose source is visible on the screen or whose source is implied to be

present by the action of the film.

Digital Signal Processing - Digital Signal Processors take real-world signals like voice,

audio, video, temperature, pressure, or position that have been digitized and then mathematically

manipulate them. They are commonly used to create or modify audio signals.

DTS – Company that works on the area of digital sound, most famous by their high

quality audio codec named DTS Digital Surround.

Frequency Modulation - A method of transmitting information using a radio-frequency

carrier wave. The frequency of the carrier wave is varied in accordance with the amplitude and

polarity of the input signal, the amplitude of the carrier remaining unchanged.

Foley – Sound Layer which represents sounds that characterize an entity or event.

Game Engine - System designed for the creation and development of video games.

Gameplay – The interaction the player has with a game.

xi

iMUSE – It is an interactive music system created by LucasArts video games. It

synchronizes music with the visual action in the game, and transitions from one musical theme to

another.

Indie developers – Developers which commonly have no support in the game industry

(i.e., with no publisher). Tipically consist in small teams that operate with meager budgets. Their

context of development usually gives more space for innovation and for taking risks with new

approaches.

Indie games – Games developed by indie developers, usually completely on their own.

Middleware - Audio Middleware tools try to aid sound designers in their work, by giving

a more accessible interface and more powerful features than hard coded sound implementations.

MPEG-4 BIFS – Scene description language for audiovisual content.

MO3 – Music file format.

MOD - File format used primarily to represent music, which allows the selection of

instruments, and definition of patterns describing how the instruments should play.

Music – Sound Layer which represents all musical sounds in the game.

Musical Instrument Digital Interface – It is a technical standard that describes

a communication protocol, used by digital interfaces, that allows a wide variety of electronic

musical instruments, computers and other related devices to connect and communicate with one

another.

Nintendo Entertainment System – An 8-bit console made by Nintendo, released in 1983.

Non-diegetic - sound whose source is neither visible on the screen nor has been implied

to be present in the action.

Non-Playing Character (NPC) – Any character that cannot be controlled by the player.

Panoramic – The distribuition of sound between left and right channels in a stereo sound.

Pattern Language – A set of design patterns that support a discourse specific to a

domain, which facilitates communication between experts.

SFX – Acronym used for Sound effects. Also, Sound Layer that represents sounds that

are created ("invented") so that they may be associated to an entity or aspect whose own sonic

expression does not exist or is not perceptible [Alves 2011].

Sound Engine – System that executes all the functionalities regarding sound in a

videogame.

xii

Sound Layer – Semantic categorization of sounds, as presented by Peck in [Peck 2001].

He proposes five: Ambiance, Dialogue, Music, Foley and SFX.

Soundscape - is the group of sounds which compose a determined sonic environment (is

the acoustic manifestation of „place‟).

Soundscape Composition – As supported by Acoustic Ecology, soundscapes can be

understood as musical compositions, in which everyone is both listener and composer. In the

specific field of sound design, it can be perceived as the preservation and enhancement of a

soundscape that respects the principles defended by Acoustic Ecology theory.

Virtual Studio Technology – Is a type of interface that allows the integration of many

types of audio related tools (synthesizers, effect plugins, etc.) into other software programs.

xiii

Acknowledgements

My first words of gratefulness must go to my supervisor, Professor Licínio Roque, for all

the advices and encouragement while accompanying me throughout this journey. Without his

wealth of knowledge, support and friendship, I would not be able to advance in my research, as

well as growing as a researcher and as a person. I must also thank him for his patience, for

always answering my innumerous questions, and for opening my horizons regarding

videogames, sound, and science research.

I thank Valter Alves for sharing his endless knowledge of sound in videogames. His good

will was priceless and every minute spent debating with him was infinitely enlightening.

I also have to gratefully acknowledge my colleagues from LabC62, at the Department of

Informatics Engineering of the University of Coimbra, for all the feedback and enthusiasm that

always shared with me. I have to make a special mention for Luís Pereira and Rui Craveirinha

for continuously supporting me, and for making me look to the videogame medium with a whole

new perspective.

I have to thank Bárbara Furtado and Hernani Costa for aiding in many different tasks, and

for always being available to help me when they were not obliged to it. Finally, I have to thank

my family and my girlfriend Matilde Bourhis for all the patience supporting me.

xiv

In memory of Dário Teixeira. We miss you.

1

1 Introduction

Since the birth of videogames, sound and music in games has evolved rapidly. While

sounds from the first arcade machines were merely designed to attract attention, current games

feature dynamic soundtracks to elevate their profound experiences, along with context aware

sound effects that contribute to players‟ emotional involvement [Peerdeman 2010]. As

videogames have been acquiring, in the last years, legitimacy as a form of artistic expression,

they have originated many aesthetic, moral and technological debates [Dodds 2008].

The study of videogames by the academic community is a relatively recent phenomenon,

one which requires a careful reconsideration of the established theories and approaches to sound

in media, as well as the research of new ones. Researchers should be wary of theoretical

imperialism and the colonization of game studies by theories from other fields, especially from

linear types of media [Kerr 2006]. Although past literature in the area of musical technologies

argued towards a total technological determinism [Katz 2010; Theberge 1997], recent

approaches refuted that argument and defend a mutual influence hypothesis rather than

dominance between technology over aesthetics. In Video game audio, albeit many technological

constraints deeply influenced some design choices, programmers (and later, sound designers)

always came up with creative alternatives in order to overcome and to aestheticize those

limitations [Collins 2008].

However, audio keeps being rejected as one of the most important features in a game,

both in academic studies and from commercial products [Wolf and Perron 2003]. Still, game

audio is still an aesthetic choice of metaphors, an arrangement of content that completes the

video game as a totally integrated work of art [Peerdeman 2010]. Different solutions regarding

different games must be researched, in order to allow the audio component of a game to be taken

as seriously as it deserves.

1.1 Motivation

Similarly to Dodds, we defend that, just as games can be purely visual experiences, and

promote visual-aesthetic awareness, they can equally promote sonic awareness [Dodds 2008].

Unfortunately, few games promote attentiveness to sound, and those who do it, only do it for brief

2

moments, what prevents the player from really appreciate the soundscape. Every time this happens,

part of the sound designer‟s hard work is wasted.

Maybe one of the reasons for this negligence regarding game audio is that it is content which

is not as easy to show off, as are graphics in a screenshot. Another reason may be our natural

environmental awareness characteristics, which follow a path of least effort for each sense, as shown

in Southworh‟s study [Southworth 1967]. In other words, each sense contributes the minimum

information necessary, unless it is being relied upon exclusively [Truax 2001]. This can help us

understand why gamers rely so much on visual perception, and so little on auditory stimuli. As

long as players “see” the game, they will listen to it as little as possible.

It is up to sound designers and game developers to create games which promote auditory

awareness, while offering dynamic experiences with profound semantic value in their sonic

component.

1.2 Context

Game Sound Design is an area the Information Systems Group has invested significantly

in the past years having developed a Pattern Language for Sound Design in Games (PL4SDiG)

[Alves 2011]. If in sequential media like cinema, Sound Design is already a hard task, in digital

games it is made even harder by the fact that sound composition needs to be considered in an

interactive context that is open to redefinition by player actions [Young 2012].

Current engine support for sound mostly focus on basic sound play and mixing

techniques, possibly considering positioning and specificity of several sound sources as well

effects that change over time. Besides bigger studios which have resources to buy expensive

middleware solutions, game programmers need to manually control each sound source, setting its

play timing and modifications according to what‟s happening in the game scenario.

Sound Design is a technique that focuses at a higher level and considers which sound

elements serve each semantic purpose, as well as how these should be combined to produce

desired effects. Soundscape design is a set of concepts and methodologies that try to support a

holistic perspective of sound design in context and has been the foundation for developing the

aforementioned pattern language.

3

1.3 Objectives

This dissertation‟s main goal is to propose an approach for Dynamic Soundscape

Composition (DSC) in games with a holistic perspective to sound. Videogames being a non-

linear medium, just the task of defining a soundscape specification API (Application

Programming Interface) to aid this composition is quite complex. This API uses concepts

extracted from Acoustic Ecology theory (see Acoustic Ecology), and from Alves‟s previous

work on a PL4SDiG [Alves 2011]. Additionally, we designed a systematization of possible

techniques to be used in DSC. In order to be able to test the aforementioned API, and to verify

the feasibility of the proposed architecture, we also modeled and prototype a DSC module

(DSCM) as a proof of concept to be integrated in a game engine. Furthermore, in the future this

proof of concept can be used to test the proposed techniques.

With this module, we intend to develop game engine support for developers to approach

the problem of sound in games using these concepts, enabling experimentation of solutions for

the problem of dynamic soundscape composition in games. While this study does not aspire to

have a definite solution to the problem, it could show some indications of how dynamic

soundscape composition could be approached in the future.

4

2 State of the Art

In order to understand what dynamic soundscape composition is in the context of

videogames, it is important to visit some theories, practices, technologies and works which cover

several fields of study relevant for sound design and for games as media.

2.1 Videogame Audio History

This resume briefly describes the evolution of sound design and implementation

techniques in videogames, growing from an experimental and programmer based sound synthesis

process (in its inception phase) to a controlled and very well defined process, normally done by

experts from fields like music and film.

2.1.1 The beginning

Long before the birth of videogames, sound was already a key part of some gaming

experiences, like slot machines. Sound effects (i.e., bells) were used to attract attention to the

machines [Lastra 2012] and to originate the feeling of achievement after a successful or almost

successful play.

Many years later, one of the most important artifacts which made the sound of Video

games famous was Pong, due to the unmistakable sound of its paddles hitting the ball. It is

interesting that, although many of the sounds that were used at the time were strongly

constrained by technology limitations, they were advertised to the public as realistic. This trend

towards realism influenced not only sound design, but almost all of the fields of game design.

However, sounds were very difficult to program on early machines, due to hardware limitation,

which affected both sound generation and memory limitation.

Only in the late 70‟s music started to be used in Video games, being Space Invaders

[Taito 1978] one of the most notorious examples. Following this trend, arcade manufacturers

began to include dedicated sound chips in their circuit boards, usually used for tone generation

[Collins 2008]. Game systems started to have a dedicated processor to deal with sound, which

ended the concurrency between music and sound effects, which was one of the biggest

5

limitations. Nevertheless, mixing was rarely a consideration, so it was not unusual to hear music

and sound effects to clash with each other.

With the invasion of home consoles in the 80s, sound chips continued to evolve and to

allow more creativity to programmers. Metroid [R&D and Systems 1986], for NES (Nintendo

Entretainment System), is a great example. As its composer Hirokazu Tanaka explains, its music

was composed not as just background music, but as part of the game‟s world, without any

distinction between music and sound effects [Collins 2008]. However, home consoles still had

memory limitations (besides from others), so looping was the solution for most composers. The

length of a loop was usually related to the game‟s genre, and to the game state (boss battle,

difficulty level, etc.). Transitions between loops were dealt in different ways: either the loop was

designed so that the last section would fit with the beginning of the loop, or a small transitional

sequence was used in between looping. Still, most transitions would often cut abruptly [Collins

2008]. This technique continued to be used for many years, and is still being used nowadays (i.e.,

puzzle games and mobile gaming).

Other ways of overcoming technology limitations were random sequence composition

(used in some Commodore games), algorithmic variations on the composition [Games 1984].

This can be considered one of the first attempts to dynamic videogame music composition, even

if it was not influenced by players‟ actions (Adaptive sounds). The fact that in many games the

programmer was also the sound designer and composer (who didn‟t have formal music training),

influenced largely the aesthetic of the sound from that era.

2.1.2 Game Audio Evolution

The 16-bit brought some advances like Frequency Modulation (FM) (which allowed a

greater number of even more realistic sound effects), and Digital Signal Processor (DSP) (which

supported a large number of effects and MIDI (Musical Instrument Digital Interface) instruments

and would become very important in the next generations of consoles). Nevertheless, the

structure of sound design remained very much the same from the 8-bit era.

At the same time, some computers started to support MIDI compositions, which eased

the life of composers who didn‟t understand anything of programming languages. Another novel

approach that came out for PCs (Personal Computers) was LucasArts‟ iMUSE (Interactive

MUsic Streaming Engine), a system to allow composers to create (more) dynamic pieces. One of

6

the creators, Michael Land, referred: „„the thing that‟s hard about music for games is imagining

how it‟s going to work in the game. The iMUSE system was really good at letting the composer

constantly test out the various interactive responses of the music: how transitions worked

between pieces, how different mixes sounded when they changed based on game parameters, etc.

Without a system like that, it‟s much harder to conceive of the score as a coherent overall work‟‟

[Mendez 2005]. While MIDI sequencing was directed for linear music, iMUSE allowed

composers to create branching and conditional clauses in their pieces, called decision points, in

which some predetermined conditions were tested. iMUSE available actions included instrument

changes, looping capacity, panning, etc. iMUSE helped to set a precedent for music to be more

responsive to players‟ actions, distinguishing game music from that of linear media. Another

important advance in the 90s was 3D sound, which allowed games to inform players about what

is happening around them [Miller 1999]. It was in this era that Video game audio started to be

seen more seriously as part of the game development process.

The next generation of consoles witnessed major improvements in almost every aspect of

hardware specs. However, consoles like Playstation, which relied on Redbook audio (like PCs),

gained more channels and higher sound quality at the cost of dynamic adaptability and

interactivity [Collins 2008]. This implied more quick fades and hard cuts. One innovation

brought by another console of this era was Nintendo 64‟s MusyX, a program to allow Nintendo

developers to compose music (similar to iMUSE).

The following generations of consoles brought some key features of present game audio

like multichannel surround sound standards like AC-3 (Audio Coding 3), DTS and Dolby

Digital, and more powerful DSPs [Collins 2008]. Later, Nintendo put a speaker on the Wii‟s

controller, which offered developers new ways of involving the player in the game.

2.2 Current Practices in the Context of Game Sound Design

In this sub-chapter, we will make an overview of the current practices in the context of

game sound design. Firstly, the current videogame sound design process in the industry is going

to be explained (Current Videogame Sound Design Processes). Next, the future role of mixing

will be debated (Mixing). After that, some remarks about the dynamic nature of game audio will

be made (see Dynamic Nature of Game Audio). Finally, we will cover the growing debate about

7

the pros and cons of both sample based and procedural audio (Sample Based vs Procedural

Audio).

2.2.1 Current Videogame Sound Design Processes

Usually, the sound design process follows a group of steps necessary for almost every

game, almost like a waterfall-like approach, what makes it quite an inflexible work process.

First, it is important to determine the game‟s theme and genre, and how sound will relate to

gameplay, being a good practice to define cue point entrances, game state changes and how

sound will be sensitive to game variables (Spotting). It is normally valuable to match the rhythm

of gameplay with the sound [Collins 2008]. Next, a list of assets (sounds) needed is done by the

sound designer. This task should be coordinated with the emotional rhythm desired for every

section of the game. Different layers (foley, ambiance, music, etc.) should be taken into account

during this phase. After its creation, sounds are inserted in the audio tool (if one is used) by the

sound designer, which then defines rules and behaviors for the playback and synthesis of sound.

These rules are based on interactive events which are linked between the sound engine and the

game code [Chan et al. 2012].

All of the previous tasks should respect the technical limitations of the target game

system and the tools and technologies available for audio implementation and integration. As

Karen Collins refers: ”Sound design, dialogue, and music are as much about integration as they

are about composition, and the ways in which the sound is implemented greatly affect the ways

in which these sounds are received” [Collins 2008]. A partnership between the technical side

(audio programmers, etc.) and the creative side of audio (composers, sound designers, etc.) is

absolutely vital, and without it, a game will only ever achieve average audio (John Broomhall).

2.2.2 Mixing

Although in the past mixing was not even a possibility for game audio, it is becoming an

extremely important aspect of sound design for games, being even predicted that in the future,

the role of “Game Mixer” will exist (Guy Whitmore, [Cavers 2011]). When it started to be

applied in this media, it used to be done only in the post production phase (as in linear types of

media). With the arrival of Middleware tools, real-time mixing became easier through features

like mixer snapshots (group of parameter values that can be applied instantaneously in a single

command), which take advantage of a tool‟s own bus hierarchy.

8

Figure 2.1 - Common Game Audio Pipeline [Cavers 2011]

Real-time mixing allows sound designers to work many aspects in an earlier stage of the

game development process. It enables controlling a game‟s dynamic range (difference between

the quietest and loudest volume), as referred by Kristofor Mellroth, Fable II‟s audio director

([Bridgett 2009; Studios 2008]), or reducing/eliminating specific frequencies from a determined

sound in order to avoid superposition of sounds in a specific frequency range. One of dynamic

mixing‟s most important feature is that it can be used to control volumes of different sounds (i.e.,

to duck every other sound when a dialogue is occurring). An example of the importance of

mixing (and ducking) can be found in Little Big Planet (LBP) [Molecule 2008]. In Kenneth

Young‟s (LBP audio director) words: “Interestingly, despite the fact the characters speak with

gibberish voices, it sounded weird not ducking other sounds for them. Before the fact I assumed

it wouldn't matter what with their voices not containing any explicit information, but not

focusing on their voices whilst they are "speaking" makes what they are saying (i.e. what you are

reading) feel inconsequential. I guess that's a nice example of sound having an impact on your

perception, and highlights the importance of mixing.” [Bridgett 2009]. On the same line of

9

thought, Wwise‟s [AudioKinetic] product director Simon Ashby refers: “The main complexity

remains the interactivity, where the mixer has to take into account various different styles of

gameplay; the soundtrack emerging out of a single game played by a Rambo-kamikaze gamer is

way different than the one from a stealth type of gamer even though it is the same game using the

same ingredients.” [Bridgett 2009].

Ultimately, the mix should be invisible to the player. They should not hear anything

being turned down, or changing volume. The mix must not distract players, it should instead

inform the player narratively and not just mirror what‟s seen on screen [Cavers 2011], and help

them to focus their attention on what is important in an interactive, forever changing dynamic

world.

An overview of today‟s most important mixing techniques [Bridgett 2009] are:

Grouping - The ability to assign individual sounds to larger controller groups.

Auxiliary Channels - These are extra channels, usually representing effects or different

output paths such as headphone monitors, to which other designated channels can be routed. In

videogame contexts, may be used to send the sound from a particular channel to a software

reverb, also running in memory in real-time.

Fall-off – Relationship between sound‟s volume and effects, and its distance to the

listener.

Passive Mixing Techniques - Values which, once set-up, attenuate parameters, volumes

or filters of the content 'automatically' (examples: 3D volume fall-off curves of positional sounds

and occlusion filtering settings of 3D sounds).

Active Mixing Techniques - This describes systems which allow greater control over

sound parameters and the ability to completely override a passive system for a specific moment

in time. These overrides often take the form of mixer snapshots in which parameters at the

channel or bus level are redefined and then returned to normal once the event has finished.

2.2.3 Dynamic Nature of Game Audio

The intrinsic nature of audio in videogame contexts imposes a new approach to the

classical categorization of sounds used in films: diegetic (sound whose source is visible on the

screen or whose source is implied to be present by the action of the film) or nondiegetic (sound

whose source is neither visible on the screen nor has been implied to be present in the action).

10

The fact that the player is part of the sound playback process, stand in need of a new type of

classification. Besides diegetic and nondiegetic, game audio can be divided into nondynamic and

dynamic, being that dynamic sound can still be divided in two other sub-categories: adaptive and

interactive [Collins 2008].

 Nondynamic sounds

o These are the situations in which the player does not have any type of

control over the sound composition.

 Dynamic sounds

o Adaptive - These are sound events which are affected by gameplay, but

not directly affected by the player‟s movements and actions.

o Interactive - These are sound events which are affected by gameplay, and

can be directly affected by the player‟s movements and actions.

This dynamic nature is incremented because, in most games, players can interact with

sounds in a wide variety of ways, which allows them to have many different functions. While in

some games, sound is supposed to be a crucial part of the gameplay mechanic (like in stealth or

rhythm-games), in others, sound is only decorative.

The biggest difficulty of linear sound composition in videogames is the lack of ability to

match the actions occurring on the screen. This makes it hard for sound to fulfill the role it was

supposed to have inside the game‟s context. Sound is commonly used to alert players to

something they do not see, to identify goals and objects of interest. Without sound, it is much

more difficult for the player to understand symbols given by the game, to understand the game‟s

environment and mood, and to make sense of all the information he is absorbing through vision.

2.2.4 Sample Based vs Procedural Audio

As referred in Videogame Audio History, sound design and implementation techniques in

videogames, started as a sound synthesis process, but with the advent of technology, mimicked

the music and movie industry and became a sample-based process. This is largely influenced by

the eternal search for realism found in the videogame industry, which always looked like a

profitable perspective [Low 2001]. However, the current trend is to diverge from those

11

techniques, as Robin Beanland refers: “We need to move away from film, and develop tools that

allow us to focus on interactivity” [Cavers 2011]. Currently, sound designers record sounds as

audio data, which is processed and manipulated using Digital Audio Workstations (DAWs)

[Rutherford 2012]. Sample-based audio is natural to linear media such as film and music.

However, it is very difficult to coordinate it with videogame‟s dynamic nature. That is why

mixing and other features that Middleware tools offer are so important: to make linear audio

work within the dynamic context of videogames. Even so, it may be concluded that game audio

tries to reuse work processes and tools from mediums with different aesthetics, with linear

principles [Lykke 2008]. This gives the sound designer greater quality on the sounds at his

disposal, but one could argue it limits the possibilities for variation, and do not take advantage

from the medium intrinsic dynamic nature.

It is important to point that procedural audio should not be viewed as the definitive

answer to sample-based limitations, but should instead be seen as one of the possible

alternatives/complements. In a nutshell, it is an approach where sound is not locked to time, but

is instead locked to a defined setting [Lykke 2008]. This setting is defined through rules and

parameters, which produce audio in real-time according to them. Changes inside the game

directly affect sound generation because they are input for the aforementioned parameters. In this

way, sound must be treated as a process of creation rather than playback manipulation of existing

data [Rutherford 2012].

Procedural audio is greatly related to game audio rapid prototyping and experimentation

[Knight 2011; Lykke 2008; Paul 2007; Paul 2008; Paul 2010]. Prototyping allows the use of

tools to rapidly experiment interactive audio generation without involvement of a game audio

coder [Paul 2007]. While prototyping, one should not be afraid of failure, should not spend too

much time prototyping and is advised to find different solutions for the same problem [Gray et

al. 2005]. In the future, the line between prototyping and implementation may fade as audio

implementation tools begin to resemble more closely with tools previously reserved for

prototyping [Paul 2007]. Clint Bajakian, Senior Music Supervisor at Sony Computer

Entertainment America reinforces this idea: “Artist creates conditions, rules and procedures, not

necessarily the audio itself” [Bajakian 2004].

The workflow of the creation process is also different between the two approaches.

Sample-based audio is related to a sequencer paradigm, procedural audio is rooted in a synthesis

12

paradigm. While in the former the sound designer arranges audio in a linear time-wise fashion, in

the latter audio must be treated differently, as something that is shaped in real-time using

paradigms normally used by programmers, while keeping in mind efficient and communicative

aesthetics for good sound design. Moreover, the process becomes less waterfall-like and more

iterative.

One could argue that procedural audio allows sound to adjust to the action taking place in

the game, instead of what game developers and sound designers had foreseen, as in sample-based

audio. Although it is surely a more responsive approach, it is not easy to tell if that is really

better. A more dynamic sound generation also makes it difficult to predict what will occur in a

specific event. However, the game/sound designer can think that if the player does not hear what

he has foreseen, the emotion he desired to provoke would be lost. Additionally, rigid mappings

between game parameters and sound synthesis can limit creative possibilities. Are we simply

giving more variation possibilities to sound designers, or are we withdrawing artistic expression

from them and their work? The answers to these questions depend on a sound designer‟s ability

to use the best of both alternatives, even existing some procedural approaches that use samples

[Rutherford 2012].

Another advantage of procedural audio is that reduces the storage and RAM (Random

Access Memory) requirements for audio [Stevens and Raybould 2011], because audio is not

played, but generated. On the other hand, while sample-based sounds have a fixed computational

cost, in procedural audio, the more complex a sound is, the more computational work is required

to produce it. Farnell also refers that with sample-based audio, there will always be a limited

number of sounds per object/event, and that those sounds will be stimulated/generated in a

limited number of ways [Farnell 2007].

Fournel summarizes procedural audio‟s usefulness: “Procedural content generation is

used due to memory constraints or other technological limitations. It is used when there is too

much content to create, when we need variations of the same asset and when the asset changes

depending on the game context” [Fournell 2010].

2.3 Sound Computing Architecture

In a nutshell, there are three main architectures/approaches to videogame audio

nowadays:

13

 Middleware Architecture

 Sound Lib/API Architecture

 Procedural/Dataflow Architecture

Different architectures offer different levels of definition of an actual sound‟s behavior.

The more on the sound‟s behavior the game sound designer is able to describe, the less specifics

the game audio coder will need to guess about. Behaviors‟ descriptions can range from a static

description (such as the amount of pitch shift to randomly utilize) to a much more detailed

dynamic scripting of a behavior (such as how the engine loops transition between one another in

a car engine model). Currently, game audio tools are best at describing parameter ranges rather

than allowing for the definition of dynamic behaviors [Paul 2007].

2.3.1 Middleware Architecture

Audio Middleware tools try to aid sound designers in their work, by giving a more

accessible interface and more powerful features than hard coded sound implementations.

Middleware lets sound designers link sounds to game objects, such as animations), scripted

events or areas. While before there was always the need for a programmer, with middleware that

is not the case anymore [Brandon 2007]].

Nowadays, Middleware tools give more power to sound designers with less complexity,

allowing more dynamic soundscapes while diminishing production costs, both monetary and

time related. However, many studios still have their own audio pipeline solution, due to

monetary and technical constraints [Kastbauer 2010]. Still, Wwise and FMOD are widely used

by major studios and some indie developers [Cavers 2011].

Features like parameter controlled DSP effects, dedicated prototyping environments,

sound prioritization and real-time parameter controls, are extremely useful in order to create a

more dynamic audio composition. Additionally, these tools allow the sound designer to work not

only in parallel with the initial stages of game development, but also to develop sound to

multiple platforms simultaneously.

Sample-based audio is natural to linear media such as film and music. However, it is very

difficult to coordinate it with videogame‟s dynamic nature. That is why mixing and other

features that Middleware tools offer are so important: to make linear audio work within the

14

dynamic context of videogames. With the arrival of Middleware tools, real-time mixing became

easier through features like mixer snapshots (group of parameter values that can be applied

instantaneously in a single command), which take advantage of a tool‟s own bus hierarchy. Most

games use a priority system to control which mixer snapshot prevails over others (as it can be

seen in Little Big Planet and Heavenly Sword [Bridgett 2009; Theory 2007].

The usage of some Middleware tools prevents the necessity to define behaviors on game

code, which will be easily defined by the sound designer in the authoring tool. This separation

between game code and audio behaviors is highly positive for rapid prototyping and fast

adaptation to changes.

2.3.2 Sound Lib/API Architecture

This approach was used in the past, and consists in using low-level sound APIs to

program all sound related behaviors in the game code. This is not an easy task, and usually do

not allow sound behaviors as complex as those which can be seen in games developed with the

aid of middleware tools.

Nowadays, this approach is used in three situations: big developers who want to develop

proprietary tools (instead of using commercial middleware tools), small developers who do not

have money or knowledge to use middleware solutions, or when developers are looking to do

something that is so out of the box that is just not possible in established tools (Jonatan Crafoord,

[Cavers 2011]).

2.3.3 Procedural/Dataflow Architecture

Procedural audio is a philosophy about sound being a process and not data (as explained

in Sample Based vs Procedural Audio) [Nair 2012]. This type of architecture is closely related to

rapid prototyping and experimentation. Usually, the sound engine is built through a graphical

programming language and communicates with game code through some interface like Open

Sound Control (OSC) messages. Similarly to middleware tools, in this architecture, there is little

code regarding audio inside the game code. All the behaviors (although not so complex as the

ones developed in some middleware tools) are defined through dataflow modules which receive

parameters from the game.

Procedural architectures are also closely related to experiments with sounds from

particular objects or events. The main principle behind this approach is that, with the constant

15

improvement of hardware, it is much more valuable for the sound designer to synthesize a sound

through real-time mixing and real-time DSP effects, than having to record many variations of a

sound, store each one in different files and having to load them during the game.

Most of the tools which follow this architecture offer a graphical programming

environment. This type of environment offers objects (like visual boxes) that do a specific task.

It is up to the sound designer to add them to a visual canvas and connect them. By combining

objects, create interactive and unique software can be created without ever writing any code.

2.4 Sound Technologies

Different solutions may arise when it comes to game audio implementation. These

solutions can be divided in three main groups: Middleware Tools, Low-level Sound

Libraries/APIs, and Procedural/Dataflow Tools.

2.4.1 Middleware Tools

In this section, we will list all of the middleware tools that we find relevant to analyze for

the sake of this study.

Wwise

Wwise is a Middleware Tool which is supported in an Authoring Tool and a Sound

Engine which must be coded in the game to link it with the sound assets. Wwise‟s approach tries

to ease the work of both sound designers and audio programmers by redefining the production

workflow for audio and improving pipeline efficiency. While audio objects, which represent the

individual sounds in the game, are created and managed exclusively within the Wwise

application by the sound designer, game objects and listeners, which represent specific game

elements that emit or receive audio, are created and managed within the game by the

programmer. In a nutshell, Wwise‟s production pipeline can be summarized to: Audio Creation,

Simulation, Integration, Mixing, and Profiling.

Wwise‟s most important features are innovative DSP effects, the definition of playback

behaviors triggered by events, which are used to determine which sound, music, motion or piece

of dialogue is played at any particular point in the game. Many actions can be linked to a specific

game event and can affect more than one group of objects. In order to control and organize most

of these entities, Wwise makes use of Hierarchy Mixers, which is an evolution from traditional

16

mixing techniques where different instruments were routed to a bus, so that you could control

their sound properties as a single mixed sound. This allows the sound designer to group sounds,

motion and music objects in such a manner that creates parent-child relationships between the

various objects [AudioKinetic].

However, Wwise‟s Sound Engine is very limited without using its Authoring Aplication,

which makes it difficult to use as support for new applications which need only a Sound Engine

to render its sound.

FMOD

FMOD started as a simple audio-engine but has evolved into a powerful videogame audio

middleware tool, used in a large number of games, like Little Big Planet and Heavenly Sword

[Bridgett 2009]. It is partitioned in different products that can be used in parallel to give

powerful features to both the sound designer and the audio programmer. For instance, FMOD

Studio is an authoring tool and run-time engine that allows audio content creation for games,

with an interface that will resemble more a professional Digital Audio Workstations than

existing game audio tools. Some of the features that contribute to this DAW feeling are a

powerful multi-track event editor and a mixing desk with pro effects for mastering [Firelight].

Another of Studio‟s main features is the possibility to create, edit, mix and profile content live,

which speeds up the sound designer‟s tasks. FMOD Studio also offers professional DSP effects.

FMOD Sound Engine provides great power to the audio programmer, ensuring maximum

sound quality with features like floating point calculations, full 32bit interpolation and advanced

compressed sample and streaming support. 3D positioning and HRTF (Head-Related Transfer

Function) can be achieved easily through the API and Virtual Voices management using 3D

distance and priority properties [Brandon 2007].

XACT

XACT is a proprietary middleware tool from Microsoft, provided with XNA, the game

development framework from the same company. Similarly to XNA, supports development only

Microsoft platforms. XACT is far more limited than Wwise or FMOD. Even so, it offers some

features that can be useful to the sound designer. Sounds can be grouped in Wavebanks (cues

that can contain more than one sound file), Sound Cues (Objects to which events and variables

can be assigned) or Categories (to which some effects can be applied). Variables can be used by

17

programmers to change Real Time Parameter Controls (values that can be changed in run-time

and are input to some function to be computed), and some DSP Effects can be used by the sound

designer. It relies a little more on the audio programmer than the aforementioned tools [Brandon

2007].

Psai

Psai is a recent interactive audio middleware tool that focuses on dynamic music

composition, reactive to players‟ actions. Being music a linear medium, and most of the

interactive mediums highly non-linear, creating interactive music for games is a complex task.

Psai creators claim that it is the only middleware in the world fully geared to preparing and

creating highly adaptive game music [Periscope Studio]. Although this statement is not exactly

correct, Psai‟s approach does have some novelty in the way it tries to solve the problem at hand.

Psai consists of guidelines for the conception and production of both the game and the

interactive music created for it. Additionally, Psai communicates with the game and controls the

music. Combining a special musical AI with a novel production process, its engine tries to make

the game‟s music follow the intensity of the plot and the actions. With Psai, the composer

doesn‟t have to spend hours preparing transitions between different music tracks or ambiances,

because Psai‟s logic will make all the decisions and choose the best transitions to make for the

music be always coherent with the game‟s current state.

Psai core is integrated with games as a DLL (Dynamic Link Library). The code just has

to trigger Psai core with simple commands, and Psai controls the music automatically, while

intelligent triggers modulate the music. Programmers have to create one function to create the

mood change, although it is bundled with logic modules made for specific game genres.

Sadly, there is not much information available about Psai besides its website. In fact,

there is not even a concrete list of compatible platforms (it is only said to be compatible with PC

and consoles).

Miles Sound System

Miles Sound System is one of the oldest middleware tools available in the gaming

industry. Its age is shown in some of its main characteristics. For example, it has the smallest set

of designer tools and almost all of its functionalities have to be implemented through the SDK

(Software Development Kit) by programmers [RAD]. However, most of its functionalities can be

18

programmed with less lines than in other engines, and Miles is considered the most reliable and

robust audio engine around. By current standards, Miles appears to be a little dated. Without

real-time parameter controls and some sort of GUI (Graphical User Interface) to let you organize

files beyond a simple directory structure, it does not offer much in the way of additional features

beyond DSP filtering and 3D sound. Nevertheless, sound designers continue to use it mainly

because it is fast, solid and has great support with fast response to e-mails [Brandon 2007].

Unfortunately, it offers no free license of any kind.

Unreal Audio System

Nowadays, Unreal Engine is one of the most used Game Engines [Stevens and Raybould

2011]. Its built-in solution for audio is called Unreal Audio System. One of its main features is

that the audio design follows the methodology behind the design of all the other components,

which is, building the levels inside the game world while roaming around freely [Brandon 2007].

In this way, sound objects can be attached to game objects that are visible in the game world,

which makes it easier to implement 3D sound positioning, spatialization and attenuation.

Another advantage of this audio solution integration is that sound behaviors can follow the

scripted events defined with the engine‟s scripting language: Kismet [Epic Games]. This way,

the sound designer can take advantage of complex events and actions defined previously by

another team member. Many audio effects are at the disposal of the sound designer (i.e., pitch

control, modulation, etc.), and extensive debugging tools can be used to monitor resource usage.

Cry Engine Sound System

CryEngine is a Game Engine designed by Crytek and is primarily for use in first-person

shooter video games. In a similar fashion to Unreal Engine, CryEngine has a built-in audio

solution which offers many features like in game mixing and profiling and a data-driven sound

system that guarantees multi-platform compatibility and individual performance optimization.

Other important features offered by this solution is the possibility to configure dynamic sounds

that react in a complex manner to parameters such as distance or time of day through real time

DSP effects. It can also be defined events that will influence the composition of the game music,

allowing the score to react to any desired game event, and the creation of a non-repetitive

environmental ambiance [Crytek].

19

Sounds can be added directly onto blended animations to improve (for example) the

implementation of foley effects. Once again, as similar to Unreal Engine‟s Kismet, Cry Engine

supports a graph language that eases the creation of scripted events. This way, the sound

designer can reuse Flow Graphs used for logic and physics.

2.4.2 Sound Libs/APIs

In this section, we will list all of the Sound Libs/APIs that we find relevant to analyze for

the sake of this study.

Marmelade Audio

Marmalade SDK is a cross platform, software development kit for mobile devices. Its

main feature is the high portability level that it enables, which allows development and

deployment for different platforms without having any kind of restrictions [Marmalade].

Relatively to audio support, Marmalade provides a 24-channel software sound mixer, support for

different audio formats like wav or pcm. It is not provided much more info, but from an analysis

made to Marmelade‟s API Reference, it appears to have a low-level support of audio, enabling

only basic commands like play, stop, etc. There are available on the web some user-made Sound

Engines, however, they are at an early stage of development, allowing only basic usage,

normally sufficient for mobile games.

Open-AL

OpenAL (Open Audio Library) is a cross-platform audio API. It is designed for efficient

rendering of multichannel three dimensional positional audio. Its API style and conventions

deliberately resemble those of OpenGL (Open Graphics Library). Early versions of the

framework were open source, but some of the later revisions are proprietary [Wikipedia].

In order to achieve a good three dimensional positional audio, OpenAL uses source

objects that contain properties like velocity, position, direction, etc. However, only a single

listener can be defined. The rendering engine takes into account factors like distance attenuation,

Doppler Effect, etc. Due to its OpenGL oriented skeleton, very little additional work is required

to integrate 3D sound in an existing OpenGL-based 3D graphical application. Some versions

support HRTF (Head-Related Transfer Function) mixing, which amplifies the realism of

20

spatialized sound. In addition, it also offers high quality effects and filters, as well as support for

multi-channel sound sources.

SDL

Simple DirectMedia Layer (SDL) is a cross-platform, free and open source multimedia

library [SDL]. Although its audio support appears to be very basic and limited, it has been used

in some small indie games and prototypes. Unfortunately, the only information available is the

possibility to convert formats if they are not supported by hardware, and that it is designed for

custom software audio mixers. It appears that this library does not offer all the mixing

functionalities that it may be needed for the project at hand.

SFML

SFML (Simple and Fast Multimedia Library) is a portable and easy-to-use API for

multimedia programming that provides low and high level access to graphics, input, audio, etc.

[SFML]. It is an object oriented alternative for the SDL. Its main audio features are hardware

acceleration, 3D sound spatialization and multi-channel formats (stereo, 4.0, 5.1, 7.1, etc.). It

appears to be a little more powerful than SDL, although, once again, it appears that may not offer

all the mixing functionalities needed.

BASS

BASS is a free for non-commercial use audio library that provides developers with

powerful and efficient sample, stream, MOD and MO3 music, as well as recording functions,

delivered in a compact DLL that won't bloat your distribution [Un4seen]. Its main audio features

are: support of different types of audio streams; support for multiple channels; 3D sound and

DSP effects. It appears to be one of the most powerful standalone Sound Lib.

irrKlang

irrKlang is a free for non-commercial use high level sound engine and audio library

[Ambiera]. It has base features known from low level audio libraries, as well as others like a

sophisticated streaming engine, extendable audio reading, single and multithreading modes, 3D

audio emulation for low end hardware, multiple roll off models, etc. Additionally, irrKlang also

offers many sound effects such as echo and chorus, performance and memory management, and

low level audio output manipulation (i.e. panning and volume).

21

Hekkus Sound System

Hekkus Sound System is a small and fast sound engine for mobile platforms (among

others), specially designed for games [Maniero]. It is free for non-commercial use. There is little

information available about Hekkus, but it seems to be a recent project that, has been receiving

updates and revisions in the past few months. The main features offered by Hekkus are a fast

mixer routine which allows unlimited music and sound channels and an accessible API. Hekkus

is strongly focused to mobile gaming, which means that it may not be powerful enough to deliver

all the requirements that may arise from the project to be developed.

JUCE

JUCE is an all-encompassing C++ class library for developing cross-platform software

[Raw Material Software]. Besides playing audio streams, JUCE has more interesting features

like support for mixers and tone-generators. However, it seems that it may be too limited for the

requirements that may arise from the project‟s specification. In addition, the details of how audio

is implemented in the framework are not available to the user, which can make it difficult to

change low-level details in the library.

PortAudio

PortAudio is a cross-platform, open-source library for real-time audio input and output

[PortAudio]. The library provides functions that allow the acquisition and output of real-time

audio streams from the computer's hardware audio interfaces. PortAudio is used to implement

sound recording, editing and mixing applications, software synthesizers, effects processors,

music players, internet telephony applications, software defined radios and more. PortAudio

offers many low-level functionalities and the source code is at the programmer‟s disposal.

However it does not support a very important feature: 3D Sound.

Audiere

Audiere is a high-level audio API. It can play many file formats, as well as many OS-

native audio API (DirectSound, WinMM, OSS, etc.) [Audiere].

Although it does not have much information about it available, it claims to offer an easy

API, volume, pan and pitch modification and noise generators. Without knowing more about it, it

is hard to classify it as a powerful possibility to create a dynamic soundscape engine.

22

Kowalski

Kowalski is a data driven, portable, high level API for real time audio. It was developed

primarily to support the development of games and other interactive applications where audio

plays a crucial role. Kowalski‟s approach tries to provide a data driven system that separates

content from code in order to ease the management of audio content [Stuffmatic]. Its approach is

based on a hierarchical mix bus system and it is the core of the Kowalski Project.

Kowalski‟s has many great features like: a good 3D audio support with many effects like

distance attenuation, Doppler shift and positional panning, support for mix buses to allow a

better control over mixes, and the capacity to save Mixer snapshots and to switch between

different snapshots. Other features that are valuable are audio level metering, which makes it

possible to keep track of the output levels and detect clipping, and an approximate sample clock

API that facilitates the synchronization between audio and visuals [Stuffmatic].

Kowalski‟s main advantage over other libraries is that its data driven approach keeps

code and data separated, which translates into complex content not implying complex code. This

approach clearly tries to mimic some features normally offered by sound middleware tools, but

that usually are not provided by sound libraries. Consequently, all of this makes Kowalski excel

over other sound libraries, although it is still under development. Ultimately, The Kowalski

Project can be seen as a hybrid approach between the middleware and the sound library layers.

2.4.3 Procedural/Dataflow Tools

In this section, we will list all of the procedural/dataflow tools that we find relevant to

analyze for the sake of this study.

PureData

Pure Data (Pd) is a real-time graphical programming environment for audio, video, and

graphical processing. It is supported by almost any platform available and, inclusively, new

projects have been made to increase the number of supported platforms, like libpd [libpd], which

enables Pd to have access to functions that would be better realized as a procedural piece of code

rather than the modular coding style that Pd tends to encourage [Gauthier].

Pd was created to explore ideas of how to allow data to be treated in a more open-ended

way and opening it up to any kind of applications, independently of what type of content they

provided (audio, graphics, video, etc.) [Puckette]. Pd‟s gives the sound designer a great amount

23

of freedom and helps him to express his creativity. Its popularity has been growing and it has

already been used in commercial videogames [A Game Development Blog 2008]. Besides,

works like [Farnell 2010] show that sound synthesis through Pd can play a major role in the

sound design scene in the future.

Pd has a modular approach, which means that its reusable units of code written natively

in Pd (called patches) can be extended by other modules or even other programming languages.

However, being Pd also a programming language, its patches can also be used as standalone

programs and freely shared among the Pd user community, requiring no other programming skill

to be used effectively [Puckette]. Pd was always designed to do control-rate and audio

processing on the host central processing unit (CPU), but rapidly became very useful in the

creation of sound synthesis and signal processing through a digital signal processor (DSP). In the

last few years, Pd has been used to create Procedural Audio effects to be used on videogames,

and in some cases it has been used to do all sound design of a game. Usually, the binding

between game code and Pd is done through Lua or OSC. As it can be seen in [Paul 2010], one of

the advantages of using Pd to render a game‟s audio is the possibility of modifying both sample

data and sound behaviors in real-time without a lengthy recompilation stage, which allows for

rapid iterative game audio sound design (although some Middleware Tools allow similar

functionality).

Max/MSP

Max is a visual programming language for music and multimedia, highly modular, with

most routines (native Max code) existing in the form of libraries [Cycling 74]. Similarly to Pd,

Max‟s user community is constantly creating new extensions that enhance Max‟s capabilities.

Much like most procedural audio tools, Max does not impose one way to create. Instead, it gives

tools to the sound designer to allow him to develop its own rules and ideas. Max allows the

creation of tone generators, sample-manipulation, synthesis tools, high-quality filters, spectral

processing, real-time recording, etc. Max (and Pd) do not only work with sound, VSTs (Virtual

Studio Technology) or MIDI, but can also work with graphics and all sorts of input and output.

An example of an audio-only game running just on Max/MSP is DeepSea [Wraughk]. Max has

also been used for many game audio prototyping experiences, as it can be seen in [Knight 2011;

Lykke 2008].

24

AudioMulch

AudioMulch is software for live performance, audio processing, sound design and music

composition [AudioMulch]. Its premise is to allow the user to create by patching together a range

of sound producing and processing modules. Nevertheless, unlike other patcher-based

programming environments, AudioMulch's modules perform high-level musical functions,

allowing the user to avoid creating things from the ground up using individual oscillators and

filters. Some of the categories of high-level modules are: signal generators, effects, filters,

dynamics processing, mixers, VST and Audio plugins.

Unfortunately, AudioMulch does not appear to have any available interfaces with

external applications, leaving it almost as a standalone application. Its high-level functions could

be useful to ease the learning curve of learning Pd or Max, however, its user-friendly approach

could mean more limitations on its features than those of Pd or Max. Ultimately, AudioMulch

appears to be better as a live performance tool than as a sound design one.

CLAM

CLAM is a full-fledged software framework for research and application development in

the Audio and Music Domain [CLAM]. It provides a conceptual model and means to perform

complex audio signal analysis, transformations and synthesis. It also provides a uniform interface

to common tasks on audio applications such as accessing audio devices and audio files, thread

safe communication with the user interface and DSP algorithms recombination and scaling. It

can be used as a library to program applications but also can be used through graphical tools to

build full applications without coding.

CLAM splits the processing in modules, so that it can be recombined as a network. Data

flow can be controlled using different communication patterns, and networks can be executed

within different environment backends like real-time applications, audio plugins, etc. It is

possible to graphically prototype software, being very easy to integrate the result in a pure code

project. All processing modules, user interface elements and backends create by the user

community can be shared and extended via plugins.

CLAM is usually used for tasks such as audio analysis and synthesis (specially spectral

analysis/synthesis) and Music Information Retrieval, Spectral processing, Spectral Modeling,

Tonal analysis, Rhythm analysis and manipulation, etc. Additionally, CLAM is one of the few

25

graphical programming tools that have a specialization plugin which provides many different

algorithms to render 3D sound.

To summarize, CLAM appears to be a very powerful tool, especially in signal analysis

tasks, which can be useful to the sound engine if frequency or pitch analysis turns out to be a

requirement. However, it may be a little difficult to integrate with another Sound Library needed

to produce some high level features like 3D sound spatialization.

2.4.4 Conclusion

A comparative table of all the tools analyzed in the previous sections can be found in

Appendix A. This table has more details about each tool that, for the sake of briefness, could not

be referred in this overview of the available tools.

2.5 Related Research

Sound Design is a rich area which can be approached from many different angles.

Normally, works on this field of study only address a sub-problem due to its intrinsic complex

nature. The two subsets which are closer to the work proposed in this dissertation are the sub-

areas of audio-scene description and soundscape composition.

Regarding solely a musical approach, Eigenfeldt tries to build knowledge into

autonomous agents to allow them to produce artistically interesting and compositionally

satisfying soundscape compositions [Eigenfeldt and Pasquier 2011]. Using pre-analyzed

soundscape samples, the agents try to avoid crowded spectral areas while maintaining a rich

musical interaction with each other. Following Truax‟s soundscape composition guidelines

[Truax 2002], according to the authors, “A generative soundscape system must combine audio

recordings in ways that rely upon an understanding of those recordings spectral components and

semantic contexts”. A similar approach, through evolutionary engines, is proposed in [Fornari et

al. 2008].

In [Macanulty and Durity], Macanulty and Durity propose a Contextually Driven

Dynamic Music System for Games which provide musical selection, mixing and effects, which

can be controlled dynamically or automatically through a logic system. a music playback system

that includes opportunities for musical selection, mixing and music effects that can be controlled

dynamically, and also by providing a logic system that can make control decisions based on

game play. Thus, the system‟s architecture has a two layered approach to dynamic music - the

26

logic layer, and the playback layer. This system is still under development, and has to show more

to demark itself from similar systems.

Talktome [Yiannis 2012], is a project developed by a student in Berklee College of

Music in Spring 2012, as part of my senior project in Electronic Production and Design. It is a

prototype for a game audio middleware built entirely in Max/MSP and controlled by Unity3D,

using Unity‟s tech demo, AngryBots. Talktome uses game events to define the game‟s level of

intensity, in order to choose what musical cues to play. The difference from other similar

prototypes is that the cues are chosen by a probabilistic algorithm. This way, the sound designer

can control the probability value to different cues, and control the game‟s musical variations.

Finally, An overview of the evolution and future of adaptive game music can be found in

[Young 2012]. It shows how much videogame music composition has been growing, and it

illustrates various examples of well succeeded approaches in commercial videogames.

Regarding works which do not focus solely the music layer of sound design, in [Chan,

Natkin, Tiger and Topol 2012], inspired by MPEG-4 BIFS [Scheirer et al. 1999], the authors use

a scene description language (COLLADA) which factorizes common elements needed to

describe both visual and auditory information. However, as referred in [Scheirer, Vaananen and

Huopaniemi 1999], and in contrast with visual scene graphs, an audio scene represents a signal-

flow graph describing digital-signal-processing manipulations. So, the objective of the work was

to link auditory and visual information together to allow sound design to be developed closely to

graphic assets. Additionally, a first approach to the concept of Soundscape is introduced, in order

to give a sense of aural depth and a more human feeling to sound [Truax 2008]. The main

achievement of this work is the independence between the proposed architecture and the Sound

API, which allows the usage of different solutions.

 Similarly, Game Audio Lab [Went et al. 2009] is a framework for academic purposes

which enables rapid experimentation of dynamic sound design in gaming contexts. Through the

mapping of gaming variables to composite variables (variables that express meaningful

information about the game that is not available otherwise), researchers can easily adapt sound

and music in real-time during gameplay. The framework‟s architecture separates the audio

engine from the game code, so that designers can modify parameters and engine architecture in

real-time. However, sound instances that are not affected by this process are played through the

game‟s original sound engine. This approach requires the game code to be modifiable, which can

27

sometimes be an obstacle. Another example of this kind of experimental rapid prototyping

approach is Paul‟s Pure Data Sound Driver [Paul 2007; Paul 2008; Paul 2010], which supports

SFX (Sound Effects), speech, adaptive music, among other types of sound applications. Once

again, communication between game code and the sound driver is achieved via network through

Open Sound Control (OSC) [Open Sound Control].

However, although not being a work directly related, the video SoundWalkers [Castro

2009] must be mentioned because it helped to better understand some concepts behind

Soundscape Theory. Another good example of a work that embodied Soundscape Theory

principles is [Alves 2011], which presents a different patterns of sound design in videogame

contexts. Influenced by the Acoustic Ecology principles defended by Schafer and Truax (see

Acoustic Ecology), Alves argues that sound design in games benefits from being embedded in

the overall game design, and still have a great potential to be unlocked. This approach is based in

design patterns and it is assisted by a deck of cards. This deck can help game/sound designers

early in the design process to come up with creative ideas regarding sound usage in their game.

All cards have relationships with others. Although the deck does not have any kind of

layering/grouping system to help in the organization of the different patterns, the large number of

relationships adds great semantic value to this work.

2.6 Acoustic Ecology

In the following sub-chapters, we will present the main inspiration for the approach we

followed in this work. Acoustic Ecology theory argues that the sounds of an environment should

be perceived as a whole, and understood as an ecologically balanced entity. In a soundscape,

sounds are not arbitrary but instead a complex system of relationships between its inhabitants,

and between them and that environment, with implications on timing and on auto-regulation

when emitting those stimuli.

2.6.1 Soundscape Definition

Although its definition may vary from author to author, a soundscape is the group of

sounds which compose a determined sonic environment (is the acoustic manifestation of „place‟)

[The Canadian Encyclopedia]. This concept was coined by composer, writer, music educator and

environmentalist, Raymond Murray Schafer. During the 1960s he founded the World

Soundscape Project (WSP), intended to work as an educational and research group. Moved by its

28

awareness of the degradation caused by man to its sonic environment, he wrote two educational

booklets regarding noise pollution: The New Soundscape and The Book of Noise. Despite some

improvements achieved by these works, Schafer felt that a more positive approach had to be

found [Truax].

Many works and studies began to be published by the WSP, most of them consisting of

recordings and analysis of different locales in the world. The objective of this work was to

develop the study of this novel field, soundscape ecology. Instead of just referring the problems

of noise, Schafer tried to analyze different soundscapes, their properties, and how could they be

protected and improved [The Canadian Encyclopedia].

According to Schafer, “a soundscape has some sounds which are more important either

because of their individuality, numerousness or domination”, and is composed mainly by three

types of elements: Keynote sounds, Signals and Soundmarks [Schafer 1993].

 Keynote sounds - It is the fundamental tone of a composition, according to which

everything else modulates. Although not usually listened to consciously, they

influence the behavior and rhythms of those who hear them, and allow other

sounds to be distinguished in the soundscape (The visual perception metaphor of

figure and ground, the figure being that which is looked at while the ground exists

only to give the figure its outline and mass [Schafer 1993]).

 Signals – Are the foreground sounds which are listened to consciously. Using the

aforementioned metaphor, they are figure rather than ground. They are intended

to be listened, often as warning devices like bells or sirens.

 Soundmarks – Refers to a community sound, unique or with qualities which

make it specially regarded or noticed by the people in that community. It helps to

make the acoustic life of a community unique.

WSP‟s following work centered on Soundscape studies which tried to unite multiple

isolated disciplines that studied Sound with their own frameworks and languages. The main

challenge was in the discovery of the missing interfaces between the different fields, in order to

unite people from different backgrounds to work towards a healthier sonic environment for our

world.

29

2.6.2 Acoustic Communication

Barry Truax, a former Schafer student and member of the WSP, during his Soundscape

studies, felt that, although sound is a vibratory motion, what is important from a human

perspective is its effects as a form of communication. In his own words, Acoustic

Communication “is the most general way to describe all of the phenomena involving sound from

a human perspective”. His objective was to understand what Sound‟s role was in the complex

relationship between people and the environment and to try to protect and improve the existent

Acoustic Communities (Soundscapes in which acoustic information plays a pervasive role in the

lives of their inhabitants) [Truax 2001].

There were two pillars behind this approach to Sound: the notion of context (“a sound

means something partly because of what produces it, but mainly because of the circumstances

under which it is heard” [Truax 2001]), and the idea that sound, the listener, and the

environment are not isolated entities with isolated connections, but are instead a complex system

of relationships in which everything interacts and influences everything. The flow of

communication is bidirectional, since the listener is also a sound maker. To summarize, context

give us understanding of how a sound functions, knowing that its role is the mediation and

creation of relationships between listener and environment.

Figure 2.2 - The mediating relationship of an individual to the environment through sound

(modified from [Truax 2001]) [Acoustic Ecology 2000].

30

While the Energy Transfer Model, the model used by most disciplines dealing with

sound, focus on the energy transfers that produce a determined sound, the Communicational

approach focus on the information communicated by that sound. Similarly, while the former

implies the notion of hearing (processing acoustic energy in the form of sound waves and

vibration), the latter makes use of the notion of listening (processing sonic information that is

usable and potentially meaningful) [Truax 2001].

Listening is a key element in the communicational model, because it is the interface

through which we obtain information from the environment. Listening habits should be

considered as important as sound making ones. It should also be referred that, in order to

maximize the quantity of information perceived by different listeners in different situations,

different types of listening must be taken into account. While sometimes one consciously search

the environment for clues (Listening-in-search), in other situations one is ready to receive

information, even his directions is directed to something else (Listening-in-readiness). Moreover,

there are situations where one almost ignores a sound, but is still aware of its occurrence

(Background Listening). These are just three examples, but what is important to retain is that

different types of listening must be taken into account for different situations.

In this approach, another vital concept is that memory does not simply stores a sound,

but stores a pattern composed of a sound plus its original context. In Truax‟s words: “Recalling

the context may revive a memory of the sound, and the sound, if heard again, usually brings the

entire context back to life” [Truax 2001]. Due to this, the auditory system is always comparing

retrieved information to patterns stored.

Truax also divided Sound in three systems of acoustic communication: Speech – Music –

Soundscape. As we move along from left to right, the specificity in meaning decreases and the

semantic level gets more complex, depending more on the relationship between elements, and

between the elements and the whole.

2.6.3 Acoustic Design

According to Barry Truax, “The concept of „„acoustic design” refers to the analysis of

any system of acoustic communication that attempts to determine how it functions. Criteria for

acoustic design are obtained from the analysis of positively functioning soundscapes” [Truax

31

2001]. It may involve changing both aspects from the environment and/or aspects of the listener

(i.e. listening habits).

Figure 2.3 – Systems of Acoustic Communication Continuum [Truax 2001]

A functional acoustic system will certainly have the following three properties:

 Variety - Different kinds of sounds and their variations should be present and

clearly heard. These sounds should be “rich” in acoustic information.

 Complexity - It exists within the sounds themselves and in the types and levels of

information they communicate. Familiarity with the environment empowers

listeners with the ability to decode and interpret subtleties in the sounds which are

not recognized by novice listeners.

 Functional balance – It should be the result of spatial, temporal, social, and

cultural constraints on the system‟s variety and complexity, in order to keep a

functional equilibrium. However, the system‟s ability to defend itself from

artificial and human perturbations is very limited.

To summarize, the physical properties of a sound are its natural ecological balance

system. However, without the environment‟s constraining forces, there would be too much

complexity and sensory overload would prevent effect information exchange through sound.

This equilibrium mechanic tries to prevent sounds whose energy is predominantly in the same

part of the spectrum to be heard at the same time. Contrarily, sounds in distinct ranges may be

heard clearly even if they have different intensity levels.

Speech Music Soundscape

32

2.6.4 Soundscape Composition

At Simon Fraser University, along with the evolution of these concepts, Barry Truax and

many others involved with acoustic design started to mix electroacoustic techniques with

soundscape recordings, which resulted in a new style of electroacoustic music [Truax 2008].

This genre is characterized by the presence of recognizable environmental sounds and contexts,

the purpose of being able to invoke the listener‟s associations, memories, and imagination

regarding the soundscape [Truax 2002]. According to Truax, it is essential for the composition to

play with the listener‟s associations between the recordings, because the lack of apparent

semantic relationship between sounds prevents a syntax from being developed in the listener‟s

mind [Eigenfeldt and Pasquier 2011].

2.6.5 Acoustic Ecology Ideal

Acoustic Ecology is becoming so important that nowadays it is being leveraged with

landscape ecology in order to create a new field of study called Soundscape Ecology [Pijanowski

et al. 2011; Truax and Barret 2011].

Summing up, Acoustic Ecology‟s ultimate goal is to restore equilibrium to

malfunctioning soundscapes, which became too damaged by the changes brought by the modern

world. Natural balancing forces cannot cope with factors like electroacoustic technology, and it

is up to every one of us to start a change. If we accept to live in a lo-fi soundscape, one with low

information to offer, sound will become something the individual tries to block, rather than hear

[Acoustic Ecology 2000]. Therefore, Acoustic Design must include all elements within the

soundscape, including humans and their listening habits. We are all part of a system, so,

Acoustic Design is not just about changing the environment, it is about changing with it.

2.7 Conjecture on Soundscape Composition in Games

This State of the Art chapter gives an overview over the actual state of Sound Design in

gaming contexts. Since the birth of videogames, game audio has evolved tremendously, although

far from reaching its full potential. The industry has been struggling against the dynamic nature

of game audio with linear medium techniques and tools, with Middleware tools being an effort to

fight that trend. However, even with those tools, the process of foreseeing all the situations that

can occur in a game under many circumstances is extremely complex. Moreover, market

pressure prevents developers to have freedom to experiment different approaches. Additionally,

33

indie development teams sometimes do not have the know-how, or the time and money to spend

on very expensive audio middleware solutions.

Nonetheless, new techniques and tools have been developed and explored, including

among the research community. However, most of them only focus one specific sound layer

(mostly game music). The few that go beyond music, usually think of soundscape as ambiance,

simply applying different styles like time of day or noise level. These approaches seldom explore

sound as an information carrier, as suggested by foundation of Soundscape Theory. In addition to

changing music, ambiances or other sound layers, regarding the soundscape as a meaningful part

of game design holds the potential to enhance the exploration of sound in games.

As Steven Spielberg once said “Sound and music make up more than half of

communicating a story, greater even than what you‟re seeing” [Dodds 2008]. Dodds also

supports the importance of sound: “Sound is a great sensory stimulus to the player‟s

consciousness and even to the subconsciousness, affecting the mental processes without the

player even noticing” [Dodds 2008]. It is undeniable that sound can play an important role in the

gameplay, attracting attention to one‟s action, anticipate future events, evoke emotional

responses, in sum, audio can help to resonate a memorable moment.

However, audio keeps is constantly rejected as one of the most important features in a

game (see Introduction and Motivation). It is something that is much harder to exhibit than

graphics or an input interface between a player and a console. This leads to sound design being

neglected and constantly put in the last stages of the game design process. This negative attitude

against sound makes it almost impossible to create positive explorations of sound, and to allow it

to have relevance in the gameplay.

There is also the problem of videogame‟s intrinsic dynamic nature. Sound has always

been dealt with in a linear time-wise fashion, when the medium itself (videogames) is not. It is

very difficult to create positive sound design explorations with a rigid approach, composed of

strict temporal rules that link a specified event to its specific consequence, most of the times

ignoring the soundscape‟s actual state. For many years, the industry has been struggling against

this issue with linear medium techniques and tools, with Middleware tools being an effort to

fight that trend. Currently, the best solutions available require a great investment, both

economically and in terms of acquiring the necessary know-how. However, even with those

tools, the process of foreseeing all the situations that can occur in a game under many

34

circumstances is extremely complex. Rob Bridgett, Radical Entertainment‟s audio director,

worked on Scarface: The World is Yours [Entertainment 2006], and pointed the large amount of

time spent tweaking mixer snapshots for many different game events. In total, the game had

about 150 individual mixer snapshots [Bridgett]. Additionally, indie development teams, usually,

do not have the know-how, or the time and money to spend on very expensive audio middleware

solutions. At the same time, big development studios suffer a strong market pressure, which

prevents developers to experiment new ideas and take risks. There is both an audience that is in

need of alternatives to deal with Sound Design in Games, and another one that is tied to market

constraints and cannot answer this need.

Therefore, an opportunity for a holistic approach to Sound Design arises from this

conjecture. Alves‟s work [Alves 2011] is a first step in this direction, supporting why an

Acoustic Ecology mindset would improve Sound Design, and providing guidance for a positive

exploration of sound in Videogames. However, the number of patterns and the way they are

related difficult their direct application in a soundscape composition solution. We believe that

refining some of the concepts supported by Alves, improvements in the dynamic soundscape

composition field could be made, possibly giving some indications of how dynamic soundscape

composition could be approached in the future.

35

3 Approach

In this chapter, we start by presenting the research objectives that emerged from the

research detailed in the previous chapter (State of the Art), and from the problem definition that

arose from the analysis made on the information gathered. Following this, we present what was

the research methodology chosen to achieve the defined objectives, and explain why the chosen

methodology is the best fit for the proposed objectives. Additionally, we present the initial

planning for the project, with the respective milestones expected for each month. Following this,

we detail the changes that were made to the planning, and list of what was in fact done during the

second semester. Lastly, we report the architecture and general structure for each of the expected

outputs of this dissertation: the API, the systematization of soundscape composition techniques,

and the dynamic soundscape composition module.

3.1 Research Objectives

From the actual state of game audio emerges a necessity to find new ways to deal with

the medium‟s intrinsic dynamic nature, and to approach it in a holistic way. So, this project‟s

main goal is to suggest a possible approach to the dynamic soundscape composition challenge.

We intended to develop a game engine support tool for developers to approach the problem of

sound in games using Acoustic Ecology concepts, enabling experimentation of solutions for the

problem of dynamic soundscape composition in games.

Firstly, we aimed at defining a soundscape specification API to be used in gaming

contexts. Starting with a pre-defined number of categories (verbs) that represent common sound

design exploration patterns [Alves 2011], and also using other soundscape theory concepts, we

hoped to find a simple solution to which new categories can be added, in order to semantically

enrich the concepts behind our specification API. Then, we wanted to propose a systematization

of techniques for dynamic composition in gaming contexts. Although different games have

different vibes and use different soundscape styles, we believed that different techniques could

be detailed in order to be further applied. Finally, in order to be able to test the aforementioned

API, and to verify the feasibility of the proposed architecture, we modeled and prototyped a DSC

engine module as a proof of concept to be integrated in a game engine. Furthermore, in the future

36

this proof of concept can be used to test the proposed techniques. This module allows rapid

prototyping and experimentation in order to allow developers to more easily test their creative

ideas.

It is important to refer that our objective is not to offer similar quality, durability and

features of current middleware tools. The system is intended for early stage rapid prototyping, in

order to empower small game developers to integrate sound design explorations in their projects.

3.1.1 Soundscape Specification API

Currently, game audio implementation requires very specific programming knowledge,

both in terms of coding complexity, and the concepts behind the implementation. It is a process

that usually requires designers and programmers to work close together to be able to

communicate, which may not be easy due to unfamiliarity with each others‟ vocabulary and

background. Additionally, communication between game engines and middleware tools are

made through event systems. These events are defined in the authoring tool by the sound

designer, being the programmer in charge of triggering them in the game code whenever

necessary. The only identification that these events have is their name, having no semantic

information attached to them.

What we hoped to achieve with the creation of this Soundscape Specification API was to

create a more designer-friendly solution for the creation and characterization of acoustic

elements in a game. The primary goal of this characterization is instrumental, namely that of

providing the information that will allow the soundscape composition techniques (see

Systematization of Soundscape Composition Techniques) to dynamically operate on sound

sources, so that a healthy soundscape can be composed by the dynamic soundscape composition

module. Another goal of this API is to work as a means for having an expression of the game‟s

sound design intent, in a more easily understandable form. We hoped to offer capabilities to

declare the designer‟s intentions regarding the game‟s soundscape, while keeping the code

relatively understandable and presenting a low learning curve. These intentions were based not

on strict, imperative rules, but instead in a more declarative fashion.

3.1.2 Systematization of Soundscape Composition Techniques

During the evolution of Sound Design in videogame contexts, the trend has always been

to adopt techniques and tools from linear types of media like music and cinema. Specialized

37

professionals from those fields created content that was then glued to the game by a programmer.

Although Middleware tools have introduced in the last years new techniques and methods to

circumvent this problem, we believe that there are still different approaches to be explored,

especially by developing techniques and tools made from scratch with dynamic soundscape

composition in mind. We hoped to define a list of techniques that attempt to cope with the

dynamicity and potential unpredictability intrinsic to the medium, offering guidance to the

dynamic composition module.

3.1.3 Dynamic Soundscape Composition Module

As it has been introduced in State of the Art, it is pertinent that a soundscape adapts to the

dynamicity of the gameplay to ensure it is communicational value and that it contributes

positively to the overall experience. In turn, that requires that designers are able to inscribe the

dynamic behaviour of the soundscape that they design.

We exposed that middleware solutions are those that better fulfil such goals, but they still

present some major obstacles for a broader adoption by the community of practice. One such

obstacle is the typically high price, which renders them unviable for small developers.

Additionally, the sophistication of such tools also brings complexity that requires a learning

curve that may not justify their introduction in small projects.

Additionally, small teams, in indie development scenarios, usually do not have access to

a sound design expert. The vast independent game developer community remains challenged by

small budgets and lack of know-how while trying to integrate sound in their games.

Being so, we argue that it is pertinent to contribute with conditions that may augment the

prospect that the average developer can take advantage of the exploration of sound in game

design. The availability of tools that ease upright integration of sound in games could make it

interesting for developers who are not experts in sound design to venture into the practice, either

by themselves or while working together with designers. Even if such appropriation solely

fosters a greater awareness for the potential of sound in game design, we believe it is fairly

arguable that it would be a valuable contribution. Finally, to add to such pertinence, it is worth

noticing that small teams actually constitute the majority of game developers. In that sense,

contributing for the empowerment of such a massive force of creativity could benefit both the

industry, and the gamers.

38

Therefore, we hoped to design a solution for supporting the dynamic enhancement of a

game soundscape, while addressing the goals and issues stressed in the previous paragraphs,

through an holistic approach such as the one rooted in Acoustic Ecology. Using the knowledge

created by the previous objectives, we intended to design and prototype a run-time dynamic

composition module for a game engine. This module serves as a proof of concept of the

proposed system‟s architecture, and we hope that, in the future, it will allow us to test, evaluate,

and improve all the techniques defined in our systematization. A game scenario was used to

verify how the engine composes the soundscape autonomously in a dynamic fashion, as well as

to test the integration of the proposed API with game code. This module allows rapid prototyping

and experimentation in order to allow developers to more easily test their creative ideas.

3.2 Methodology

Design Science Research (DSR) is a research methodology characterized by iterative

design and formative research. The main difference, when compared to more conventional

educational research methodologies, is that it changes the role of design in the whole process. In

DSR, design is important not only on the evaluation of theories, but also on their development.

Instead of having a group of theories and principles that are followed blindly during the

design process, DSR encourages iterative cycles of problem definition, design, implementation,

and evaluation that originate data to be used in the following design iteration (see Figure 3.1 -

DSR's iteration steps).

Figure 3.1 - DSR's iteration steps

Problem
Definition

Design

Development

Evaluation

39

 This approach allows a constant refinement of theories, design process and its outcomes,

eliminating the boundaries between design and research. DSR‟s complete framework can be seen

in Figure 3.2.

This methodology fits this project because it is oriented for the production of knowledge.

While other methodologies were created with software production in mind, in DSR, software

creation is simply part of the knowledge production process. Being the goals of the project not

only the development of a prototype, but also the definition of a specification API and the

systematization of soundscape composition techniques, DSR provides a methodology that fits

perfectly the proposed objectives. In order to fully understand the adequacy of the DSR

methodology to the project to be developed, Table 3.1 can be consulted.

Step Description Dissertation

Awareness of problem

It is where the problem is defined and

the value of a solution is supported.

The output for this step is the State of

the Art Report, which helps to define

the problem.

In our project, this step corresponds to

the first two tasks in the Gantt chart:

State of the Art Report and Definition of

Problem and Methodology. However, it

is important to refer that the problem

definition could be refined with data

collected from any iteration.

Figure 3.2 - DSR's Framework [Hevner 2004]

40

Suggestion

The previous step‟s output is used to

define the objectives and requirements

for a solution. In this step, a first

approach to a solution is carried out,

from which can be originated

interaction models and architecture

proposals that complement the

tentative design. This solution is

achieved through abduction,

supplementing what is not known

through intuition. It is clearly declared

what is known, and what it is not. So,

as in abductive reasoning, the premises

(tentative design) do not guarantee the

conclusion (valid solution).

In our project, this step corresponds to

the tasks named Initial Design and

Prototyping. During the prototyping task,

each iteration creates new data that will

be used to refine the objectives and

requirements, the specification API, the

DSC techniques and the DSC solution

applied to the module.

Development

This step consists in the

implementation of the proposed

solution, by resorting to Software

Engineering processes, embodied in

the DSR approach. The output from

this step is a software artifact. If the

artifact was successfully built, the first

part of the proof of concept was

completed.

In our project, this step corresponds to

the task named Prototyping. The

design/implementation/evaluation cycles

have the duration of one month.

Evaluation

After the development step, the artifact

is tested and its results are compared to

the objectives proposed in Suggestion.

It usually requires the usage of metrics

and analysis techniques. If there is no

model of evaluation to the specific

artifact or the specific objectives that

are being designed, the evaluation

methods have to be created in the

Suggestion step. If the results are

successful, the second part of the proof

of concept is completed. The

knowledge originated from this step is

then used to refine the previous steps

and is used in the next iteration cycle.

In our project, this step corresponds to

the task named Evaluation. It is

important to refer that after each

iteration, this evaluation occurs but in a

more informal way, being only during

the Evaluation task that a formal

evaluation is carried out. This is due to

the project‟s tight time constraints.

Conclusion

This step consists in the presentation of

the knowledge originated from the

whole process (Statement of Learning).

The output can vary from concepts or

models, to methods or prototypes

In our project, this step corresponds to

the task named Statement of Learning,

where the outputs of the projects are

going to be presented.

Table 3.1 - DSR's steps detailed

In this subsection we explained what research methodology was adopted and the reasons

behind that choice. We truly believed that the principles that support the Design Science

Research methodology are the ones that cope better with the dissertation‟s research objectives.

41

3.3 Planning

In this section, is described the planning proposed for this dissertation, covering both the

first and the second semester. The planning of the second semester is going to remain similar to

the one presented in the intermediate report, in order to allow comparison with what was indeed

executed during the second semester (presented in Execution). In order to better understand it, it

is recommended to consult the Gantt chart presented in Appendix B. The project‟s tasks defined

in detail in the aforementioned chart. It is important to refer that although this dissertation does

not follow a scrum methodology, milestones were projected as a result of one month sprints.

These monthly sprints embody an iteration of DSR‟s iteration steps (see Figure 3.1 - DSR's

iteration steps). However, due to the nature of the work that was produced, the first two months

of the first semester did not follow this monthly approach.

The first semester started with the research and documenting of the State of the Art. This

was one of the longest tasks (it took approximately three months), mainly because it is the

foundation for the work to be produced further on the dissertation. This task was divided in four

research components: Soundscape theory, Audio support in game engines, Audio tools, and

Soundscape composition. After one month of State of the Art research, the details of our project

started to be defined. The knowledge that it was being gathered in the previous task was helping

to comprehend and define what the problem that should be addressed was, as well as some

assumptions and milestones were starting to be defined. Following the aforementioned

specification process, an initial design attempt was put on course. At the same time the goals and

requirements were being defined, we started to study different iterations of a possible

architecture for the sound engine. The last subtask of the initial design attempt consisted in

defining a first specification for a possible solution. This solution consisted in a list of steps the

engine will need to do, similarly to defining the different parts of a complex algorithm. The last

month of the first semester consisted in transposing all the knowledge obtained in the previous

months to the Intermediate Report.

The second semester‟s main task is the implementation of the prototype. It is important to

refer that this process includes some theoretical tasks, like the continuous definition and

refinement of the concepts behind our specification API and the systematization of techniques.

After a brief period of time to test further the tools that will be chosen for the implementation

process, the prototyping process will start by the implementation of basic audio engine functions

42

(like play, stop, etc.). After that, these basic functions will be integrated with the game engine

that will serve as test-subject for this dissertation‟s work. This will serve as skeleton for the next

step in the prototyping process: the implementation of soundscape composition techniques.

Lastly, the prototype will suffer some refinements that will be a direct consequence of an

evaluation process that will be developed previously. The aforementioned evaluation task will be

divided in two parts: evaluation performance, and analysis of the results. Finally, the writing of

the final statement of learning will be done, which encompasses the writing, review, and

finishing of the dissertation final report.

3.3.1 Milestones

Although this dissertation does not follow a scrum methodology, milestones were

projected as a result of one month sprints. However, due to the nature of the work that was

produced, the first two months of the first semester did not have any milestone defined.

Obviously, being this dissertation a Design Research work, there can be adjustments in both the

milestones‟ dates and their expected output. The list of milestones can be consulted in Figure 3.3

- Milestones Table, and will be explained in the following subsections.

Milestone 1 – State of the Art Review

In this milestone, the objective was to have all the research about the topics that would

compose the State of the Art, and to complete a draft of it. Although some information was still

being added to the chapter after this date (even during the second semester), this milestone was

successfully accomplished.

Figure 3.3 - Milestones Table

Milestones Sprint

M1 September - November

M2 October - November

M3 November - December

M4 January

M5 February

M6 March

M7 April

M8 May

M9 June

M10 July

Final version of language, techniques systematization and module

Final Report

Description

SoA Review

Initial requirements, architecture and solution

Intermediate Report

Definition of Problem and Methodology

Prototype with basic audio functions

Prototype integration with game engine

Prototype with most techniques implemented

Evaluation Results

43

Milestone 2 – Definition of Problem and Methodology

The expected result from this milestone was a first specification of the problem to be

solved, and a first thought about what milestones would best fit the project at hand.

Milestone 3 – Initial requirements, architecture and solution

Following the specification process performed in the previous milestone, this milestone

consisted in transforming data into a more formal output result. In other words, the goal was to

define a list of possible requirements for the project, design the diagram of the proposed

architecture, and to define in a more formal way, the first solution for the problem that was

projected.

Milestone 4 – Intermediate Report

The last milestone of the first semester consisted in writing the rest of the intermediate

report.

Milestone 5 – Prototype with basic audio functions

At the end of the second semester‟s first month, it is expected to have an audio engine

prototype that performs basic audio functions. At this point, decisions about software must be

made and this milestone serves to familiarize with the chosen tools, as well as to create the basic

functions that will serve as support for the more high level concepts, and goals, of the following

milestones.

Milestone 6 – Prototype integrated with example game scenario

The expected output of this milestone is to have full integration between our basic

prototype, and the chosen game engine that will be used. From this point on, new layers of

complexity can be added to the sound engine, which will only require small changes in the game

code, being the communication channels between the two engines completely built.

Milestone 7 – Prototype with most techniques implemented

At this point, most techniques should be defined and implemented. This will allow the

next milestone (Evaluation results) to be achieved without delays. Moreover, the number of

techniques not implemented at this stage, will surely influence the rest of the project. Due to this,

it is an extremely important milestone.

44

Milestone 8 – Evaluation results

In this milestone we should be finishing the evaluation process. This will give us some

answers about the approach taken and will allow us to take conclusions that we hope will

contribute to the soundscape composition field of study. Additionally, it will allow refinements

on the artifacts that will improve the quality of the dynamic soundscape composition module.

Milestone 9 – Final version of API, techniques’ systematization and DSC module

This milestone marks the ending of the prototyping phase. All the artifacts that are

expected to result from this project must be completed. This also includes documentation and

other extra tasks needed to complete the artifacts.

Milestone 10 – Final report

The last milestone of the project is the delivery of the statement of learning. In other

words, consists in writing, reviewing and completing the final report.

3.3.2 Execution

When the second semester began, we knew there were important decisions that had to be

made in order for the prototyping phase to start. Architectural and technological issues were still

preventing us to start. Also, these issues could have impact on the solution that it was being

designed. Therefore, we preferred to think wisely, even if that would create a little delay on the

project. Due to this decision, the prototyping phase only started in March, instead of the

projected on the intermediate report (February). Furthermore, the deliverables of each milestone

were changed. The new milestones that were defined were:

 Sprint #1 - March – Modified version of the game Blindfold; Alpha version of

the DSCM, only with communicational modules prototyped.

 Sprint #2 - April – Final specification and prototyping of the API; Beta version

of the DSCM, with the audio renderer fully implemented, and remaining

modules‟ skeleton prototyped; One heuristic implemented (Context heuristic);

Two scientific papers for the Audio Mostly 2013 conference.

 Sprint #3 - May – A version of the DSCM with all the heuristics implemented.

 Sprint #4 - June – Final version of the DSCM with refined heuristics,testing

procedures, analysis of its results, and the writing of the final report.

45

All these milestones were achieved, and their output is going to be detailed in the

following chapters.

3.4 Dynamic Soundscape Composition Solution Architecture

In the following sub-chapters we will detail the architectural and design choices made

regarding each of the outputs expected for this dissertation: The soundscape composition API,

the systematization of soundscape composition techniques, and the dynamic soundscape

composition module.

3.4.1 API Design

As the main goal of this project is to propose an approach for Dynamic Soundscape

Composition in videogame contexts through a holistic perspective to sound, the only interface

between the target audience and the module is the API and the concepts that support it. Similarly

to any other kind of design (i.e. user interfaces), this API and the theoretical concepts behind it

followed some pre-defined guidelines. What we hoped to achieve was an accessible, easily

understandable, but and the same time resourceful API, that would allow designers to experiment

and to enrich their games with rich sound explorations and healthy soundscapes. Similarly to the

DSC module, this API was programmed in C#.

One of the main goals of the API is to allow designers to create and characterize acoustic

elements in the game. The primary goal of this characterization is instrumental, namely that of

providing the information that will allow the heuristics to dynamically operate on those sounds,

so that a healthy soundscape can be composed.

Another goal of the use of this API is that it can also work as a means for having an

expression of the game‟s sound design, in a form that attempts to be easily understandable. We

tried to enhance legibility through a judicious naming of classes and methods, and choice of

parameters and expected values. This should help designers to keep a good perception of their

decisions while working on a design, with advantages also for the maintenance of that design.

But it should also serve as a format to communicate that design to other people, whether it is to

discuss ideas within the development team, or to share designs among projects.

Equivalently, another objective for this API is that it presents a low learning curve. This

is consistent with our primary motivations for investing on this research proposal, which in turn

resulted from the perception that the available solutions that can be used to support the design of

46

healthy soundscapes, particularly middleware tools, are typically characterized by high learning

curves. The ease of use of the API is also important to support prototyping and test design ideas.

The ruling guideline behind the design of this API was to think of it not as a language in

itself, but as a means to give expression to Alves‟s pattern language, as well as to other

principles found on Acoustic Ecology theory, which served as inspiration for this holistic

approach.

This holistic perspective over game audio is a shift in the way sound implementation is

foreseen. A parallel can be drawn between some programming paradigms and the proposed

approach. What is being proposed is a change from an imperative mentality (imperative

programming), to a more declarative mentality (declarative programming). Rather than defining

strict orders like “Event A, play sound B”, the sound designer should only define sources and

contexts which contain high-level directives that will serve as input to the soundscape

composition module.

Theoretical Concepts

In order to enable the translation of some Acoustic Ecology principles to an API to be

used in game code, we had to define key theoretical concepts that designers should be aware of

in order to project soundscapes in a more easily understandable fashion.

 Source – It is the concept which represents a sound source, and it is the key

concept behind the API. Every sound of the soundscape should have a source

representing it. Every source has a number of properties that enables designers to

shape them as they intend to. It is the information stored in those properties that

enables the composition module to reason about how to compose the game‟s

soundscape.

 Layer – The concept of layer is a categorization of sounds according to their

semantics, as referred by Peck in [Peck 2001]. The five different layers defined by

Peck are: Ambiance, Dialogue, Music, Foley and Sound Effects. This is one of

the properties that will serve to personalize sound sources. Additionally, many of

the actions that the sound module will apply, will be done to specific layers.

Therefore, the layer chosen by the designer to identify the source will have impact

on how it will be treated by the composition module.

47

 Agent – Besides the concept of layer, we wanted to be able to associate each

source to another type of identification. During game design process, the concept

of character is one of the key elements. Therefore, we decided that could be useful

and intuitive for designers to be able to associate a source to a specific agent in

the game. However, it is important to refer that the term “Agent” is just an

abstraction that was defined. In other words, it is not mandatory to use a game

character in this property, as designers are free to associate sources with whatever

term they prefer. To sum up, this is a free tagging system, which can be used by

designers, though we labeled it Agent because it is a type of utilization that we

think it can be both simple and useful.

 Pattern – The concept of pattern is informed by Alves‟s work on his Sound

Design Pattern Language [Alves 2011] [Alves and Roque 2011]. Although in his

work, the large number of patterns translates into different categories (i.e., sound

explorations, sound layers, guidelines, etc.), in this work, patterns should be

understood as sound behaviors that will be taken into account by the DSC module

while maintaining the soundscape healthy. It is important to refer that while some

patterns have to be associated with a source, there can be stand alone patterns

which affect the whole soundscape. The list and explanation of all the developed

patterns can be consulted in Soundscape Composition Techniques.

 Listener - A listener represents the “microphone” inside the game world. In other

words, it represents what is heard by the player. There are two properties that

influence what the playear hears: the listener‟s position and direction. These

values are needed for the sound engine to make the calculation needed to recreate

3D sound behaviors.

 Context – It is the second most important concept of the API. Most of games

nowadays have a large number of elements operating simultaneously, which

means that, at a given moment, there can be a large number of sound-producing

actions occurring. However, only some of them are relevant for the player. What

we pretend to offer with this notion of context is to clearly differentiate between

relevant sounds (in context), and sounds that are not relevant (out of context).

48

 Exclusivity – This is a concept that is attached to context. If a context is

exclusive, it means that sounds that are out of context are not going to be heard at

all, while if the context is not exclusive, they are going to be attenuated, but not

totally muted.

Functionalities

In a summarized manner, the functionalities of the purposed API include: creation,

deletion and management of sound sources; creation, deletion and management of contexts;

control over some properties of the listener, such as position and direction; and, the creation and

management of stand alone patterns. In each of these cases, details on entities are provided when

they are created. Furthermore, in order to uniformize the usage behind all the features offered by

the API, we tried to make most functionalities follow the same simple steps: creation;

initialization; and play/stop requesting. Details about each of the functionalities offered by the

different classes are explained in the following subsections.

Source

 Creation of a source – It instantiates a source object to allow the programmer to

use the functionalities it offers.

o new Source(name, layer, agent, position, pattern, sound, loop);

 Initiation of a source - It requests the DSC module to run all the low-level and

internal procedures necessary for this source to be at the module‟s disposal.

o InitiateSource();

 Request to play a source – It requests the DSC module to play this source.

o PlaySource();

 Request to stop a source – It requests the DSC module to stop this source. It

offers the an option regarding whether the source should be paused, or stopped.

o StopSource(pause);

49

 Change source’s position – It requests the DSC module to change the position of

this source.

o changeSourcePosition(position);

 Change source’s sound file - It requests the DSC module to change the sound

file associated with this source.

o changeSourceSound(soundFile);

 Change source’s looping option - It requests the DSC module to change whether

this source should loop or not.

o changeSourceLoop(loop);

Context

 Creation of a context - It instantiates a context object to allow the programmer to

use the functionalities it offers.

o new Context(name, type, elements, exclusivity);

 Initiation of a context - It requests the DSC module to run all the low-level and

internal procedures necessary for this context to be at the module‟s disposal.

o InitiateContext();

 Request to activate a context – It requests the DSC module to activate this

context.

o SetContext();

 Request to deactivate a context – It requests the DSC module to deactivate this

context.

o StopContext();

Listener

50

 Creation of the listener - It instantiates a listener object to allow the programmer

to use the functionalities it offers.

o new Listener(position, direction);

 Change listener’s position - It requests the DSC module to change the position

of the Run-Time Player‟s listener (see Major Functional Units).

o ChangeListenerPosition(position);

 Change listener’s direction - It requests the DSC module to change the direction

of the Run-Time Player‟s listener (see Dynamic View).

o ChangeListenerDirection(direction);

Pattern

 Creation of a pattern - It instantiates a pattern object to allow the programmer to

use the functionalities it offers.

o new Pattern(name, type);

 Initiation of a pattern - It requests the DSC module to run all the low-level and

internal procedures necessary for this pattern to be at the module‟s disposal.

o InitiatePattern();

 Request to activate a pattern - It requests the DSC module to activate this

pattern.

o PlayPattern();

 Request to deactivate a pattern - It requests the DSC module to deactivate this

pattern.

o StopPattern();

A formal and complete version of the API‟s specification can be consulted in Appendix F.

51

Guidelines

There are some guidelines which should be considered before using the API. The code is

intended to be clean, and easily understandable. Still, it is up to the programmer to choose in

which part of the project he wants to introduce the code. It is recommended to have an initialize

function (common in most games), which serves as “headquarters” for all the elements regarding

sound used in the game. This way, programmers can look at this initialization area, and, by

analyzing the declarations, can have an idea of what type of sources, contexts, and patterns are

being used, and why. It is important to refer that programmers should always initialize their

assets with their corresponding initialize methods, in order for the engine to create and prepare

them to be at the programmer‟s disposal.

Also, programmers are free to trigger those elements from anywhere, though commonly

the triggering events belong to the game‟s logic. The API encourages programmers to reuse

previously defined assets. In other words, as the idea is to simplify sound implementation,

programmers are encouraged to use features as the changeSourceSound() method, which changes

the sound file associated, while keeping all the other properties associated with that source.

Features likes this prevent the obligation of keep creating sources for any new sound that is

needed in the soundscape. The main idea is to rationalize assets in order to keep the code clean,

simple, and to increase code performance.

In order to allow a smooth sound implementation in their games, programmers should

take in account some particularities regarding some of the functionalities offered by the API. For

instance, it is mandatory for programmers to define the listener before activating sources,

contexts or patterns. Otherwise, calculations regarding positional sounds will fail, as the

listener‟s information is missing. This information is essential in order to calculate the panoramic

and attenuation values that sounds should receive before being delivered to players‟ ears.

Another particularity refers to the method changeSourceSound(). Due to its nature, needs

to stop the former sound file associated with the source, and to associate the new one. However,

the new sound file does not start to play automatically. It is required for the programmer to call

(again) PlaySource() method for that to happen.

Similarly, programmers should be aware that, as the engine only supports one active

context, whenever they call the method setContext(), it automatically deactivates the previous

context, and activates the one which called the method. This design decision was made so that

52

programmers can achieve their intentions with less lines of code (in a big project, which requires

contexts to be activated frequently, imagine the number of times that programmers would need

to call deactivate context in order to activate a new one).

It is important to clarify one aspect regarding the class Pattern. As referred in Theoretical

Concepts, there are two types of patterns: those which have necessarily to be associated with a

source, and those which can be activated on their own. The class Pattern only refers to the latter.

For those patterns that need to be associated with a source, they are only referred to in the

constructor of a source, and are selected as a string field. This design decision was supported by

the objective of trying to achieve the functionalities with the minimum number of lines of code

possible. We thought about giving the Pattern class another name, but it would be inconsistent

with the knowledge that supported our approach, as we would be calling another name to some

behaviors that, in theory, we always refer to them as sound patterns.

3.4.2 Soundscape Composition Techniques

As referred in Research Objectives, we hoped to define a list of techniques that attempt to

cope with the dynamicity and potential unpredictability intrinsic to the medium. These

techniques consist in a list of common practices in game audio that we believe to be useful in

order to achieve a healthy soundscape (see Acoustic Design). The list of techniques is expected

to offer guidance to the dynamic composition module, and is expected to be reusable and further

updated. Their usage will be available to programmers in the form of patterns to be associated

with sources. The main challenge in this task resides in being able to translate the relevant

knowledge on Acoustic Ecology and videogame sound design, into algorithmic heuristics. After

a great amount of research on the aforementioned issues, we defined a list of heuristics that

would implement these techniques onto the DSCM, in order to maintain the soundscape healthy.

Heuristics

In order to build the theoretical concepts that support the heuristics, we resorted to

Soundscape Theory (see Acoustic Ecology), and Alves‟s pattern language [Alves 2011], to

inform its definition, because it provides us with contexts of use of sound, and consequently can

be instrumental in the characterization of events. The proposed module of heuristics hopes to

cope better with the dynamicity and potential unpredictability emerging from the gameplay, and

the consequent superimposition of sounds being emitted. Semantically, these heuristics monitor

53

sounds that the game logic determines that would be playing (active sounds), and decides

whether, and how, they should be played (according to, besides other elements, the sources‟

patterns). The heuristics may modify the acoustic parameters of the sounds that they send to the

run-time player (e.g., volume and filters). It is also conceivable that the heuristics modify the

timing of sounds that they send to the run-time player (e.g., postponing, sequencing,

synchronizing). It is important to refer that all these heuristics are run whenever a source with its

correspondent pattern is ready to be played by the DSCM, with the exception of Context,

Silence, and Murch‟s Encoded-Embodied, which are not used in association with a source.

This approach resembles what happens in a natural environment, where (some) sounds

exist whether or not the listener gets to hear them. In the following subsections we will

enumerate all the heuristics implemented, and detail their impact on the soundscape being

composed.

Context

As referred in Theoretical Concepts, the concept of context was used to clearly

distinguish the sounds that are relevant for the gameplay at each moment. As this is one of the

major struggles game audio faces nowadays, this heuristic was an attempt to help keeping audio

semantically valid in relation with the gameplay. So, this particular heuristic allowed us to

experiment the application of contexts to the balancing of the soundscape.

Specifically, this heuristic consists of a solution given to sound sources in accordance

with them being or not part of the soundscape‟s current context. It allows the interpretation of a

gameplay context, in a way that, at a given moment, the sounds belonging to that context deserve

a different treatment – typically, more emphasis – over other active sounds. A very simple

instance of this heuristic is to allow a single context to be active at any moment, and to attenuate

the volume of every sound not belonging to that context to, e.g., 50%. Still, other more complex

instances could be coded into the heuristics container.

As to contexts, we defined three categories so far, which can be created through calls to

the API:

 Agent contexts. When designers create agent contexts, they enumerate the agent

entities that compose it. In turn, agents may be associated to sources when these

sources are created. Examples of agents may be game characters, objects, places,

or any other entity that may be convenient.

54

 Semantic layer contexts. When designers create semantic layer contexts, they

enumerate the sound layers that composite it. We have been adopting the

following layers for categorizing sounds: Dialogue, Foley, Sound Effects,

Ambiance, and Music [Peck 2001]. When a sound source is created, the sound

layer it belongs to has to be set.

 Ad-hoc contexts. This is the most versatile category of context. When designers

create ad-hoc contexts, they enumerate sound sources that compose it, by their

own name. Being so, this type of context is also potentially interesting as a tool to

sketch and test other categories that might become included in the set.

In the three categories of contexts, the designer can define which sounds should be in

context simply by listing the respective selectors, i.e.: a list of agents, a list of layers, or a list of

source names, respectively. Consequently, only the sounds matching the criterion are considered

to be in context.

In Figure 3.4, we represent examples of the effect of the heuristic on active sounds. Each

of the three parts of the figure refers to the case of each of the categories of contexts, defined

above. The circles represent sounds that, according to the game logic, should be playing in the

depicted moment, and their color represents the agent with which they are associated. The icon

next to the circles represents the actual rendered volume level of each source. The circles marked

red are the ones that belong to the current context, which, in those examples, would be heard at

full volume, while the others would be attenuated. In the first example, we illustrate an agent

context, in this case selecting sources solely associated to the agent represented by blue circles.

In the second example, we illustrate a semantic layer context, in this case selecting sources solely

associated to dialogue. In the third example, we illustrate an ad-hoc layer context, in this case

selecting sources explicitly chosen by the designer (by their name, not represented in the figure).

Thoughts

Thoughts are widely used nowadays in videogames, and their objective is to reveal what

a character is thinking of. They allow game designers to express messages in a diegetic way

(explained in Dynamic Nature of Game Audio), as well as to obtain emotional explorations

through sound (i.e., enhance empathy between the player and a character). Additionally, the

55

associated introspection contributes to inspire and maintain a sense of immersion in the

game experience [Alves 2011]. We wanted to offer the designers a way to represent thoughts as

a verbalization inside the head of the character. In order to achieve it, this heuristic attenuates the

current volume of every source by 90%, keeping at full volume only the source to be played

(which is associated with the pattern “Thoughts”). In addition, an acoustic effect (Echo Filter) is

applied to this source in order to achieve the aforementioned “inside the head” feel.

Figure 3.4 - Examples of the effect of the context heuristic

56

Silence

Silence is one of the most powerful tools to be used in sound design, though very hard to

dominate. Its use is usually associated with emotional explorations through sound, especially

negative emotions or representations of peaceful moments. However, silence can be achieved in

many ways, not necessarily implying absence of sound. Therefore, this heuristic needs to be

considered simply as one approach to silence implementation on sound design. Its effects consist

in an attenuation of the current volume of every source from the Ambiance, Music, and SFX

layers by 90%. The justification behind this design decision is due to the importance that

Dialogue has in any game situation, and because when Foley does not have sonic feedback, it

usually breaks the player‟s immersion in the game experience.

Awareness

In most games, designers resort to sound in order to aid the signaling some relevant

aspect of gameplay. Recurrently, there is the necessity to expose some gameplay-related aspects

of a situation which demand special attention. There are many situations in which these sounds

of awareness can be useful, either to evidence a problem, inform about a state, or emphasize an

opportunity or to reinforce the outcome of an action. The ultimate objective is to effectively

produce changes in the player, being instrumental in influencing the player‟s behavior. Due to

the temporary effect usually associated with this type of sound exploration, this heuristic

attenuates the current volume of every source by 90%, while keeping at full volume only the

source to be played (which is associated with the pattern “Awareness”). However, unlike the

heuristic Thoughts, this effect only lasts for a predefined number of seconds (7). This value can

be easily modified in order to meet the designers‟ needs.

Dialogue

In videogame contexts, Dialogue can consist on any type of discourse presented

throughout a game, being used for many different goals, as to communicate aspects related with

both gameplay and story. Its importance lays on the humanization it transmits to the characters,

enhancing the emotional connection between them and players. Due to its importance, we knew

it was imperative to have an heuristic that could always guarantee that Dialogue would have

major importance during the soundscape composition process. Therefore, this heuristic

attenuates completely Foley and SFX sources, it attenuates the volume of every Ambiance

57

source by 90%, the volume of every Music source by 80%, and, finally, it attenuates the volume

of every Dialogue source by 70%. As in the aforementioned heuristics, the source to be played

keeps its full volume. The differences in the attenuation values are justified by the different

importance of each layer in a dialogue situation. While Foley and SFx are usually not important

in these situations, usually the music and the ambiance of the scene are not completely muted.

Moreover, while we do not desire the other dialogue sources to difficult the perception of the

source to be played, it is still desirable to allow the other characters to signal their presence

through their dialogue.

Footsteps

Footsteps are among the most used patterns in sound design [Alves 2011]. They are a

type of Foley that is essential to give personality and uniqueness to characters, while providing

awareness in many gameplay situations. Footsteps are often is exaggerated, when compared to a

real life situation, because, when not present, they can break the player‟s immersion in the game

experience. It is one of the most important forms of sonic feedback that players should receive as

output to their actions. Due to movement usually being the most basic capacity of any character

controlled by players, they usually react negatively to the absence of feedback regarding that

same action (movement). As a result, this heuristic verifies if sources with the pattern Footsteps

associated with them have, currently, a volume level below 50% of their full volume (due to

other patterns acting on the soundscape). If that is verified, the volume of the source to be played

is kept at 50% of its full volume. Otherwise, it plays with the volume currently defined for the

Foley layer. This heuristic tries to prevent the aforementioned absence of sonic feedback

regarding player movement.

Contextual Music

In videogames, Music has been repeatedly used to characterize specific contexts, being

either levels, regions in the game‟s world, specific types of enemies, etc. Therefore, contextual

music allows the improvement over the older concept global music for each level, or world. Each

piece of music should contribute to each particular moment along the experience, exponentiating

the fit between the music being played, and the situation being experienced by the player. It may

also contribute to the variety of the soundscape, allowing players to “take a break” from a

“global” music piece being played. For these reasons, this heuristic verifies if the current level

58

for the Music layer is below 50% of their full volume. If that is verified, the source to be played

(which is associated with the contextual music pattern), is allowed to play at 50% of its full

volume. Otherwise, it plays with the volume currently defined for the Music layer.

Achivement, Failure, No Can Do

Achievement, Failure and No Can Do are special types of SFX which we found

important to highlight. Since the beginning of videogames, these were the most used SFX.

Achivement is used to signal all positive happenings during gameplay, whether are cause by item

collecting, checkpoint reaching, or, more recently, trophies that reward players for a panoply of

different reasons. Similarly to Awareness, they represent something relevant, having the

additional importance of making the player feel important, due to its performance. On the other

hand, Failure has the same degree of importance, though transmitting the opposite semantics,

used usually to signal players‟ bad decisions or poor performance. No Can Do was a semantic

messaged created to inform players that the action they are trying to perfom is not possible due

to some reason, though the message is not semantically as strong as Failure. In Alves‟s words,

“This type of sound is mostly informative; it does not reflect a judgement on the action of the

player – although it informs about something that cannot be done and, as such, that is not

interesting repeating”. Due to the importance of this type of sounds, this heuristic objective is

simply to assure that, independently of the soundscape‟s current state, context, and patterns

acting over it, the source to be played (which is associated with one of these patterns) will be

played at full volume.

Murch’s Encoded-Embodied

As referred in Acoustic Ecology, balance is one of the pillars that support a healthy

soundscape. A soundscape absent of sound, is as useless as a soundscape overcrowded with

sounds, in which this abundance prevents sound to carry information. So, it was clear for us that

layer density was a very important issue with which we had to deal. After researching this matter

for previously defined models regarding sound density, there was one work which were

enlightening: Walter Much‟s Encoded-Embodied spectrum theory [Murch 2005]. Supported by

the idea that the left and right hemispheres of the brain are used to process different sounds, he

argues that, if you devise your mix according to this „Encoded – Embodied‟ spectrum

(illustrated in Figure 3.5), you can accommodate far more audio content than if you were mixing

59

to the rule of “two point five rule”, itself pioneered by Murch (which defends that there should

only be two main sounds and a small element of something else at any one point in time in a

film) [White].

After analyzing Murch‟s theory, we made a simplification from the approach proposed

by Munch, and correlated each of the colors defined by him, with the sound layers we use in the

DSCM. So, we decided to associate Violet with Dialogue, Blue-Green with Foley, Yellow with

SFX, Orange with Ambiance, and, finally, Red with Music. Munch defends that, at most, two

sounds by “color” can be supported simultaneously. Therefore, this heuristic implements this

principle, preventing sounds that would violate this rule from playing. However, it should be

noticed that, in order to give freedom to designers, this heuristic can be easily switched on/off.

Moreover, although violating the rule, we allow designers to change the maximum number of

sources supported by the “colors”.

3.4.3 Dynamic Soundscape Composition Module

The DSCM represents the culmination of all the research performed in all the previous

stages of the project. All the theoretical knowledge gathered in the State of the Art, from

different fields of study, to the iterative approaches to the problem definition and its proposed

solutions, will be put to use in this artifact. This module serves as a proof of concept of the

proposed system‟s architecture, and it allows us to test what differences can the proposed API

Figure 3.5 - Walter Murch's Encoded-Embodied spectrum theory

60

bring in terms of sound implementation. Additionally, we hope that, in the future, it will allow us

to test, evaluate, and improve all the techniques defined in our systematization.

In this chapter, we expose a proposal for supporting the dynamic enhancement of a game

soundscape. The proposal consists of a system that moderates sounds being dispatched to the

sound engine, with basis on a characterization of the participant sound sources, and on a

heuristics module. The characterization of the sources is done by means of an API that we

developed. The heuristics translate holistic concepts such as those rooted in Acoustic Ecology.

Approach

This proposal constitutes a lightweight and reusable approach for composing a healthy

soundscape, by dynamically regulating the sounds presented to the player, hence avoiding the

hurdle of covering each conceivable gameplay state, in the game code. For us to be able to

address sound in different states, we felt the need to introduce the concept of active sounds. We

define active sounds as the sounds that according to the game logic would exist, in a particular

moment; i.e., sounds that were triggered and did not yet finished. An active sound becomes

heard if the heuristics dictate that it should be sent to the Run-Time Player. It can even happen

that an active sound eventually finishes without ever being heard.

Our proposal may appear to be inefficient because it seems to consist of tackling a

problem after allowing it to happen. Yet, this is a misjudgement because letting sounds become

active is computationally negligible, and those sounds do not actually play, until the heuristics

determine so (and how). Actually, we conjecture that this approach may turn out to be

computationally more efficient than programming sound behaviour for all the predictable

situations that might emerge from interaction. One conspicuous reason is that the algorithms that

would be used to decide on sound behavior on the game‟s logic, would be essentially the same as

those that we are proposing to inscribe in the heuristics module.

Also, there is no contradiction in cases when the game logic triggers a sound and the

heuristics somehow override that decision, for two reasons. First, the game logic could have

triggered that sound, precisely, because the developers decided not to make that kind of control

at that level, but to rely instead on the heuristics to eventually decide on the actual rendering of

that sound. Second, if the heuristics are well defined, their interposition should be legitimate.

On the other hand, we should also emphasize that the adoption of this proposal does not

impose that no sound behaviours are controlled elsewhere, such as together with the game logic.

61

The heuristics operate on the active sounds, regardless of whether they were triggered

unconditionally or as result of some prior verification. Provided that there are no

incompatibilities in the definitions, there is no reason for not having several “layers” of sound

design/implementation, complementing each other. In the extreme case, those multiple layers of

decision would be (simply) redundant. That is also why we suggest that this proposal is seen as a

complement to a development system and not as a replacement to other audio capable features

that the adopted system may have.

Finally, it should be noticed that modularizing the knowledge on composing healthy

soundscapes eases its customization, without interfering, and possibly concurrently, with the

development of other aspects of the game. Not less importantly, since the heuristics are not

bound to any particular project, they may be shared with other designers, which might be a way

towards its maturation.

System’s Architecture

In order to reach the system‟s final architecture, we performed an iterative process to

constantly improve and refine the solutions it were being created. In this section, that iterative

process and its different outputs will be presented.

DSCM’s Framing

When this project started, the only thing known was the goal: to create a dynamic

soundscape composition engine. So, we had an idea about where would this module be situated

in the game‟s global architecture. The engine would be situated between the game logic and the

audio renderer (see Figure 3.6 – DSC‟s Framing).

What we hoped to achieve with this solution was an abstraction layer situated between

game code audio instructions, and the low-level and technical language used by audio renderers.

After the definition of the DSCM‟s framing, the architectural work focused on translating the

Figure 3.6 – DSC’s Framing

62

decisions previously taken into a more formal and detailed specification, to further develop the

system‟s architecture.

Major Functional Units

In order to continue to specify a dynamic view of our system‟s architecture, we started by

defining the major functional units of our system. The following bullet points will detail each of

these functional units.

 Communication Interface – The interface that deals with the communication

with both the game code and the audio renderer. In the first case, it consists in a

simple client-server architecture that makes use of the OSC communication

protocol. This allows the game code and the module to be in separate computers,

as the communication travels through network. On a different manner, the

communication between the DSC module and the audio renderer is local, through

programming code.

 Request Handler – It is the element that verifies the type of message received by

the communication interface, and that decides to which element that message

should be forward to. It is expected to perform functions similar to those of a

Servlet.

 Run-Time Player – It is the representation of the audio renderer to be used by the

DSC module. Its functionalities encompass many low-level audio functions, and

are defined to be independent from the audio engine used to render the sound.

With this approach, different audio renderers can be tested without having the

need to change other functional units of the system.

 Resource Maintainer – It is the element responsible for arranging all the

resources and initialization procedures that are necessary for the composition

process to be able to be performed. Is the support unit behind the composition

process performed by the Scheduler.

 Scheduler – It is the main element of the composition process. It is the scheduler

that coordinates all the resources, analyses the state of the soundscape, and

decides when and how to execute modifications upon it. It makes use of the

heuristics stored in the heuristics container to aid on the composition process.

63

 Heuristics Container - It is where all the heuristics used by the scheduler in the

composition process are stored. It contains not only the information about the list

of heuristics available, but also all the behaviors associated with each of them.

 Resources – It represents all the resources used in the composition process,

namely, the sources, contexts, and patterns created by the designer. These

resources are used by more than one functional units of the system, being mainly

used by the Resource Maintainer, the Scheduler, and the Run-Time-Player.

Dynamic View

Now that all the major functional units were defined, we wanted to completely define all

the internal components of the DSC module, as well as to show the actions of the system during

execution. The system‟s dynamic view architecture can be seen in Figure 3.7.

64

Following, we will explain the system‟s architecture presented in Figure 3.7. The box on

the top-left represents all the code that is specific to a particular game project. That is where the

game logic is, for instance. The bottom-left box represents the API we created, with the classes

and methods that implement features made available for sound design. It contains, for instance,

the code that creates a sound source or a context. The idea is that developers call such code from

the game logic.

The sound engine is represented by the box on the right. The communication between the

code in the API and the sound engine is ensured by Opem Sound Control messages. OSC is a

content format for messaging among computers that is optimized for modern networking

technology, offering a high-level of interoperability, accuracy, flexibility. It offers programmers

an open-ended URL-style symbolic naming scheme, which enables easy pattern matching during

message reception, as well as a very simple support for argument data in the messages. A simple

example of an OSC message used in this project is: "/create/source/", being the information

related to the source to be created attached as argument.

During the game execution, the OSC Receiver forwards the incoming messages (sent by

the OSC Sender) to the Handler. The Handler parses the incoming messages and forwards them

either to the Scheduler or the Maintainer, depending on their purpose. The Maintainer‟s job is to

arrange everything that is to be used in the composition process: all the creation, deletion and

edition of sources, contexts, patterns, the listener, and other low-level details. These tasks require

the Maintainer to cooperate with the Run-Time Player. This cooperation occurs because the data

that the Run-Time Player needs to initialize, related to each source, is also stored in the structures

controlled by the Maintainer. Sources, Contexts, Patterns and Listener are structures, holding

information on, respectively: the sources that have been created; the contexts that have been

created; the patterns that have been created; and the listener entity. The latter is relevant in case

the designer creates 3D sources. These objects are created when the designer uses the API to

initialize these kind of entities, and are kept ready to be used until the game is shutted down.

The Scheduler coordinates the operationalization of the composition. It deals with

stop/start requests regarding sources and patterns, as well as with changes to the active context.

Whenever a source is requested to be player, it operates the decisions resulting from the

application of a set of Heuristics, which in turn take into consideration the Current Context and

currently active sources in the Contextual Score. The latter is a structure that maintains a

65

categorization of active sources according to their semantics (layer). The heuristics can also

assess other aspects such as the sources‟ associated agent, and sound design patterns. The

Scheduler forwards orders to the Run-Time Player, which actually renders the sounds, also

taking into account the information provided by the Maintainer, as explained.

It is important to refer that, during the composition process, the Scheduler makes use of

three different Scores, all of them being composed of the five layers explained before:

Ambiance, Dialogue, Music, Foley and SFX. The structure simply named Score, stores every

source that the game logic triggered, and that did not finish or were requested to stop, whether

the scheduler decided to make them audible or not. This structure enables the Scheduler to, at

every moment, have a complete view of the soundscape that was triggered by the game,

independently of what decisions the Scheduler have made over the source. Contextual Score is a

structure that stores the currently active sources that are “in context”, according with the engine‟s

Current Context, and that respect Murch‟s Encoded-Embodied heuristic (when is activated). In

practice, this is the structure which holds the precise soundscape which is being heard by the

player. The third score, Over Density Score, is a structure that, as the name suggests, stores

sources that, although being in context with the Current Context, belong to a layer which has

already reached its limit, according the aforementioned Encoded-Embodied heuristic. This way,

whenever a source is stopped or reaches its end in the Contextual Score, a source can be

extracted from the Over Density Score and put on the Contextual Score. Independently from the

score in which they are inserted, all sources are removed from it whenever they are stopped, or

end.

Composition Process

In order to assure that the DSCM‟s composition process is easily understood by

everyone, it may be of utter importance to clarify some issues regarding it. Currently, the module

only supports one active context. This means that, every time the game code triggers the method

setContext(), the module automatically disables the current active context, and activates the new

one. Also, it is important to refer that, the context‟s exclusivity property, also influences the

application of the heuristics. Specifically, if the Current Context is exclusive, the heuristics will

only be applied to the sources included in the Contextul Score. On the other hand, if the Current

Context is not exclusive, the heuristics will be applied to the sources included in the Score (in

other words, to all the sources triggered by the game‟s logic).

66

Besides the Context heuristic, which is always applied whenever a play request is sent to

the engine, the Scheduler also has to deal with a variety of different sources, each of them with

its pattern, which results in many heuristics being applied at the same time. In order to manage

this complex abundance of sources and patterns, we decided to implement a priority system

similar to a stack. In other words, the heuristic that has most priority over the others is the

heuristic associated with the pattern from the last source to be played. This means that, whenever

a new source is played, the heuristic associated with its pattern may override the settings of the

former. However, this only happens if both heuristics have impact on the same layers.

Frequently, different heuristics only affect some sound layers. Consequently, this allows more

than one heuristic to be shaping the game‟s soundscape, not only the most recent. Whenever a

source ends, the heuristic associated with its pattern is removed from the top of the stack, and the

new “first” pattern receives top priority treatment, and so on. Therefore, the game‟s dynamicity

and unpredictability is always matched by this constant update of which heuristics should be

more relevant in the soundscape composition process.

67

4 Results

In this chapter, we will present the results obtained in this dissertation, from both the

prototyping activities, as well as the experimental evaluation that was performed. We will start

by detailing the preparation for the prototyping phase, following this by explaining meticulously

what was prototyped in each month. Also, we will justify the work‟s prioritization regarding the

system‟s prototyping.

Additionally, we will make a thorough explanation of the experimental evaluation

performed. It will be justified why the used testing technique was chosen, it will be explained the

experiment‟s planning, the scenario in which tests were performed, and, finally, we will present

and analyse the results.

4.1 Prototyping Activities

As soon as we had a first problem definition and a first solution with sufficient depth, we

were ready to start the development activities. Between the work developed in the first semester,

and the development activities, it is important to refer that there was still some refinement to be

done to the adopted solution, as well as some decisions regarding the technical component of the

project.

The first decision to make was related to the type of data structures to be used in the project.

This may look a simple question at first, but the fact that the engine have to deal with features

that are constrained by time, turned this decision into one of the most delicate to be taken

throughout the whole project. Additionally, this decision would have impact on the engine‟s

behavior, especially on the composition process. Therefore, many issues regarding the

composition process were also dealt with in this period. A great number of different ideas

blossomed from the research performed, but with limited time for development, we had to focus

on what appeared to be the most important features to fulfill the project‟s goals.

Similarly, at this stage we had to close some issues regarding the system‟s architecture, as

well as the technologies to be used. With the data structures and the composition process

defined, we could refine and close the architecture proposal we had. In the end, there were some

major differences from the architecture proposed in the intermediate report, but that was one of

68

the benefits of the methodology adopted for the project (see Methodology). With all the design

and architectural constraints defined, we could finally choose the language in which the engine

would be developed. After deciding what would be the best audio renderer to fit the project‟s

objectives (FMOD), we decided to develop the engine in C#, mainly because it would be more

easily used for developers using some game-related frameworks (i.e., XNA and Unity). Besides,

the chosen audio renderer (FMOD) had a built-in C# wrapper, what resulted in a perfect match

for our project.

Finally, the last decision before starting the development phase was the decision about what

game scenario would be used to implement and test the DSC module. In order to essay the

debuting implementation of our proposal we decided to resort to a game that we designed and

developed previously to this particular research endeavor, called Blindfold.

Blindfold is an adventure audio game, in which the player is invited to wear an actual

blindfold. The game is projected as a soundscape where players walk through a rich and

enigmatic experience, with emotions being evoked not only by the intrinsic acoustic

characteristics of the sounds being used, but also by their semantic content, designed to stimulate

the sensemaking dimension of the gameplay experience [Pereira and Roque 2012]. The use of

the physical blindfold adds meaning to the interface and is consistent with the game narrative.

For the sake of better characterizing the game, in the scope of this dissertation, we include a

debug screenshot representing a gameplay situation, in Figure 4.1 - Debug screenshot of

Blindfold. Illustrations such as these are meant for development purposes only, since the game is

exclusively auditory.

Blindfold was originally developed in XNA, a Microsoft‟s framework for videogame

development. Therefore, the game‟s sound was implemented using XACT and its authoring tool.

It is possible to use XACT both as a low-level API, for simple sound usage, or as a middleware

tool. For Blindfold, we used the latter.

What was desired was to try to replicate the sound design of Blindfold, this time using

our proposed system to implement it. Additionally, being an audio-only game, Blindfold gave us

many different situations with different sound explorations, which would allow experimenting

different behaviors related to the patterns to be implemented. Blindfold was a natural choice for

this experiment, because we were acquainted to its sound design goals, and it constituted a

promising stage to experiment with sound. It is of the outmost importance that this scenario is

69

not understood as a comparison between „using‟ and „not using‟ the proposed approach. That

could be, indeed, and interesting exercise but it would imply dealing with other delicate aspects

that were not central to the intended observations (such as, which exercise should be done first,

or how to perform the “same” exercise separately in different conditions).

4.1.1 Activities Developed

In the following subsections, we will detail the prototyping activities developed

throughout the second semester. These activities are divided according to the sprint in which

they were developed.

Sprint #1

The development phase started with some modifications performed on Blindfold.

Initially, we re-structured the game‟s code to be more organized, clean, and to be structured in a

more object-oriented fashion. This was necessary for two reasons: two facilitate any changes that

Figure 4.1 - Debug screenshot of Blindfold

70

we could find necessary to implement in the game; and to make the game‟s code more

understandable, which could be useful later in the project‟s lifetime, if we decided to perform

API-related testing (as it turned out).

In addition, and to finish the necessary transformations to allow Blindfold to be used in

our project, we muted the game. In other words, we removed from the game‟s code all the lines

related to the game‟s sound implementation. This required also some modifications to the game‟s

logic, because, being this an audio-only game, this removal of sound had profound implications

in it.

With the completion of these two tasks, the game scenario required for the experiment of

the DSC module was ready to be used. The next step in the development process was the

prototyping of a simple version of the DSC module, still without the structures needed for any

composition process. This first prototype was meant mainly to build the communication

infrastructures between the game and the module. Using an OSC open source framework, we

developed communication interfaces to be used on both sides (game and module). These

interfaces are generic, so, instead of OSC, other communication protocol can be tested in the

future. While on the game‟s side, the communication interface consist in a client ready to send

requests, on the module‟s side, this implementation consisted in a server that is constantly

listening for requests from the game. This server, after receiving requests, forwards them the

second component of the module to be developed, the Request Handler, which was prototyped in

the second half of the sprint. After completing these tasks, we had finished the implementation of

the skeleton that would support all the work to be performed in the future.

To sum up, the backlog processed in this sprint was:

 Modified version of the game Blindfold;

 Alpha version of the DSCM, only with communicational modules prototyped.

Sprint #2

With a channel of communication ready to be used, it was now necessary to give the

game (or the programmers) a “language” to express their intentions in the game code, and also

the OSC address patterns that were going to be used to translate these intentions to a type of

information understandable by the DSC module. Moreover, we had to embody the engine with

the necessary knowledge to respond adequately to the requests received from the game.

71

Therefore, in this month we started by developing the API that would be at the disposal

of designers and programmers (see API Design). This API is composed of 4 classes to be used

by the programmers (Context, Listener, Source, and Pattern), and one support class that is only

used by these for in some operations (Utils). After implementing these classes, we had to

program the address patterns hidden behind the methods offered by the API. In other words, we

had to define the syntax of the OSC requests that each action deployed by the API would

originate. After defining the naming logic to be used in the address patterns, we had to

implement them on both the OSC sender (game‟s side), and on the OSC receiver (module‟s

side).This step was extremely important due to OSC‟s pattern matching verification that occurs

whenever an OSC server receives a request. This way, requests that do not match the expected

address patterns are automatically discarded.

Following the completion of all the tasks that regarded communicational and linguistics

aspects of the system, the next step in the development process consisted in programming two of

the main components of the module: the Maintainer, and the Scheduler. At this stage, although

they were not being used, we knew which requirements they had to meet, so, we implemented

them for the sake of allowing the engine to become more close to the architecture previously

defined as soon as possible. Nevertheless, we decided to prototype another of the main

components of the module: the Run-Time Player. This component is the interface of the audio

renderer. Besides the interface, we also coded the specific implementation of the specific audio

renderer used in the project (FMOD). This task involved the implementation of the low-level

operations necessary for the management of the soundscape (i.e., play, stop, volume change,

sound initiation, attenuation, engine‟s listener, etc.). Additionally, we also implemented all the

data structures projected in the system‟s architecture, without which the system could not

perform any compositional work. These structures include the structures that store all the sources

created (Sources), all the contexts (Contexts), all the stand-alone patterns (Patterns), and, finally,

the structure that stores all the sources that are playing (Score).

With the core low-level operations of the audio renderer implemented, we could now try

to mimic the original Blindfold sound design without any dynamic composition process. In other

words, we prototyped a version similar to the original one, but now using our engine, although

the play and stop requests received from the game‟s code would be automatically performed

without any additional reasoning. At this stage the engine did not have any scheduling and

72

reasoning process. It may seem that this did not have any interest for the project, but it was an

important stepping stone for us to see that at this stage, we were already doing what the previous

implementation of Blindfold was doing.

On the second half of this month, we decided to implement the first heuristic: Context.

The implementation of this heuristic required the update of the address patterns to be used, both

on the API and on the module, as well as the different types of requests that the Request Handler

should be ready to respond to. Likewise, we had to create a new structure on the module: the

Contextual Score. As referred in Dynamic View, the difference between this structure, and the

aforementioned Score, is that, while the latter contains all the sources that the game‟s logic

required to be played, the Contextual Score contains only those who been required to be played

and belong to the current context. Lastly, we had to implement the first heuristic behavior in the

Heuristic Container for the Scheduler to start composing the soundscape dynamically. This

required the method with the expected behavior to be coded into the Heuristics class. Following

this implementation, the scheduler class had to be changed in order to run this heuristic before

deciding when and how to play a request source. Moreover, the audio renderer implementation

had to be updated with code to manage the two groups of sources that emerge from this

implementation: sounds “in context”, and sources “out of context”. In order to achieve this

separation, we implemented in the audio renderer class support for audio buses, one of FMOD‟s

most useful features. After this task was completed, we had the first and probably the most

important of the heuristics ready to be used.

To sum up, the backlog processed in this sprint was:

 Final specification and prototyping of the API.

 Beta version of the DSCM, with the audio renderer fully implemented, and

remaining modules‟ skeleton prototyped.

 One heuristic implemented (Context heuristic).

Sprint #3

In the last month of the development phase, there was still much work to do. We had still

nine heuristics to implement, as well as the creation of situation in Blindfold, in which we could

experiment those heuristics. The implementation of the heuristics that were still to be

implemented consisted in the enrichment of the Heuristics Container. As each heuristic was

73

being added, new behaviors were being coded on it, which were at the scheduler‟s disposal. In

similar fashion with the work done with the first heuristic (Context), we also had to update the

address patterns of the OSC communication interfaces. Obviously, the scheduler was being

constantly updated in order to support the crescent number of heuristics that should be run in the

composition process, while deciding if, and how, sources should be played. The last structure

that we had to prototype, due to one of the heuristics (Murch‟s Encoded-Embodied), was the

Over Density Score (see Dynamic View).

When all the proposed heuristics were implemented, we started to define game situations

in which they could be tested. This type of experiment allowed us to test and refine the behaviors

associated with each pattern. Blindfold proved to be a good scenario to experiment due to the

different situations which contains. We implemented also a system which allowed us to activate

patterns on the keyboard, without requiring a specific game event to be met, which allowed to

change patterns and contexts on-the-fly, and to compare different contexts and patterns in the

same game situation.

To sum up, the backlog processed in this sprint was:

 A version of the DSCM with all the heuristics implemented.

Sprint #4

Although we did not perform any experimental evaluation regarding the heuristics and its

behavior, the heuristics implementation suffered iterative refinement, due to our perception of its

behavior. For instance, in sprint #3, the heuristic thoughts implemented a reverb effect on the

source to be played. However, during the analysis of the heuristics we were doing while testing

the DSCM, we realized it would be better to change that effect to an echo effect. Moreover,

many of the volume levels that each heuristic performed on each sound layer was iteratively

tested and modified until we reach the final values, presented in this document.

To sum up, the backlog processed in this sprint was:

 Final version of the DSCM with refined heuristics.

4.1.2 Work prioritization

There are some relevant issues that need to be pointed regarding the prioritization of the

prototyping work developed in this project. One of the questions that were left open after the first

semester was the choice of the game scenario to be used. We decided to make that decision first,

74

mainly because this uncertainty regarding the game scenario to be used was mentally disturbing.

As soon as the scenario was chosen, we felt as the path to the project‟s success was now clearer.

The following priority for us was the communicational mechanisms of the system. Being

this a distributed system, communication is vital for its performance. Accordingly, we felt that

the communication framework was the first thing to be tested and verified, as it would be the

skeleton that would support all the more important work to be implemented in the future. In the

same line of thought, the API was extremely necessary for us to allow communication between

the programmer and the module. This may seem like contradiction, as at this stage we were not

running any work on the module‟s side. However, we wanted the next step to be a simple version

of the module, and we wanted to be sure that the communication was already similar to the one

projected to the final version, instead of creating stubs just for this intermediate version of the

DSC module we wanted to prototype briefly.

As referred in the previous paragraph, the next priority on the scheduling was to have a

simple version of the engine, which was architecturally close to the one we aspire to develop, but

that still did not do any dynamic composition task. As referred in Activities Developed, this was

an important stepping stone for us to see that at this stage, we were already doing what the

previous implementation of Blindfold was doing. In addition, this was also a guarantee that the

low-level implementation regarding the Run-Time Player was going well.

 From this point forward, we had to deal with the most important part of the project. We

knew that from now on, all we had to worry was the tasks related to the composition process, and

that they were going to be built over a stable version of the engine, which gave us confidence to

face the challenges ahead. The option of giving priority to the Context Heuristic was due to its

importance for the goals this solution aims to achieve. This heuristic by itself can help designers

to control a large number of sources in a very simple fashion, only requiring a few lines of code.

After the implementation of this heuristic, we implemented all the remaining nine without any

special order, the objective was simply to complete the proposed list of heuristics and to finish

the module. After the module was complete, we tested the heuristics in different game situations

and refine their behaviors according to the sonic feedback received from these experiments.

To sum up, we follow this prioritization because our mindset since the beginning of the

project‟s planning was: to lay the foundations on which the system would be built upon, create a

basic implementation to allow the confirmation of the architectural decisions previously made,

75

and to allow us to have a strong support framework over which we could continuously refine and

evolve the main focus of the project, the composition process.

4.1.3 Expected behavior

The behavior observed by the DSCM was close to the expectations. The use of contexts

allowed the sound composition to offer the player the most valuable sounds in a large number of

different situations. However, there is space for improvement in terms of transitions between

different contexts. In terms of heuristics, the results also look promising, with many heuristics

really helping the sound design in achieving the proposed objective (i.e., the heuristic Thoughts

really helps to intensify the sensation of “monologue occurring inside a character‟s head”). In

general, the heuristics‟ behavior was very close to what was expected. Furthermore, the fact that

heuristics could be tweaked by designers, allow for a positive improvement and sharing of

heuristics. This way, the community can also be involved in the further development of the

engine. More information regarding the system‟s limitations and performance aspects can be

consulted in Conclusions and Future Work.

4.1.4 Requirements

In this section, we will present the requirements defined in the first semester, and discuss

whether they were achieved or dropped.

Soundscape Specification API

R1 - Soundscape

Description
Must

The sound designer should be able

to define a soundscape using this

specification language

R2 - Allow references to

contexts of sound

explorations

Should

The game engine and the dynamic

composition module should

communicate using this language.

The main goal is to allow references

to contexts of sound explorations

just by the name of the verbs used.

Table 4.1 - Soundscape Specification API Requirements

Dynamic Soundscape Composition Techniques Systematization

R3 - Allow sound to be an

information carrier
Must

Just like argued by Acoustic

Ecology‟s founders, sound should

be more than just a stimulus, it

should be a communication

76

interface, and these techniques

should allow sound to be an

information carrier between the

game and the player.

 R4 - Analyze sound’s

characteristics
Should

The techniques defined should take

into account the intrinsic

characteristics of sounds. Instead of

just analyzing a sound by name or

category, its frequency and volume

should be also taken into account.

R5 – Allow coherent

audition
Should

The techniques should allow other

actors in the game scenario to hear

stimuli that is coherent with the

current soundscape composition.

We want to change the deafness of

current game engines. Presently, the

intrinsic characteristics of a sound

(i.e., power, frequency, rhythm,

etc.), or the current soundscape state

is not taken into account when the

game is deciding what is heard by

the actors.

Table 4.2 - Dynamic Soundscape Composition Techniques Systematization Requirements

Run-time Dynamic Composition Module

R6 - React to directives Must

The module must adapt to the

changes being made by the sound

designer accordingly, while keeping

the effects of sound inside the game

coherent.

R7 - Allow run-time

prototyping
Must

The module must not require neither

the game nor itself to be restarted

whenever changes are made by the

sound designer.

R8 - Visual Interface Must

The module must have a visual

interface to allow the sound designer

to change directives in an easy and

intuitive way.

R9 - Statistics Nice

The interface available to the sound

designer could show some statistics

about the sound engine in order to

give the sound designer another way

of analyzing the different

soundscape settings.

Table 4.3 - Run-time Dynamic Composition Module Requirements

77

 R1 – The designer is indeed capable of describing a soundscape through the API

that was developed. Although, this was not achieved by a stand-alone language,

but through a programming API. The constraints of building a system that would

parse a discourse closer to natural language would require much more time than

that available for this dissertation. Still, the API‟s syntax allows programmers to

draw some conclusions on the soundscape that was developed in a game just by

looking and the declarations and instructions, due to the patterns and agents

associated with sources. Additionally, the declarations of contexts also help to

describe the soundscape.

 R2 – Due to the changes in the previous requirement, this requirement had to

change. Nevertheless, although the system resorts to an API, we still can say that

the game and the DSCM communicate through the same language (the patterns,

agents, contexts, etc.), and that they allow the engine to understand different

sound explorations just by their name. As the engine resorts to the heuristics to

answer to each specific pattern, we can say that this requirement was fulfilled.

 R3 – Due to the behaviors (heuristics) implemented in the engine, whenever the

engine is playing a source associated with a pattern, it delivers the sound in

conditions that were thought to reach a specific pattern. Therefore, we can say

that every sound plays in conditions that are defined to allow players to

experience a specific type of stimulus. So, it is up to designers, and programmers

to make sure they use the API‟s full potential to deliver not only sound stimuli,

but important semantic information through sound.

 R4 – This requirement was dropped due to the amount of work that would require

to implement it, and because there were other functionalities that we thought were

more important for the system. Nevertheless, we still think that this is a

functionality that is deeply unexplored nowadays in videogames, and that can

offer developers conditions to create creative sound explorations in their games.

 R5 – In equal manner as the previous requirement, the time constraints of the

project did not allow this requirement to be fulfilled. A type of requirement like

this would demand a deep research and analysis, because it would involve the

game‟s logic. Moreover, the system would need another channel of

78

communication for the engine to “talk” to the game‟s logic. All of these

functionalities are detailed in the section Limitations and additional features/usage

for the project.

 R6 – This requirement was fully achieved. The system reacts to all the directives

implemented by the programmer, and the sound composition is always done

accordingly. In many situations, the directives defined by the programmer can

conflict with one another, and is up to the engine to decide the soundscape state

(i.e., what should be the pattern with max priority, which should be the current

context, etc.).

 R7 – Allow in this dissertation it was not programmed any plugin to tweak the

directives in plugin, the system itself is fully prepared for that type of usage, as

the DSCM is completely separated from the game‟s code, communicating through

network (OSC).

 R8 - While the value of this requirement cannot be neglected, the time that would

be required to implement it would be large, and between implementing this

feature, or the possibility of spending more time adding new heuristics to the

engine, we decided to go with the latter.

 R9 – During the course of the development, this requirement was dropped

because it was not very important, unlike many of the others. It will make more

sense in the future, with a mature version of the DSCM.

4.2 Experimental Evaluation

The main objective for the testing phase of this dissertation was to test how programmers

would adapt to the API; how easy it would be for them to understand how to use it, especially the

theoretical concepts behind it. Being this one of the main goals of the system, it would be very

important to verify if they would have difficulties understanding the mechanisms behind the API.

Moreover, it would be useful to test if its syntax could really be more understandable and give

information about the design intents that the code is following.

4.2.1 Testing Technique

In order to obtain information regarding the aforementioned goals, we chose to perform a

Formal Usability Lab Test. There were various reason to support this choice. Without requiring a

79

large number of participants, it allows the collection of personalized data regarding each of the

participants, without external interference. This is an important issue, because what we were

trying to achieve was a test that would enable us to detect problems in a controlled environment,

with minimal interference from the person supervising the test.

In comparison with Informal Usability Tests or Heuristic Evaluation, its results are

considered to be more reliable. Similarly, Field Tests were not a valid alternative because in an

internship context, it would be impossible to find an actual project to perform the testing

activities.

However, it is not a technique free of problems. Being a formal exercise, participants

may feel pressured and not be comfortable with the setting. Furthermore, it requires more time to

prepare, as it demands the experience to be designed, the participants to be selected, definition of

the tasks to be performed (scripting), preparation of materials, data collection, analysis, etc. Still,

we thought that it would be the best solution to achieve our goals for the evaluation experiment.

4.2.2 Test Planning

As referred previously, we wanted to perform an experience that would allow us to test

the API that was developed. So, there were four steps while planning the test activities: design

the experience, select the profile of the participants, develop the tasks to be performed, and,

prepare the materials to be used.

Therefore, we decided that we wanted the API in a programming environment. In other

words, we wanted to test its application in real programming code, not only test the knowledge

of the participants regarding the API, in abstract. Although the focus of the experiment was the

API, which means it was a programming-oriented test, we reflected and recognized that we had

to be very careful while designing the experiment. We wanted testers to be focused on questions

regarding the API, not stuck on the syntax behind the programming scenario in which it would

be tested, or spending too much time understanding particular syntax issues of the programming

language used to code on the API. The main objective was to test the logic of its application,

how would the testers apply the concepts offered by the API.

There was the option of testing the API by itself, not applied to a specific code from a

game scenario. However, that kind of test would be too abstract, informing only whether testers

had memorized the syntax. We think that, instead of testing the API in abstract, it would be much

80

more valuable to test also how the players would perceive the relationship between code related

to the API, and code from a game. That is why we chose to use methods from n actual game

(Blindfold) in this experiment. Nevertheless, it would be very hard for the players to, besides all

the knowledge to grasp regarding the API and its usage, have the need to learn about Blindfold,

its characteristics, story, etc. It was imperative to not overload the tester with information

regarding the chosen game scenario. That was the reason why each method had a detailed

description, and each line of code from the method had a comment describing its purpose. Tester

should instantly understand the meaning behind each method, as that was not the purpose of the

testing experiment.

Likewise, we simplified the instructions‟ syntax, transforming the C# instructions almost

into pseudo-code. The objective of the experiment was not to verify how well testers knew C#

and its syntax. What was important was to use the language to make sure testers understood the

purpose of each method.

In terms of the participants‟ profile, the only requirement was that they had to have some

programming background. Again, although the code from the methods was in pseudo code, it

would still require programming knowledge to understand the logic behind each method.

Moreover, this requirement is common to the API, so, it was a logic requirement. The number of

participants was 6, 5 male, and 1 female.

The tasks that we desired participants to perform involved all the classes from the API. We

wanted them to use all the methods that the API had to offer. Consequently, we had to choose

what group of methods, from Blindfold, would offer more possibilities in terms of different

usages for sources, contexts, patterns, and the listener. After the selection process, we ensure that

the chosen methods would give the opportunity for testers to use all types of contexts, various

sources with various agents and patterns, and to edit the listener‟s properties.

However, in order to achieve all the goals listed in the previous paragraphs, we had to

make a decision: the test would not be performed in an IDE. We wanted to simplify the code

from the game sound scene, as well as to guarantee that the participants would not be overloaded

with classes, project packages, and struggling to other computer/IDE related issues. So, we

decided that we would resort to paper cut-outs to perform our experiment. We knew that would

not be a conventional solution, but, due to the aforementioned constraints, we truly believed it

81

would be the best approach, in order to guarantee that testers would only be focused on the issues

that were important for the experiment.

4.2.3 Test Scenario

Firstly, each participant started to receive some theoretical lesson about the concepts

behind the API. Each of the classes, and methods, were explained both theoretical, and through

code examples. This preparation phase took about 15 minutes for each of the participants. The

participants were told that the idea was not for them to memorize what was being explained, but

instead to try to understand the concepts being demonstrated.

Next, participants had at their disposal five methods extracted from Blindfold‟s code,

printed to A4 sheets. However, all the lines of code regarding sound were removed from the

methods. Still, these methods had above them a text describing it, and referring which sonic

events were expected to be dealt with in it (see Figure 4.2).

Figure 4.2 - Method's description

82

Figure 4.3 - Declaration examples

Figure 4.4 - Instructions example

83

Testers also had at their disposal two types of paper cut-outs: one with the declaration of

the sound sources to be used on those functions (see Figure 4.3), and another one which had the

actual lines of code to be included on the aforementioned functions (see Figure 4.4). The

objective was to put the testers in a position where they would need to read the methods‟

description, analyse their code, and, by evaluating which sonic events were expected to occur

and looking at both the declarations and the lines of code, select from the paper cut-outs the lines

of code that belonged to a specific method, inserting them in the right place (Figure 4.5 and

Figure 4.6). This would require them to understand the various types of declarations for sources,

contexts, patterns and for the listener. Moreover, they would also search on the lines of code,

which ones would use the objects they thought would be needed for a specific method, and if the

actions performed would achieve the goals specified in the method‟s description.

Figure 4.5 - Method with instructions added by a tester

84

Each of the five methods explores different aspects of the features offered by the API. One

of them explores functionalities related with the listener, while the other four explore the usage

of sources with different types of patterns, and the usage of different types of contexts. It is

important to refer that not all the paper cut-outs are used in the exercise, existing some of them

which are very similar to the ones to be used. The aim of this is to verify if the testers can

differentiate the sources by their characteristics, and according to the methods‟ needs.

We hoped this could inform us about what problems would the testers had, while using the

functionalities offered by the API. To obtain the desired information, while participants were

performing the test, we were monitoring their performance and taking notes of every relevant

event, either “positive” or “negative”. Furthermore, if participants had any doubt interpreting the

methods, or any question regarding the API, we tried to help them, though only by giving them

hints, or helping them understand some specific aspect. The data gathered during the

experiments, and the conclusions drawn from it will be detailed in the following sections.

 Figure 4.6 - Participant performing the test

85

4.2.4 Results, Analysis and Improvements

The observation and correspondent collection of information performed during the tests,

resulted in a table for each of the participants with a header row similar to the one presented in

Table 4.4.

Event Type Task Importance for user Possible Solution

Table 4.4 – Header row of the event collection table

As depicted in Table 4.4, the information that was being collected was: the event that was

being reported, the typology of the event (inserted afterwards), the task (which was the method

that the participant was completing), a classification of what was the importance of the event for

the user, and, finally, a possible solution for the problem (when applicable). It was also recorded

the time spent completing each of the methods, and a counting of the number of instructions

inserted in each method, the number of well-placed instructions, the number of instructions

placed in wrong positions, and the number of missing instructions in each method.

From this information, we made various tables to summarize different aspects of the

collected data. Firstly, we made a purely performance-oriented analysis, in which we observed

the rate of completion of for each of the five methods (presented in Table 4.5). The table has the

following structure: the first column contains an entry that represents all the instructions to be

inserted in the exercise (from the five methods); the following columns have data regarding the

instructions inserted, correct instructions, wrong instructions, and, missing instructions.

Moreover, each of these columns is further divided in two: one for the mean, and one for the

standard deviation. The values presented in the lines below are in percentage format.

Instructions
Inserted

Correct
Instructions

Wrong
Instructions

Missing
Instructions

 Mean
%

STDDev
%

Mean
%

STDDev
%

Mean
%

STDDev
%

Mean
%

STDDev
%

Instructions (24) 21,5 2,5 18,7 4,0 3 5,0 4 2,9

Instructions (%) 89,6 10,5 77,8 16,6 12,5 20,7 16,7 12,1

Table 4.5 - Performance-Oriented Analysis Table

86

It is important to refer that, due to the number of participants, it is not recommended to

make any statistical analysis of this data. In order to approach it in that perspective, a larger

number of participants would be required.

Nevertheless, it appears to point towards a tendency for a positive application of the API

on the experiment. There is no evidence of testers simply using an overabundance of instructions

(even with the standard deviation value, the quantity of instructions inserted does not surpass

100%). Also, there is evidence of a good understanding of the methods functionalities, judging

by the results regarding the instructions well placed in the methods. Still, the values regarding

instructions misplaced in the methods show some evidence of some confusion while interpreting

the code and/or the API. This could be due to a difficulty in understanding code from never seen

before game, even with the method‟s description that was given to participants. However, the

comprehension of the API‟s functionalities, and mechanisms, could have also been

misinterpreted by testers, due to this being their first contact with it. Furthermore, the time that

they took to complete each method, as well as the verbal commentaries they gave throughout the

test, show evidence of a hard first contact with the API.

However, it is hard to ensure whether the main cause of the results was the perception of

the API‟s functionalities, and concepts behind it, or if it was the description of the methods that

had more weigh in the exercise‟s resolution.

Besides this analysis, we also tried to analyze the frequency of events reported during the

experiment, according to its typology, and also, according to the task (method) related to it. The

typology was defined after all the tests had been performed, according to the type of events that

were observed. Furthermore, in this analysis, unlike the performance-oriented one presented

previously, the results will be separated by task (method), in order to allow us to see also the

differences between them. This data is presented in Table 4.6.

Type BabyInt MotherInt KeyInt DogInt UpdateInput

Total

Frequency
of events

Game
Interpretation

2 1 1 0 0

4

87

by Type Game
Interpretation
Problem

6 8 3 2 0

19

Code
Interpretation

2 1 0 0 0

3

Code
Interpretation
Problem

4 0 2 1 0

7

API
Interpretation

9 10 8 2 1

30

API
Interpretation
Problem

5 11 2 2 0

20

Decoding Data 8 2 1 1 0

12

Decoding Data
Problem

1 4 7 4 0

16

Exercise
Interpretation

2 0 1 2 1

6

Exercise
Interpretation
Problem

4 0 0 0 0

4

 Total 43 37 25 14 2

121

Table 4.6 - Event's Frequency Table

 It is important to refer that the methods (columns), are ordered by the order that they

were completed by the participants (from left, to right). Therefore, the first thing that is possible

to observe is that the number of events observed decreases in each method. This can be

considered as evidence of a gradual understanding of the API and its mechanics, though it shows

a tendency to a difficult first interaction with the API. Being one of the API‟s objectives an easy

learning and usage, there appears to be some work to be done on this matter.

Another tendency that is highlighted by the data presented in the table is that most of the

problematic events are centered in three categories: game interpretation problems, API

interpretation problems and data decoding problems. The tendency regarding game interpretation

problems confirms one of the difficulties that were expected: how to give the participants the

background regarding the game scenario (Blindfold), without overloading them with

information, preventing them to focus on the API. We have to also consider the possibility of the

method‟s descriptions not being clear enough for someone who did not have any previous

contact with the game scenario used in the experiment. Throughout the experiment, many testers

88

had to ask questions regarding the game and its methods, due to their difficult in understanding

the game scenario and all its constraints. Maybe there should have been a more deep explanation

of the game scenario to be used, or a playtesting time with the game, in order to let players make

their perception of the game‟s mechanics on their own (and, probably, in a more interesting way

than by reading or hearing a detailed explanation).

 The other major categories of problems (API interpretation and decoding data), are

mainly related to the API. Most of the problematic decoding data events involved the API, being

either a difficulty interpreting the names of sound files used, or the semantics of the source‟s

names chosen. Also, the fact that players received a theoretical explanation of the API, with only

a few code examples, increases the possibility of these problems decoding data. Therefore, this

tendency towards a difficult data decoding, reinforces the opinion that the naming conventions of

the API‟s classes, methods and patterns should be considered as a vital part of the API‟s

successful acceptance by the users. Similarly, this reinforces also the opinion that the naming

given to both sources and files used in the API need to be semantically expressive.

Additionally, the problems regarding the API‟s interpretation were focused mostly on

declarations and instructions. There were many events that showed evidences of difficulties

understanding the different types of contexts, or difficulties understanding some mechanics

regarding the API‟s methods (i.e., understanding that, by being called, some methods stopped the

source‟s reproduction). The relative high number of problematic events, shed evidence on a

difficulty on understanding the API‟s mechanics (as evidenced on the first table). However, the

larger amount of problems is centered on one specific method, which may be understood as a

method-specific problem. Nevertheless, we should not minimize this issue, and recognize that

the API may need some improvements on both its documentation, as well as on its structure. The

major problem is how to clearly explain information on both concepts that may be new to the

users (i.e., patterns), as well as concepts that are interpreted in a new way (i.e., context).

Probably, the easiest way to explain the API‟s theoretical foundations is by using it in a real

project. On the other hand, it is hard to convince someone to try a solution if he does not

understand the advantages that he obtains by doing it. Moreover, regarding the API‟s structure,

many events shed light on certain unfamiliarity with the concept of defining all the source‟s

properties in the constructor. There was a certain resistance to being constantly “forced” to look

at the constructor to understand the properties of a sound source. However, it is hard to guarantee

89

whether this is due to a problem of the solution itself, or simply because the aforementioned

unfamiliarity with the mechanic. Either way, the important fact to retain is the resistance to the

mechanic that we thought it would be highly intuitive. On the other hand, it could be argued that

the reason why testers had the necessity to continuously look at the declarations was because

they were not constructed by them. Still, without a test scenario that allows them to make the

integral declarations of objects, it is hard to be certain of which case is true.

Lastly, in order to have a better understanding of which were the API‟s concepts that were

related to the observed events, we made a third table which analyzed this correlation (event-

classes, when applied), as well as the event‟s classification as positive or negative. This data is

presented in Table 4.7.

API related concepts

Sources Contexts Patterns Listener

Total

 Positive Negative Positive Negative Positive Negative Positive Negative

DogInt
3 3 0 1 0 0 0 0 7

KeyInt 4 0 4 2 1 0 0 1 12

MotherInt
6 8 4 2 1 2 0 0 23

BabyInt 6 3 6 5 1 1 0 1 23

UpdateInput 0 0 0 0 0 0 1 0 1

Total 19 14 14 10 3 3 1 2 66

Table 4.7 - API Concepts Analysis

Analyzing the data presented on the table, the number of negative events regarding

sources, on the MotherInt method, reinforces the idea that there was a special difficulty regarding

this method (there were also evidences of this fact in the analysis of Table 4.6). Also, although

there are more positive events than negative ones, the difference between positive and negative is

not expressive enough to allow us to draw any type of conclusions.

As expected, the classes Source and Context have the larger number of negative events.

This is comprehensible because there was a larger number of instructions that used sources and

90

contexts, than patterns and listeners. Still, there was also a significant difference in quantity,

between instructions and declarations that used sources, and instructions and declarations that

used contexts. Therefore, it could be expected a relative significant difference between negative

events of each of them. However, the number of negative events regarding sources, and the

number of negative events regarding contexts do not present a significant difference. This

similarity in the aforementioned values can be interpreted as evidence of a problematic

understanding of contexts, and the concepts supporting it.

In fact, the use of contexts requires an understanding of many concepts that may be new

for users: Layers, Agents, and Exclusivity (besides sources). This abundance of new knowledge

for users to understand may have been too much for the participants to grasp, especially due to

the reduced amount of time using the API. Moreover, according to the testers‟ commentaries

during the experiment, the naming chosen for these concepts may not have been the best.

Besides Layer, which seems appropriate for the concept it describes (though not being natural for

the common programmer, requiring explanation), the name “Agent” and “Exclusivity”. When

contacting for the first few times with the API, participants commonly had doubts about what

was an agent, and did not know if its use should be related with any character from the game.

Furthermore, being a concept that is quite abstract even after explanation (what is an agent?), we

now recognize there is evidence that another alternative could make the concept more

understandable.

Similarly, the concept of “Exclusivity” is not one that becomes instantly understood by its

name. The term exclusivity may be even more abstract than agent. Therefore, the events

observed during the experiment show a tendency for a high-level of difficulty to understand it.

There was observable a tendency for participants to always ask what was its meaning, what can

be understood as a need for the concept to be memorized, instead of being intuitive as was

expected. Once again, it appears to emerge an opportunity to think in some alternative that would

ease the perception of the desired concept and functionality.

91

5 Conclusions and Future Work

During the whole project, many decisions and corrections were made. Every day, the

problem definition, the proposed solution, and many other aspects were constantly being refined.

Time constraints, technological constraints, domain-related constraints, there was a panoply of

factors that were always compelling us to make important decisions. Additionally, the tests that

were performed also gave us important data that allowed us to make important considerations

regarding the work that was developed, and suggesting possible aspects which could be

important to modify.

Therefore, in this chapter we present improvements and design errors corrected during

the development of the project. Furthermore, we also detail the limitations of the proposed

approach, and propose additional features (and usages) to be added to the solution, in the future.

Following this, we present the written work that was created during this project‟s lifetime, as

well as some reflections about the contributions of the work and its learning goals. Finally, we

present some Final Remarks on the whole project.

5.1 Improvements and design errors corrected

Throughout the work developed in this dissertation, various improvements and

corrections were made, mainly due to the nature of the chosen methodology (see Methodology),

which encourages a constant refinement of the problem definition and its requirements. In this

section we will detail some of the improvements and corrections made throughout the project.

One of the first doubts we had consisted in how to represent the currently playing

soundscape. While at first we thought about using only one structure (Score), we soon realized

that there were many different states and types of sources that had to be grouped separately.

Along with this, the introduction of the concepts “in context”, and “out of context”, there more

variable to take into account while deciding how to store and group sources. Conjointly, we first

thought that sources should be grouped by their context. However, the importance that the

sources‟ layers have on heuristics, and the perspective that, in the future, more than one context

can be active simultaneously, made us rethink and decide to group sources in the scores by their

layer.

92

As referred before, Alves‟s work on Patterns for Sound Design [Alves and Roque 2011]

[Alves 2011] was one of the most important inspirations for our approach. Nonetheless, the

inspiration and guidance that it provided made us be too focused on the concept of pattern,

thinking always about how to build a system around it. As we were researching and attempting

to draw possible approaches to the solution, it became clearer that there were other concepts that

should be prioritized, namely source and context. This allowed us to reach a solution that was not

too attached to the need of thinking of sound implementation based on the notion of pattern.

Also, we soon find that there were many patterns referred by Alves that would not fit the type of

usage that we aimed for the API. We had to focus on which patterns could be easily translated

into an algorithmic representation, and that would not be ambiguous in terms of perception about

the consequences of their usage.

In the beginning, we looked at these patterns as if we were looking at “how” to do

something, how to use sound explorations. Yet, at the same time that our understanding of

Alves‟s patterns was maturing, we realized that we were in reality searching for a way to

represent “what” we wanted. With this mindset, we understood that “what” can be related to the

designer‟s intentions (directives), and that the “how” is invisible to the engine‟s user (it is the

knowledge embodied in the engine‟s heuristic container).

Initially, we thought that the game scenario in which the DSC module would be tested

should be new, designer exclusively for that purpose. Nevertheless, the plan was changed for

numerous reasons. Firstly, the time to prototype a new scenario, instead of re-using a game

already programmed, would be very large. Secondly, it was more easily for us to envision

possible situations to test the engine if we had already a mental structure of the game. Finally,

instead of a prototype made specific for one or two situations, a game like Blindfold allowed

many different game situations to be explored. Also, at first we thought that the game scenario

should be a closed 2D space, due to the abundance of sounds in a small space that would allow

the management of sources to be perceptible. Furthermore, we thought that the use of 3D sound

would compose an extra layer of complexity that would not bring any value to our proposal. As

soon as implementation began, we realized that the usage of 2D or 3D sound would not bring

any difference, so, that option was another reason to allow us to use Blindfold.

Another aspect that was changed during the project was what we considered to be the

importance of a visual interface to tweak parameters and allow an easier prototyping. While the

93

value of this feature is not neglected, the time that would be required to implement it would be

large, and between this feature or the possibility of spending more time adding new heuristics to

the engine, we decided to go with the latter. Additional information about this feature can be

found in Limitations and additional features/usage for the project. In addition, other feature that

had to be postponed was the possibility of letting the composition process influence the game‟s

logic, or AI. This would also require much more time to spend solely on this issue than that

available on a Master‟s dissertation. Still, the work developed on this project can be seen as a

baby step in the direction of a sound engine capable of unmuting game logic.

Finally, there were two theoretical issues that were changed and that had a major impact

on the project‟s outcome. First, the target audience of the engine started to be sound designers

and similar people, which had no programming skills. Nevertheless, independently of how much

we tried to simplify the API and make it understandable, we soon realized that some

programming skills would be inevitable to use it. Correspondingly, programming knowledge

would be needed for the users to read the code from the game, in order to understand where and

how to insert the lines of code they desired. This made us broad the spectrum of possible users of

this engine. Programmers, game designers, sound designers, all of them can see some utility on

the engine, especially in low-budget indie studios. The second theoretical issue that had great

impact on the project was the concept of context. Being a concept used in many different areas in

a variety of ways, we had long debates regarding this matter. Initially, it appeared that context

should be a super complete structure of information that should incorporate many different

sources of information regarding the soundscape. Unfortunately, as more information was being

clustered to this notion of context that was being projected, the more difficult it was being to

conceive a way of reason and make decisions using all the information that was being

considered. It was necessary to take a step back in order to move forward. In other words, we

had to focus on what types of situations could really earn value with this concept, and what was

the information that was really important. After meditating on this matter, the most important

usage that we envisioned was the capability of selecting, from all the sources available on a

soundscape, the ones that were truly important in a specific moment. From this idea, we always

worked towards a notion of context that would allow this selection/focus of the important

sources in an easy fashion. This was one of the stepping stones of the project, and one of the

features that we consider to be more valuable for sound design in videogame contexts.

94

5.2 Limitations and additional features/usage for the project

The main task that appears as the most vital to be done on top of this dissertation‟s work

is the further testing and evaluation of all the implemented heuristics. However, in order for the

results to be truly enlightening, some requirements should be met while doing the evaluation

experiments. It appears to be mandatory that this task should resort to domain experts which can

evaluate and give insights on the engine‟s performance. Unlike computer science researchers

who usually do not have any type of sound design background, the expertise that domain experts

could bring to the studies would enrich the evaluation process infinitely. Still, an evaluation with

these characteristics would surely not be a “one-time” experiment. On the contrary, it would be

an iterative process that would require a cyclic process of “testing-evaluation of results-

refinement”. In the end, this process would allow the improvement of the engine‟s robustness.

Similarly, another way of increasing the engine‟s versatility would be to increase the

number of heuristics. The immensity of sound explorations which can be used nowadays on

videogames creates the need for a constant evolution of the patterns offered by the engine. The

greater the number of heuristics at the designers‟ disposal, the more freedom they have to let

their creativity blossom. Additionally, the increase in the number of heuristics available would

also translate into more behaviors being coded only through pattern definition. This would make

the sound-related code more easily understandable, and prevent the need for to code certain

behaviors, which would be automatically performed by the DSC module.

Nevertheless, heuristics are not the only important variable to determine the versatility

and robustness of the engine. It would be tremendously valuable to allow the engine to use more

than one context and pattern simultaneously. However, research has to be done in order to

determine the best way to support more than one context and combine their properties.

Equivalently, it would be good to research about the different possibilities to support more than

one pattern (what already is supported, but always giving priority to the more recent). As an

alternative, one possibility that could be valuable to test in the future is the implementation of a

stack system, similar to the one it was implemented for the heuristics, but, in this specific case,

applied to contexts. This way, when the programmer popped a context, the next one in the stack

would be assumed as the current context.

Sometimes, heuristics have default values associated with them, which influence their

output. It would be useful for designers to have a graphical interface that would allow them to

95

tweak this type of values in real-time while testing their prototypes. For instance, the attenuation

of the volume levels, or the number of seconds that a specific heuristic should perform, could be

more easily tuned this way, in real-time, during prototyping. This feature could even be

improved by incorporating a graphical module to show some statistic data regarding the

soundscape (i.e., number of sources played, number of patterns, time spent by each context, etc.).

Also, as mentioned before, in this first prototype developed on this dissertation project,

we implemented a unidirectional channel of communication to allow the game logic to send

messages to the sound engine. It would be potentially useful to have bidirectional

communication channel. This would allow other kinds of synchronization between audio and

game events, such as making the soundscape composition process influence game logic and its

AI module.

In order to maintain “conscience” of what happened before in the soundscape, it would

be very useful to have a logging system. A system like this would allow keeping record of every

source, pattern and context which occurred in the soundscape, to allow future consultation of that

information. This information would allow the scheduler to have in account not only the

soundscape‟s current state, but also the events that occurred in the past.

One of the main features that could be further researched and could bring benefits for the

engine would be a new data structure, through which time-related issues like the duration of

sources could be more easily stored accessed. In other words, we are talking about a data

structure which would allow data to be stored in a timeline-fashion, which would allow better

control over both scheduling and planning processes. Furthermore, this is a key aspect in order to

allow the engine to schedule events for a specific moment in the future. However, this is not an

easy task, as the duration of gameplay is uncertain, which can cause some issues in terms of

memory availability after long periods of scheduling. This is certainly an extremely important

issue that requires a great amount of work. However, it is also one of the features that could truly

improve the composition process.

We are also particularly interested in studying further explorations of this tool for fast

prototyping. The system‟s architecture allows the game code and the audio engine to run

independently, communicating through network, which means that they can even run in separate

machines. This, for instance, prevents the need to reboot the game every time the sound engine is

modified, which provides an expedite way to prototype. For example, the aforementioned idea of

96

creating a graphical interface to tweak values related to the system‟s heuristics would greatly

benefit from this separate run-time prototyping capability.

5.3 Written Work

Since the beginning of this dissertation‟s work, we had the wish to develop at least one

scientific paper related to it. Still, it was not until the beginning of the second semester that we

had the possibility to define more clearly what we would be doing in the following months, and,

consequently, what could possibly be useful to report in a paper.

Also, we analysed which were the conferences in which the work to be reported would fit

better. Clearly, Audio Mostly emerged as the most interesting option, because of both its focus

on audio, as well as the deadline for the submission of papers (beginning of May).

 Additionally, due to the conference‟s focus on audio, we decided to make an ambitious

decision: do not one, but two papers for the conference. Being Blindfold an audio-only game, it

appeared to be also a good fit for the conference. Furthermore, as it was used as game scenario in

the development of the DSCM, we thought it would be interesting to make a paper about it. The

process would always be interesting in the optic of this dissertation, as it would allow to describe

in detail the design process of an audio-only game, as well as the analysis of data regarding

previously performed playtesting.

 In terms of acceptance, the first paper (Dynamic Enhancement of Videogame

Soundscapes) was accepted as a poster paper. On the other hand, the second paper (The

Blindfold soundscape game: a case for participation centered gameplay experience design and

evaluation) was accepted as a full paper. In the following subchapters we will detail the content

of both papers. Additionally, it was requested that we make an interactive demo session to show

Blindfold using the DSCM proposed in this dissertation.

Both papers can be consulted respectively in Appendix D and E.

5.3.1 Dynamic Enhancement of Videogame Soundscapes

In this paper, we started by doing a contextual introduction to the game audio domain,

referring some of its main issues and challenges (i.e., the medium‟s intrinsic dynamic nature). It

is also summarized the most important concepts behind Acoustic Ecology theory, namely the

concept of Healthy Soundscape. Also, we made an overview of the sound computing architecture

that, nowadays, support the implementation of sound in videogames.

97

After contextualizing the reader with the most important concepts which supported the

work to be presented, we propose a system aiming at the enhancement of the soundscape

generated during gameplay (DSCM), which we set to follow principles from Acoustic Ecology.

The paper gives an overview of the system‟s overall architecture, focusing on explaining the

workflow of the proposed solution. It is also given special attention to the explanation of the

heuristics‟ important role in the system. The paper also presents the interface that designers will

have at their disposal to inform the heuristics, and characterize the sounds being handled by the

sound engine (API), detailing its guidelines and intentions behind its design.

Finally, we present in the paper reflections on an essay where a game was remade using

the proposed system, focusing mainly on the one heuristic used in the remake. From the

information regarding that essay, we offer some reflections on the conclusions drawn, as well as

listing possible features and improvements to be performed in the future.

5.3.2 The Blindfold soundscape game: a case for participation centered gameplay

experience design and evaluation

In this paper, we started by doing a contextual introduction to the game audio domain,

focusing on audio-only games, as well as research regarding the impact of audio on different

aspects of gameplay. Next, we present a model for participation-centric game experience design

and evaluation, as well as the methodology used in the exercise that was going to be presented.

The paper reported on a game design exercise that focused on the sensoriality and

sensemaking participant dimensions for conceiving and evaluating gameplay experience, by

framing design intentions, artifact characteristics and user participation. After analyzing the

design case of an audio-only game developed with the help of the aforementioned model

(Blindfold), we present the data obtained through an exercise of playtesting performed to 19

participants. Through this exercise we were able to build understandings of user participation in

the soundscape constituting the gameplay scenario.

By employing a goalquestion-metric approach we demonstrated the viability of using the

participation-centric gameplay model dimensions as a basis for the synthesis of gameplay

participation indicators and metrics, and their analysis in the context of interactions with a game

as soundscape.

98

5.4 Lessons Learned

This sub-chapter synthesizes over the lessons learned during the development of the

dissertation. We start by referring what we think are the main contributions this dissertations

brings to the field of dynamic soundscape composition. Furthermore, we also take some

conclusions regarding the expected learning goals for this internship, and whether they were

fulfilled or not. To conclude, we make a final statement regarding both the area of work, and the

project developed.

5.4.1 Reflections and Contributions

We started this dissertation by characterising the importance of sound design in games. We

defend a holistic approach to sound design, which calls for an appreciation of the overall

soundscape as part of the manifestation of relationships between entities in the game world,

including its inhabitants and the environment, but also extending to player. We funded our

arguments on the communication model presented by Acoustic Ecology.

We also argued that designing a soundscape for a game constitutes a great challenge due to

the dynamicity of this kind of product. In fact, interaction during gameplay can lead to the

activation of events and objects in unpredicted ways or it may be impractical to cover all

predictable possibilities, in ways that the triggered acoustic associations still constitute an

interesting soundscape. We resorted to the concept of healthy soundscape to emphasize the

difference between a composition that retains its communicational meaningfulness from a mere

superimposition of whatever sounds may became active at a given moment.

We also reviewed the main architectures currently available to implement sound in games.

The review put into perspective several relevant aspects, including the perception that the

adoption of a middleware can encompass the means to set healthy soundscapes in games.

However, middleware solutions are typically too expensive to constitute a viable solution,

particularly to smaller developers operating on low budgets. Middleware sophistication can also

become overwhelming and impose a hard learning curve that may not fit the goals and

constraints of smaller projects. We believe that both the community of practice and the public

would benefit from the empowerment of indie developers to create rich soundscapes.

Being so, we conjectured that it might be possible to conceive a system that would support

healthy soundscapes in games without having to resort to a middleware as a means to reach that

99

kind of control. We also favored solutions that would avoid achieving that goal by tweaking or

embedding sound behavior related code into the game logic.

We proposed a solution that reduces the need to foretell and code the multitude of

possibilities that may emerge from the dynamic nature of gameplay events, in terms of ensuring

that the sound stimuli being consequently triggered actually constitute a healthy soundscape.

Basically, we allow the sanitization of the soundscape to be moved from the game logic to a

module that evaluates active sounds in runtime and uses contextual information to decide on how

to let them actually get to the rendering system – and, consequently, to the player‟s ears.

The intelligence in such module is expressed through heuristics that, in turn, translate

principles and concepts from a body of knowledge, including from the field of Acoustic Ecology.

The module operates as a sort of “filter” on what would be heard otherwise – although we have

been refraining from characterizing it as such, to avoid overshadowing other interventions on the

soundscape that go beyond filtering in the strict sense.

In order to allow designers to take advantage of the heuristics, we propose an API for

characterizing objects and contexts. This API was also written with the intent of easing the

expression of design goals, through a sensible choice of naming and provided methods. This

should be instrumental not only for code maintenance but also for sharing and discussing it with

other practitioners.

Our proposal is not intended to constitute an alternative to the already established

approaches but rather a complement to those approaches. This also reflects on the kind of

evaluation we have been performing, in the scope of the adopted DSR methodology. We have

been less oriented towards comparisons with other solutions, and more focused on the

verification of how the adoption of the proposal may be effective and promising, including in

terms of new types of opportunities that it may unveil.

We conducted an essay consisting of redesigning an audio game we had formerly

developed, this time adopting our own system. The exercise confirmed the feasibility of the

proposal, and also helped to inform and refine the development of the implemented heuristics. It

also shown that, in this instance, we were able to achieve the desired acoustic behavior, with just

a small amount of calls to our sound engine, through the API, from the game logic. While

remaking Blindfold, we could perceive the tremendous impact that sound-related code can have

in a game‟s logic. Also, as the project at hand gets bigger and sound plays an important role in it,

100

it become harder to realize sound‟s functional role just by looking at the code – even for the

authors. Consequently, it also gets harder to maintain the code in ways that the two components

(sound-related and non-sound-related) are developed in an independent fashion, in order to avoid

errors due to unwanted interactions.

Nevertheless, it appears to be clear that a domain of expertise like this, requires various and

different scenario to be used for testing, in order to cover all the features and possibilities that a

vast number of patterns can offer. This does not mean that each heuristic should be tested on its

own scenario. On the contrary, each heuristic should be tested in various scenarios so that their

performance can be analyzed in different settings, in order to perceive which constraints affect

each heuristic.

Lastly, the two academic papers developed during this dissertation are also a contribution to

the domain. Besides contributing with a design case and evaluation of an audio-only game

performed with the aid of Pereira‟s model [Pereira and Roque 2012] , we contribute with an

approach to a participation-centric analysis of gameplay. Moreover, the second paper can also be

seen as a contribution to the dynamic soundscape composition field, with a first approach to the

architecture detailed in this dissertation.

5.4.2 Conclusions related to learning goals of this internship

The project developed under this dissertation was highly invaluable for me to be

able to grow as student, researcher, and engineer. When I reached professor Licínio Roque to

propose to work under his guidance in my Master‟s dissertation, after working together with him

in the EDJ course, I knew that it would be a great opportunity to learn more about one of my

greatest passions in life: vidoegames. Specifically, audio in videogames has always fascinated

me, specially because music and sound design are other areas of expertise that interests me.

 Therefore, the main learning goal of this internship was to grasp a better understanding of

which are the current procedures on sound design for videogames nowadays. After the deep

research that was made to produce the State of the Art report, and after all the prototyping

activities developed, I honestly feel that this goal was achieved. I now understand the different

roles that exist regarding game audio, and the responsibilities of each of them. Specifically, I

now understand the workflow between the two major roles: the sound designer and the audio

programmer. After acquiring this knowledge, I now understand which skills I should develop in

101

order to capacitate myself to work in this area someday. Additionally, I developed my

knowledge in the area of dynamic soundscape composition, which still has a long path of

research ahead of it. Still, I feel that I acquired many theoretical foundations that are going to be

important in this research field, specially regarding Acoustic Ecology. More important that to

give a definitive solution, the learning goal was to fully understand the problem, and that was

fully achieved.

 In addition, I also had some personal goals for this dissertation. Knowing that most of the

academic projects involve groups, I wanted to test and to improve my autonomy as researcher

and engineer. I wanted to push my limits and boundaries, and tackle by myself, whenever

possible, every adveristy that I could find in my way. Although this dissertation has made me

evolve immensly in this matter, I still have to thank professor Licínio for guiding me when I

needed, and for always being a lighthouse which helped me to navigate in a sea of doubts.

Moreover, professor Licínio always promoted the development of my critical sense, encouraging

me to evaluate over my own point of view at every moment. This made me become more

humble, loosing any kind of problem admiting I may be mistaken, and always being rigorous

while analysing both my work, and the work of others.

 Lastly, there was another learning goal that was achieved: to obtain a better

understanding of how academic research is performed. Although having already performed some

research work on other courses, this was the most profound and serious approach to research

during my academic journey. Specifically, the learning and usage of Design Science Research,

allowed me to look at research work with a new perspective, giving more credit to it. Also, it

made me understand better how it pushes boundaries and break established concepts, allowing

researchers to remain open-minded and highly motivated. Research work trully builds on the

past, to bring the future to the present.

5.5 Final Remarks

Sound design continues to grow in terms of importance during the game development

phase. As videogames keep evolving, new approaches to sound continue to be explored. What

started as a exclusive procedural process, have grown into a methodical and professional task,

which now witness some attempts to recover the positive aspects of procedural approaches. The

dynamicity of the medium will continue to be a hazardous challenge to overcome, but with

102

research, experiments, and the creativity of the growing indie community, the future has

certainly rich and original sonic experiences to be unfolded. Though the work developed in this

dissertation cannot allow for conclusive conclusions about if the proposed approach is the best

for the problem of dynamic soundscape composition, we think that it has laid foundations for the

solving of the issues raised during this work, thus placing us ever nearer to the desired answers.

103

References

A GAME DEVELOPMENT BLOG 2008. The Beat Goes on: Dynamic Music in Spore A Digital Dreamer,

Retrieved October 4, 2012 from http://www.adigitaldreamer.com/game-development/the-beat-goes-on-dynamic-

music-in-spore.

ACOUSTIC ECOLOGY W.F. 2000. Soundscape: The Journal of Acoustic Ecology, An introduction to Acoustic

Ecology. Vol.I, Number I.

HEVNER ALAN R., MARCH SALVATORE T., PARK JINSOO AND RAM SUDHA 2004. Design science in

information systems research. MIS Q. 28, 1, 75-105.

ALVES, V. 2011. Sound Design in Games Wiki Retrieved October 28, 2012 from http://www.soundingames.com/.

ALVES, V. AND ROQUE, L. 2011. A Deck for Sound Design in Games - Enhancements based on a Design

Exercise, In ACE 2011, ACM.

AMBIERA irrKlang Homepage Ambiera, Retrieved October 10, 2012 from http://www.ambiera.com/irrklang/.

AUDIERE Audiere Homepage Sourceforge, Retrieved October 10, 2012 from http://audiere.sourceforge.net/.

AUDIOKINETIC Wwise Homepage AudioKinetic, Retrieved October 10, 2012 from

http://www.audiokinetic.com/en/products/208-wwise.

AUDIOMULCH AudioMulch Homepage AudioMulch, Retrieved October 10, 2012 from

http://www.audiomulch.com/about-us.

BAJAKIAN, C. 2004. The future of game audio production O'Reilly, O'Reilly Mac OS X Conference 2004, Santa

Clara Ballroom (2004).

BRANDON, A. 2007. Audio Middleware Mix: Professional Audio and Music Production, Retrieved October 21,

2012 from http://www.mixonline.com/basics/education/audio_audio_middleware/.

BRANDON, A. 2007. Audio Middleware, part 2 Mix: Professional Audio and Music Production, Retrieved October

21, 2012 from http://mixonline.com/recording/mixing/audio_audio_middleware_part/.

BRANDON, A. 2007. Audio Middleware, part 3 Mix: Professional Audio and Music Production, Retrieved October

21, 2012 from http://mixonline.com/basics/education/audio_audio_middleware_part_2/.

BRIDGETT, R. The Game Audio Mixing Revolution Gamasutra, Retrieved November 2, 2012 from

http://www.gamasutra.com/view/feature/132446/the_game_audio_mixing_revolution.php?print=1.

BRIDGETT, R. 2009. The Future of Game Audio - Is Interactive Mixing the Key? Gamasutra, Retrieved November

2, 2012 from http://www.gamasutra.com/view/feature/132416/the_future_of_game_audio__is_.php.

BRIDGETT, R. 2009. The Game Audio Mixing Revolution Gamasutra, Retrieved November 2, 2012 from

http://www.gamasutra.com/view/feature/132446/the_game_audio_mixing_revolution.php?print=1.

CASTRO, R. 2009. Soundwalkers Vimeo, Retrieved December 13, 2012 from https://vimeo.com/1737899.

CAVERS, J. 2011. Into Sound - Rewind: AES Audio for Games Conference 2011 Tumblr,

http://joecavers.tumblr.com/post/4319520354/rewind-aes-audio-for-games-conference-2011.

CHAN, S.-H., NATKIN, S., TIGER, G. AND TOPOL, A. 2012. Extensible Sound Description in COLLADA: A

Unique File for a Rich Sound Design. In Proceedings of the Advances in Computer Entertainment 2012 Springer.

104

CLAM CLAM Homepage CLAM, Retrieved October 10, 2012 from http://clam-project.org/.

COLLINS, K. 2008. Game Sound: An Introduction to the History, Theory, and Practice of Video Game Music and

Sound Design. Mit Press.

CRYTEK Cry Engine Homepage Crytek, Retrieved October 15, 2012 from http://www.crytek.com/cryengine.

CYCLING 74 Max Homepage Cycling 74, Retrieved October 11, 2012 from http://cycling74.com/products/max/.

DODDS, T. 2008. Playful Audition: the "Everyday" Experience of Sound in Video Games. Bachelor Thesis,

University of Technology, Sydney, Australia.

EIGENFELDT, A. AND PASQUIER, P. 2011. Negotiated Content: Generative Soundscape Composition by

Autonomous Musical Agents in "Coming Together: Freesound". In Second International Conference on

Computational Creativity Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City, México.

ENTERTAINMENT, R. 2006. Scarface: The World Is Yours. Videogame, Vivendi Universal Games.

EPIC GAMES Unreal Engine Homepage Epic Games, Retrieved October 15, 2012 from

http://www.unrealengine.com.

FARNELL, A. 2007. Synthetic game audio with PureData AudioMostly, Retrieved November 18, 2012 from

http://obiwannabe.co.uk/html/papers/audiomostly/AudioMostly2007-FARNELL.pdf.

FARNELL, A. 2010. Designing Sound. Mit Press.

FIRELIGHT Fmod Homepage Firelight, Retrieved October 10, 2012 from http://www.fmod.org/.

FORNARI, J., MAIA JR, A. AND MANZOLLI, J. 2008. Soundscape design through evolutionary engines. Journal

of the Brazilian Computer Society 14, 51-64.

FOURNELL, N. 2010. What is Procedural Audio? Game Developers Conference, Retrieved November 19, 2012

from http://www.gdcvault.com/play/1012704/Procedural-Audio-for-Video-Games.

GAMES, L. 1984. Ballblazer, Videogame, Atari.

GAUTHIER, P. Java external plug-in for pureData le-son666, Retrieved December 6, 2012 from http://www.le-

son666.com/software/pdj/.

GRAY, K., GABLER, K., SHODHAN, S. AND KUCIC, M. 2005. How to prototype a game in under 7 days

Gamasutra, Retrieved December 22, 2012 from

http://www.gamasutra.com/view/feature/2438/how_to_prototype_a_game_in_under_7_.php.

KASTBAUER, D. 2010. Audio Implementation Greats #2: Audio Toolsets [Part 2] Designing Sound, Retrieved

October 29, 2012 from http://designingsound.org/2010/01/audio-implementation-greats-2-audio-toolsets-part-2/.

KATZ, M. 2010. Capturing Sound: How Technology Has Changed Music. University of California Press.

KERR, A. 2006. The Business and Culture of Digital Games: Gamework and Gameplay. SAGE Publications.

KNIGHT, H. 2011. Procedural Audio and Binauralisation Using Max/MSP and the Unity3D Game Engine Cycling

74, Retrieved November 18, 2012 from http://cycling74.com/project/procedural-audio-and-binauralisation-using-

maxmsp-and-the-unity3d-game-engine/.

LASTRA, J. 2012. Sound Technology and the American Cinema: Perception, Representation, Modernity. Columbia

University Press.

LIBPD libpd Homepage libpd, Retrieved October 10, 2012 from http://libpd.cc/.

105

LOW, G.S. 2001. Understanding Realism in Computer Games through Phenomenology Stanford Computer Science,

Retrieved December 14, 2012 from http://xenon.stanford.edu/~geksiong/papers/cs378/cs378paper.htm.

LYKKE, M. 2008. Procedural Audio in Computer Games Master Thesis, University of Aarhus, Denmark.

MACANULTY, I. AND DURITY, G. Contextually Driver Dynamic Music System for Games Vimeo, Retrieved

December 12, 2012 from https://vimeo.com/16034304.

MANIERO, T. Hekkus Sound System Homepage shlzero, Retrieved October 14, 2012 from

http://www.shlzero.com/.

MARMALADE Marmelade Homepage Marmalade, Retrieved October 11, 2012 from

http://www.madewithmarmalade.com/.

MENDEZ, S. 2005. Music in the Air: Exclusive Interview with Michael Land The Dig Museum, Retrieved

November 19 , 2012 from http://dig.mixnmojo.com/museum/interview_land.html.

MILLER, M. 1999. 3D Audio Gamasutra, Retrieved November 1, 2012 from

http://www.gamasutra.com/features/19991102.

MOLECULE, M. 2008. Little Big Planet, Videogame, SCEE.

MURCH, W. 2005. Dense Clarity - Clear Density. In The Transom Review, TRANSOM Ed. Transom, Retrieved

April 5, 2013 from http://transom.org/?page_id=7006.

NAIR, V. 2012. Procedural Audio: Interview with Andy Farnell Designing Sound, Retrieved November 16, 2012

from http://designingsound.org/2012/01/procedural-audio-interview-with-andy-farnell/.

OPEN SOUND CONTROL Introduction to OSC Open Sound Control, Retrieved November 6, 2012 from

http://opensoundcontrol.org/introduction-osc.

PAUL, L.J. 2007. Video Game Audio Prototyping with Pure Data videogameaudio, Retrieved October 25, 2012

from http://www.videogameaudio.com/IDIG-Sep2006/GameAudioProtoypingWithPureData-LPaul-2007.pdf.

PAUL, L.J. 2008. Video Game Audio Prototyping with Half-Life 2 Springer Berlin Heidelberg, Retrieved October

25, 2012 from http://dx.doi.org/10.1007/978-3-540-79486-8_17.

PAUL, L.J. 2010. Video Game Audio Prototyping with Half Life 2 Vimeo, Retrieved October 25, 2012 from

https://vimeo.com/7122167.

PECK, N. 2001. Beyond the library: Applying film postproduction techniques to game sound design, Game

Developers Conference 2001, 20-24.

PEERDEMAN, P. 2010. Sound and Music in Games, Written Work, Vrije Universiteit, Amsterdam.

PEREIRA, L. AND ROQUE, L. 2012. Towards a game experience design model centered on participation, In CHI

12 Extended Abstracts on Human Factors in Computing Systems, ACM, NY, USA, 2327-2332.

PERISCOPE STUDIO Psai Homepage Periscope Studio, Retrieved October 20, 2012 from

http://www.homeofpsai.com/.

PIJANOWSKI, B.C., FARINA, A., GAGE, S.H., DUMYAHN, S.L. AND KRAUSE, B.L. 2011. What is

soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 26(9):1213–

1232.

PORTAUDIO PortAudio Homepage PortAudio, Retrieved October 20, 2012 from http://www.portaudio.com/.

106

PUCKETTE, M. PureData homepage PureData, Retrieved October 22, 2012 from http://puredata.info/.

R&D, N. AND SYSTEMS, I. 1986. Metroid, Videogame, Nintendo.

RAD Miles Sound System Homepage RAD, Retrieved October 22, 2012 from

http://www.radgametools.com/miles.htm.

RAW MATERIAL SOFTWARE JUCE Homepage Raw Material Software, Retrieved October 22, 2012 from

http://rawmaterialsoftware.com/juce.php.

RUTHERFORD, S. 2012. Procedural Methods for Audio Generation in Interactive Games Stefan Rutherford,

Retrieved December 10, 2012 from

http://stefanrutherford.com/Procedural_Methods_for_Audio_in_Interactive_Games.pdf.

SCHAFER, R.M. 1993. The Soundscape: Our Sonic Environment and the Tuning of the World. Inner

Traditions/Bear.

SCHEIRER, E.D., VAANANEN, R. AND HUOPANIEMI, J. 1999. AudioBIFS: Describing audio scenes with the

MPEG-4 multimedia standard. In Multimedia, IEEE Transactions IEEE, Multimedia, IEEE Transactions.

SDL SDL Homepage SDL, Retrieved October 23, 2012 from http://www.libsdl.org/.

SFML SFML Homepage SFML, Retrieved October 23, 2012 from http://www.sfml-dev.org/.

SOUTHWORTH, M.F. 1967. The Sonic Environment of Cities. Massachusetts Institute of Technology.

STEVENS, R. AND RAYBOULD, D. 2011. The Game Audio Tutorial: A Practical Guide to Sound and Music for

Interactive Games. Focal Press.

STUDIOS, L. 2008. Fable II, Videogame, Microsoft Games.

STUFFMATIC Kowalski Homepage Github, https://github.com/stuffmatic/kowalski#kowalski.

TAITO 1978. Space Invaders , Videogame, Midway.

THE CANADIAN ENCYCLOPEDIA World Soundscape Project The Canadian Encyclopedia, Retrieved December

19, 2012 from http://www.thecanadianencyclopedia.com/articles/emc/world-soundscape-project.

THEBERGE, P. 1997. Any Sound You Can Imagine: Making Music/Consuming Technology. Wesleyan University

Press.

THEORY, N. 2007. Heavenly Sword, Videogame, SCEE.

TRUAX, B. The World Soundscape Project Simon Fraser University, Retrieved December 19, 2012 from

http://www.sfu.ca/~truax/wsp.html.

TRUAX, B. 2001. Acoustic Communication. Ablex.

TRUAX, B. 2002. Genres and techniques of soundscape composition as developed at Simon Fraser University. Org.

Sound 7, no. 1. Cambridge: Cambridge University Press: 5-14.

TRUAX, B. 2008. Soundscape composition as global music: Electroacoustic music as soundscape*. Org. Sound 13,

no. 2. Cambridge: Cambridge University Press: 103-109.

TRUAX, B. AND BARRET, G.W. 2011. Soundscape in a context of acoustic and landscape ecology. Landscape

Ecology, 26(9): 1201-1207.

UN4SEEN BASS Homepage Un4seen, Retrieved October 20, 2012 from http://www.un4seen.com/.

107

WENT, K., HUIBERTS, S. AND VAN TOL, R. 2009. Game Audio Lab - An Architectural Framework for

Nonlinear Audio in Games. In Audio Engineering Society Conference: 35th International Conference: Audio for

Games.

WHITE, I. Encoded-Embodied: Mixing across a cognitive audio spectrum. In ICAUDIODESIGN Wordpress,

Retrieved April 3, 2013 from http://icaudiodesign.wordpress.com/encoded-embodied-mixing-across-a-cognitive-

audio-spectrum/.

WIKIPEDIA OpenAL Wikipedia, Retrieved October 21, 2012 from http://en.wikipedia.org/wiki/OpenAL.

WOLF, M.J.P. AND PERRON, B. 2003. The Video Game Theory Reader. Routledge.

WRAUGHK Deep Sea Wraughk, Retrieved November 14, 2012 from http://wraughk.com/deepsea/.

YIANNIS 2012. Talktome: adaptive/dynamic audio prototyping for video games Tumblr, Retrieved November 26,

2012 from http://www.gameaudiomiddleware.tumblr.com/.

YOUNG, D.M. 2012. Adaptive Game Music: The Evolution and Future of Dynamic Music Systems in Video

Games. Bachelor Thesis, Ohio University, USA.

108

A. Tool Comparison Table

Yes Yes Yes

PC, Mac,

Nintendo 3DS,

PlayStation®3,

PlayStation® Vita,

Wii, Wii U, Xbox

360

Yes? (On

contact)
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ?

Just announced

as easy to

integrate

Yes Yes Yes

Windows, Linux,

Mac, PS3, PSP,

Vita, 360, Wii,

Wii U, iPhone,

iPad, Android,

Google Native

Client

No Yes Yes Yes Yes Yes (HRTF) Yes Yes Yes Yes Yes Yes Yes 16

CryEngine, Unity,

UE3, BigWorld,

Vision Engine,

Scaleform

Yes, but

cumbersome
No No PC, Xbox 360 No

Yes (only the two

supported)
Yes (limited) No No Yes No Yes Yes No ? Yes No ? XNA

Yes ? No PC, ? ? ? Yes ? Yes No No Yes ? No No No ? No XXXX ?

? Yes ?

Windows, Linux,

Wii, Wii U, 3DS,

360, PSP, Vita,

PS2, PS3, Mac,

iPhone, Android

Yes Yes ? Yes ? Yes with effects, yes ? ? Yes ? No Yes ? ?

? Yes ?

Windows, Wii U,

Vita, PS3, Flash,

360, Android,

iOS, Mac

No (Udk, UE3

has but is

paid)

Yes Yes ? Yes Yes ? ? ? ? ? Yes Yes Yes Unreal Engine

Yes Yes Yes
PC, Xbox 360,

PS3, ?
No? Yes Yes Yes Yes Yes ? Yes ? Yes ? Yes Yes ? CryEngine

No No No

iOS, Android,

Blackberry OS,

bada, Windows,

Mac, LG Smart TV

Yes Yes No No No ? No No No ? ? Yes Yes 24 XXXX

No No No
PC, Android ?

Mac ?
Yes ? No No No

Yes (one of them,

HRTF)

Yes (through EFX

extension)
No No ? ?

Some

versions yes..

Yes, with

speaker

assignment

? XXXX

No No No

Windows, Be,

Mac, Linux, and

many many more

(but not mobile)

Yes ? No No No No No No No ? No Yes Yes Infinite XXXX

No No No PC only? ? No No No No Yes No No No ? ? Yes Yes. ? XXXX

No No No
Win, iOS,

Android, Linux
? No No No No Yes ? No No Yes

Not sure,

think not

Free for non

commercial

use

Yes. Speaker

assignment

Multi-

channel
XXXX

No No No
Windows, Linux,

Mac
Yes Yes No No No Yes No? No No Yes ? Yes ? ? XXXX

No No No

Iphone, Android,

Bada, Symbian,

NaCl, Win32,

MacOSX, Linux

With source

code
? No No No No? No? No? No? No? No? Yes Yes unlimited XXXX

No No No

Windows, Linux,

Mac, iOS,

Android

Yes Yes No No No ? No No No Yes No? Yes Yes ? XXXX

No No No

Windows,

Macintosh OS X,

and Unix

Yes Yes? No No No No? No No No Yes? ? Yes ? ? XXXX

No No No Windows, Linux Yes ? ? ? ? ? ? ? ? ? ? Yes ? ? XXXX

No No No
Windows, Linux,

Mac, iOS
Yes No ? Yes Yes Yes Yes ? Yes? Yes ? Yes Yes ? XXXX

Programatically yes Yes Programatically yes

Almost any

platform

available

Not

applicable?

Yes (at least the

modules, not sure

about integration)

Yes Yes No through patches? No Yes ? Yes ? Yes Yes ? XXXX

Programatically yes Yes Programatically yes Windows, Mac, ? No

Yes (at least the

modules, not sure

about integration)

Yes Yes No
trhough

routines?
No Yes ? Yes ? No Yes ? XXXX

? ? Yes Windows, Mac No

Yes (at least the

modules, not sure

about integration)

? ? No No No ? ? Yes ? No Yes ? XXXX

? ? Programatically?
Windows, Mac,

Linux
? No ? Yes No

HRTF, among

others
? ? ? Yes ? Yes Yes ?? XXXX

Audio API, Libs and Frameworks

XACT

Graphical Programming & Procedural Tools

Dynamic Audio

Controls

(RTPCs, Swtich,

states,etc)

Game-Driven

Musical Scores

(Interactive)

Define

environmental audio

propagation and

effects

Platforms

supported

Access to

engine's

source code

DSP Effects

PortAudio

Kowalski

Audiere

Wwise

FMOD

Unreal 3

Soundsystem

CryEngine Audio

Marmelade Audio

2D/3D

Positioning and

Sound

Propagation

Number of

channels

Parallel

development

(platform and

language)

Sound Playback

Behaviours

Hierarchical

audio structures

Event

Creation

system

Multi-

Listener

Support

Occlusion /

Obstruction

Support

Sound Playback

Prioritization

Free for non

profiting-

usage

Mixing and

output

channels

AudioMulch

Clam

Monitor and

profile audio in

real-time or in

Sandbox

Environment

Hekkus

SoundSystem

JUCE

PureData

Max/MSP

OpenAL

SDL

SFML

BASS

irrKlang

Psai

Miles Soundsystem

Videogame Audio Middleware

Game Engines

with Integration

prepared

109

B. Gantt Diagram

Septem
ber

October
Novem

ber
Decem

ber
January

February
M

arch
April

June
July

Tasks
Sub-Tasks

SoA Report

Soundscape Theory

Audio Tools

Related W
ork

Detailed Proposal

Problem definition

Assumptions and milestones

Initial Design

Goals and requirements

Architectural drivers

Solution Specification

Interm
ediate

Report

Prototyping

Language and Techniques

specification
Audio engine basic

functions
Integration with game

engine

Techniques implementation

Refinements based on

evaluation

Evaluation

Evaluation Performance

Results analysis

Conclusion
Statem

ent of

Learning

Design

Science

Research

Awareness of

problem

Suggestion

Evaluation

Developm
ent

M
ay

110

C. Initial Composition Plan

Pre-Filtering Pre-Filtering Ambiance Foley SFX Music Dialogue

Thoughts

Agente que origina

pensamento?

Tipologia?

(Pensamento que

isola outros sons, ou

pensamento que

combina com música)

(Se agente origina é o

PC)Diminuição de volume

e/ou LPF

(Senão) apenas atenuação

(Se agente origina é o

PC) Diminuição de

volume do SFX; LPF;

(Tipologia)Certos SFX

podem estar presos a

um certo pensamento,

em certos momentos

(Tipologia)Volume

da musica pode ou

não ser diminuído

(depende do

impacto emocional

que desejado)

(Se agente origina é o PC)Eco e/ou Reverb nos

pensamentos, diminuição de volume e LPF no

restante diálogos.

Sound Effects

Agentes envolvidos?

Características do

som?

Tipologia? (Ouch!,

Achievement,

Iminent Death, No

Can Do, Failure)

(Características do

som?)Verificar

frequência para ter

certeza que não se

tapam?

Poderia ser intercalado

com outros que

estejam a ocorrer?

Mudar o Pitch(mas

isso pode mudar o seu

significado e impacto).

(Tipologia)Se SFX

for causado por

uma acção

importante ou com

um certo

significado, é

acompanhada por

uma breve música

(Contextual Music

do Valter? (:) que

teria de ser mixada

juntamente com a

musica a tocar

SFX ocorre mais baixo ou ocultado por um filtro

Silence

Que

agente/fonte/layer

silenciar?

Tipologia? (período

de silenciamento?)

O Ambiance pode ou não ser

cortado, sendo que muitas

vezes é limitado a um

mínimo, para acentuar

impacto do efeito desejado

Foley não costuma ser

tocado, pois ajuda a dar

enfâse ao "Silence"

Pode dar enfÂse, mas

apenas se o SFX tiver o

mesmo papel que o

Foley na cena em

questão

Em muitas vezes a

música não é

usada, mas

também pode ser a

única camada activa

se retirarmos todas

as outras

Algum efeito talvez? (DSP)?

Awareness

Agentes

envolvidos?(quem

ouve, quem foi

ouvido)

Características do

som ouvido?

Tipologia?

= = = =

(Tipologia)Por instantes, tudo pode ser

dminuído/ofuscado para que seja perceptível o

novo som que entrou no horizonte acústico do

jogador;

(Tipologia)Outras vezes é muito suave só para que

o seu aparecimento na Soundscape e

desaparecimento possa ocorrer sem causar grande

impacto ou quebra na concentração do jogador,

sendo que o seu aparecimento normalmente é

sinal de um determinado estado, que depois deixa

de existir conforme o som desaparece;

(Tipologia)Pode ser intervalada

Ambiance

Características do

som?

Tipologia?

(Tipologia)É preciso verificar

se é apenas um acréscimo de

sons ou modificação do

ambiance já existente, ou se é

um ambiance totalmente

novo;

e é preciso fazer um fade

in/out gradual, que pode ser

regulado autónomamente, ou

de acordo com movimentação

do jogador

(Tipologia)Normalmente o diálogo tem primazia

sobre tudo, mas o ambiance pode ser usado para

enfatizar pedaços de diálogo, como no Patapon

Dialogue
Agentes envolvidos?

Tipologia?

(Tipologia)É normalmente

entregue mais alto que as

outras layers, mas existem

certos usos como conversas

outdoor em andamento que

se tornam mais credíveis com

uma diferença menor entre

diálogo e ambiance (ex: red

dead redemption Valter)

Cuidado para não

ofuscar diálogo

Cuidado para não

ofuscar diálogo

(Tipologia)Música,

mesmo quando

mais baixa, pode

dar um toque único

ao diálogo e

fornecer-lhe alguns

pontos estéticos,

que sem música ou

com outra, seriam

totalmente

diferentes

Foley
Agente envolvido?

Tipologia?

Footsteps

Agentes envolvidos?

Tipologia?(Correr,

andar, superfície)

(Agente+Tipologia)Usually

more strong than the real life

perception

= = = =

Music

Características do

som? Tipologia?

Tipologia?

(Características do som?

Tipologia?)Normalmente a

música tem prioridade sobre

o ambiance, mas se for

conseguida uma

interligação/metamorfose

entre a música e o ambiance,

pode ser conseguido um

impacto extraordinário. Para

tal, normalmente é usado

algum jogo de dynamics

(volume) para criar uma

"dança" entre as duas

camadas

(Tipologia)Por vezes,

esta layer é ignorada

para que a música

possa envolver em

pleno o jogador numa

determinada situação

(Tipologia)Por vezes,

esta layer é ignorada

para que a música

possa envolver em

pleno o jogador numa

determinada situação

(Tipologia)

Transições devem

ser o mais suave

possíveis

(Tipologia) Muitas vezes usadas para enfatizar o

sentimento que se quer transmitir com um

determinado diálogo ou frase

E

v

e

n

t

o

s

Composition plan

111

D. Dynamic Enhancement of Videogame Soundscapes

Available in the annexed file AM13_1.pdf

112

E. The Blindfold soundscape game: a case for participation

centered gameplay experience design and evaluation

Available in the annexed file AM13_2.pdf

113

F. API Documentation

class Context

 {

 //Properties

 public string Name { get; set; }

 public string Type { get; set; }

 public ArrayList Elements { get; set; }

 public bool Exclusive { get; set; }

 //Constructor

 public Context(string name, string type, ArrayList elements, bool exclusive)

 //Methods

 public void initiateContext()

 public void setContext()

 public static void stopContext()

 }

}

// Support Class

class Utils

 {

 public static string doubleArrayToOscString(double[] position)

 }

class Listener

 {

114

 //Properties

 private double[] position;

 private double[] direction;

 //Constructor

 public Listener(double x, double y, double z)

 public Listener(double[] position)

 //Methods

 public void updateListenerPosition()

 public void updateListenerPosition(double[] position)

 public void updateListenerPosition(double x, double y, double z)

 public void updateListenerDirection(double[] direction)

 public void printListener()

}

class Pattern

 {

 //Properties

 public string Name { get; set; }

 public string Type { get; set; }

 public bool Active { get; set; }

 //Constructor

 public Pattern(string name, string type)

115

 //Methods

 public void InitiatePattern()

 public void PlayPattern()

 public void StopPattern()

 }

class Source

 {

 //Properties

 public string Name { get; set; }

 public string Layer { get; set; }

 public double[] Position { get; set; }

 public string Pattern { get; set; }

 public string Sound { get; set; }

 public bool Playing { get; set; }

 public string Agent { get; set; }

 public bool Loop { get; set; }

 //Constructor

 public Source(string name, string layer, string agent = null, double[] position = null,

string pattern = null, string sound = null, bool loop = true)

 //Methods

 public void changeSourcePosition(double[] position)

 public void changeSourceSound(string sound)

 public void changeSourceLoop(bool loop)

116

 public void initiateSource()

 public void playSource()

 public void stopSource(bool pause)

 }

