

A Language for Game Design and

Coreography

Nuno Barreto
nbarreto@student.dei.uc.pt

Professor Adviser:
Licínio Roque
Date: July 3rd of 2013

Masters in Informatics Engineering

Thesis/Internship
Final Report

A Language for Game Design and Choreography

 i

Abstract

This final report details a proposal approach to model concurrent actors’ behaviors and
choreographies in the context of video games and simulations, using Petri Nets as a base for
its modeling language. Petri Nets have already been used to model some video-game aspects
such as game design because they provide a simple and easy way to learn to model
interactive systems as well as a means of model validation, through simulation.

This proposal is complemented by an architectural conceptualization that allows the run-
time editing of said language, alongside its execution on a pre-existing game engine. As such,
it involves a visual editor application, a Petri Net simulation/execution mechanism and an
interoperable communication structure that permits linking the editor, and execution
module, with an arbitrary game, or simulation, engine.

To validate this proposal, a proof of concept game prototype and usability tests were
conducted issuing positive results.

Keywords

“Complex Systems” “Behavior Modeling” “Game Design” “Simulation” “Software
Architecture” “Petri Nets” “Visual Language”

A Language for Game Design and Choreography

 ii

Table of Tables

Table 1 SDL Specs .. 3

Table 2 XNA Specs ... 3

Table 3 Flash Specs ... 4

Table 4 HTML5 Specs .. 5

Table 5 Scratch Specs .. 5

Table 6 Havok Behavior Specs .. 6

Table 7 Box2D Specs .. 6

Table 8 AgentSheets Specs ... 7

Table 9 ToonTalk Specs ... 7

Table 10 UDK Specs ... 8

Table 11 Ogre Specs .. 9

Table 12 Flixel Specs ... 9

Table 13 Unity Specs ... 10

Table 14 CryEngine Specs .. 11

Table 15 RPG Maker XP Specs ... 11

Table 16 Kodu Specs .. 12

Table 17 Stencyl Specs .. 12

Table 18 Little Big Planet level editor Specs .. 13

Table 19 Petri Net Editor Comparison .. 19

Table 20 MMO Architecture comparison .. 22

Table 21 Network Middleware comparison .. 23

Table 22 Language Grammar ... 29

Table 23 Average Resource Usage per Test Scenario .. 60

Table 24 Demographic information of the test subjects ... 78

Table 25 Time per Task per User .. 78

Table 26 Difficulty per Task per User .. 79

A Language for Game Design and Choreography

 iii

Table of Figures

Figure 1 A simple Petri Net ... 17

Figure 2 Design Science Research steps ... 24

Figure 3 Project Timeline ... 25

Figure 4 Prototype Iterations ... 26

Figure 5 Project's Milestones ... 27

Figure 6 Effective Work Schedule .. 28

Figure 7 Representation of a Game Model according to the language’s spectification 30

Figure 8 Mockup of the petri net editor's GUI ... 31

Figure 9 Communication among Editor components ... 32

Figure 10 Petri Net Editor Class Diagram. .. 33

Figure 11 Petri Net Engine Architecture Diagram ... 34

Figure 12 Petri Net Engine Class Diagram .. 35

Figure 13 Communication between Animator and Petri Net Engine 36

Figure 14 Communication between Game Context and Petri Net Engine 36

Figure 15 Communication between Input and Petri Net Engine .. 37

Figure 16 Communication between Pathfinder and Petri Net Engine 37

Figure 17 Communication between Renderer and Petri Net Engine .. 38

Figure 18 Communication between Sound and Petri Net Engine ... 38

Figure 19 Deployment Diagram of the Architecture ... 40

Figure 20 Static Perspective on the Architecture of the Application. .. 40

Figure 21 Messages' XML syntax in XSD .. 41

Figure 22 The system in a P2P environment ... 42

Figure 23 The system in a client/server environment .. 42

Figure 24 System startup sequence diagram .. 43

Figure 25 Sending a token from Unity to Input Place sequence diagram 44

Figure 26 Sending a token from Output Place to Input Place sequence diagram 44

Figure 27 Invoking a script in Unity sequence diagram ... 45

Figure 28 Update the editor with available channels/scripts sequence diagram 46

Figure 29 Orphibs screenshot .. 47

Figure 30 Orphibs' behavior model during the simulation’s execution 47

A Language for Game Design and Choreography

 iv

Figure 31 Screenshot of the test game “Spheres of Steel” as created by one of the subjects 52

Figure 32 Total Time per User .. 53

Figure 33 Average Duration per Task .. 53

Figure 34 Average Difficulty per User .. 54

Figure 35 Average Difficulty per Task.. 54

Figure 36 Frequency of issue types ... 55

Figure 37 Issue Frequency by Task ... 56

Figure 38 Issue Frequency by User ... 56

Figure 39 Percentage of errors found per task .. 56

Figure 40 Percentage of errors found per user .. 56

Figure 41 Relative frequency of issue occurrence ... 57

Figure 42 Priority Level per Issue ... 58

Figure 43 Screenshot of the editor interface (post error correction) ... 59

A Language for Game Design and Choreography

 v

Table of Terms

Term Definition

AAA Games
Video-games developed by a large studio (with a team bigger than 100 people), usually funded by a millionaire
budget.

Actor Game object capable of expressing behaviors (see Behavior).

Actor Archetype Class of actors that have a well-defined collection of behaviors.

Actuator Type of motor used to move or control a system.

Agile
Development

Set of software development methodologies built upon iterative and incremental processes.

API Application Programming Interface. Source code based library which includes functions and data structures.

Atomic action
One or more actions that must be completed all at once, otherwise they are cancelled. Therefore, on a macro-level
they count as one.

Behavior Set of actions made by an entity.

Behavior Model Data structure detailing how a behavior functions.

Bipartite graph
Graph whose vertices can be divided into two independent disjoint sets in which edges link a vertex from one set to
another in the opposite set.

Cache An in-memory representation of a hardware cache where items are stored for later access.

Choreography Visual and audio manifestation of behaviors (see Behavior).

Code Polish The act of algorithm optimization and software debugging (see Software Debugging).

Complex Systems A science field that studies how systems function as a whole given their parts.

Crowd Behavior Group of actors behaving as if they were one (see Behavior).

Design Space A collection of all possible design choices for a given element.

Development
Toolkit

A group of assets and scripts used to make games of a certain genre (see Script).

Directed graph A graph whose edges have an associated direction.

Framework A platform that can be used to develop applications. It may contain APIs (see API).

Game Engine A system that abstracts machine specific tasks in order to simplify the creation of a game.

Game Mechanics One or more rules that define how gameplay, of a particular game, works (see Gameplay).

Game Middleware Software that provides a set of functions, above the OS layer, to simplify the act of building game engines.

Gameplay The way a player interacts with a game.

Genetic
Programming Family of algorithms inspired in the biological phenomenon known as evolution.

GUI Graphical User Interface. An interface which contains visual elements. (see Interface).

Interface A software bridge between the user and the application.

Lag Slow response of a computer application caused by a faulty internet connection or lack of computational power.

Language
Semantic

 The meaning, in terms of computation, of a language construct.

Language Syntax The collection of rules that define how the language’s symbols are displayed.

MMO Massive Multiplayer Online. Online games/simulations containing a large number of simultaneous players.

Module A part of an application with well-defined responsibilities and services.

Path Finding Family of algorithms that aim to find the shortest path between two points.

A Language for Game Design and Choreography

 vi

Program Set of steps that transforms given inputs into outputs.

Script A fraction of software code with a set of commands or configurations.

Sensor A mechanism that measures a given aspect.

SOAP Simple Object Access Protocol. A network protocol for interoperable information exchange.

Software
Architecture

The high-level specification of how the software, as a system, works: how its modules communicate with each other
and how the data flows. (see Module).

Software Artifact Software, or a software part, resulting from the development process.

Software
Debugging

The act of finding and reducing software defects. (see Software Defect).

Software Defect Part of an application that does not function as intended.

Stage The game world in which actors can interact and navigate (see Actor).

Visual Language Programming language that relies on manipulation of graphical elements instead of writing textual commands.

A Language for Game Design and Choreography

 vii

Index

1. Introduction ... 1

2. State of the Art .. 2

2.1 Video-game Software Development Approaches ...2

2.1.1 Game Engine Definition .. 2

2.1.2 Approaches to Game Development .. 2

2.1.2.1 Coding From “Scratch” .. 2

2.1.2.2 Using a Preexisting Game Engine .. 2

2.2 Development Tools ..3

2.3 Engines ...8

2.4 Approaches to Define Computational Game Behavior .. 14

2.4.1 Manual Definition of Game Behavior Rules ... 14

2.4.2 Procedural Content Generation ... 15

2.5 Usage of Petri Nets in Game Specifications .. 16

2.5.1 Petri Net Definition ... 16

2.5.1.1 Graphical Definition .. 17

2.5.1.2 Mathematical Definition .. 17

2.5.2 Petri Net Models and Editors ... 17

2.5.2.1 Data Structures .. 17

2.5.2.2 Editors .. 18

2.6 MMO Architectures and Network Middleware .. 20

2.6.1 MMO Architectures ... 20

2.6.1.1 Peer-to-Peer ... 20

2.6.1.2 Client/Server ... 20

2.6.1.3 Hybrid ... 21

2.6.1.4 Comparison .. 21

2.6.2 Network Middleware .. 23

3. Methodology .. 24

3.1 Objectives .. 24

3.2 Design Science Research ... 24

3.3 Work Plan .. 25

3.3.1 Activities ... 25

3.4 Milestones .. 27

3.5 Effective Work Schedule .. 28

A Language for Game Design and Choreography

 viii

4. System Architecture Proposal ... 29

4.1 Language Functional Specification .. 29

4.1.1 Syntax .. 29

4.1.2 Semantics .. 29

4.2 Proposed Design for the Petri Net Editor ... 30

4.2.1 Editor Prototype ... 31

4.2.2 Editor Architecture Proposal .. 32

4.3 Petri Net’s Simulation and Interpretation Engine .. 34

4.3.1 Animator Module.. 35

4.3.2 Game Context Module .. 36

4.3.3 Input Module ... 36

4.3.4 Pathfinder Module .. 37

4.3.5 Render Module .. 37

4.3.6 Sound Engine Module ... 38

4.4 Features .. 38

4.5 Quality Attributes ... 39

5. Implementation ... 40

5.1 System Overview .. 40

5.1.1 Petri Net Interpretation Overview .. 43

5.1.2 Notable Differences from the Original Architecture Proposal .. 46

5.1.3 Proof of Concept .. 46

5.2 Technology Choices .. 48

5.3 Development Activities ... 49

5.4 Work Management and Prioritization .. 49

5.5 Implemented Features ... 49

6. Evaluation .. 51

6.1 Usability Tests ... 51

6.1.1 Test Setup ... 51

6.1.2 Results and Analysis ... 53

6.1.2.1 User performance ... 53

6.1.2.2 Usability Issues .. 54

6.1.3 Error Corrections ... 57

6.2 Performance Tests ... 59

6.2.1 Test Setup ... 59

A Language for Game Design and Choreography

 ix

6.2.2 Results and Analysis ... 60

7. Further Work ... 62

7.1 Critical Aspects to Correct.. 62

7.2 Future Developments .. 62

8. Conclusions .. 63

References ... 64

A. Work Management Examples ... 69

Work Backlog ... 69

Defect List ... 69

B. Design Document ... 70

C. Task-List ... 73

D. Issue Compilation ... 75

E. Raw data from Usability tests .. 78

F. User by Problem Matrix ... 80

G. Task by Problem Matrix ... 81

H. Priority leveled issues with color scaled values ... 82

A Language for Game Design and Choreography

1

1. Introduction

Video-game development is a multidisciplinary area which can encompass diverse skill set
such as game design, programming, sound engineering, 3D modeling or even 2D
illustration. From the aforementioned disciplines, programming has an important role in the
development as it translates the game’s concept, as envisioned by the game designer and
interpreted by the artists, into an interactive multimedia artifact known as a video-game.

Since game programming is what contributes to the creation of aspects including how game
objects - referred from now on as actors - are modeled in an environment and, likewise, how
they interact with each other and with their environment, it becomes necessary to translate
every possible course of action into the actor’s code which can be an error-prone task.

With the rise in project complexity in AAA games and with the increased accessibility of
tools for small independent teams to create games, simplifying the creation of game code
provides an added value for developers in terms of code maintenance and polishing, giving
them more time to perfect the game rather than trying to fix its code.

This document proposes a solution to simplify the process of game programming which
involves the creation of a visual language based on Petri Nets. More specifically, this
language is intended to model concurrent actors’ behaviors and choreographies among the
game world, referred to as stage. Therefore, the project underlying this document is
composed of the language’s specification, a visual editor where petri nets can be created and
edited and an interpretation engine that translates modeled behaviors into in-game actions
on an arbitrary game, or simulation engine through a communication system.

This solution is not only interesting for video-games but also simulations, more specifically,
that of complex systems. The proposed tool offers a new approach to model actor behaviors
in both video-games and simulations.

Petri Nets have been proven accessible and easy to learn by non-programmers and offer an
economical way of specifying behaviors in complex systems. As a design tool, they give the
advantage of a simple visual language that promotes agile modeling and testing of complex
interactive systems such as video-games.

The remainder of this report is structured as follows: Section 2 will depict the state of the art
regarding the usage o Petri Nets in modeling video-game related specifications, Petri Net
editors, approaches to develop video games, ways to define actor behaviors and
choreography, and distributed architectures that support Massive Multiplayer Online
(referred to as MMO) games. Section 3 will state the document’s overall research
methodology and work plan. Section 4 will display, and explain, the proposed architecture
for the project’s systems. Section 5, will describe the application’s implementation and its
consequent revision of the architectural proposal. Section 6, will explain the evaluation used
and its consequent analysis. Section 7 will detail the future work. Finally, Section 8 will
conclude the dissertation and reveal its lessons learned.

As appendixes, this document also includes an example of a work backlog and defect list
(A), the design doc and task-list used for the usability tests (B and C respectively), the tests’
recorded issue compilation (D), the raw data gathered from the usability tests (E), User-by-
Problem (F) and Task-by-Problem (G) matrices, also collected from the tests, and a table
detailing color scaled issues according to their priority levels (H).

A Language for Game Design and Choreography

2

2. State of the Art

2.1 Video-game Software Development Approaches

2.1.1 Game Engine Definition

According to Ward (2008), the definition of a game engine is a system whose purpose is to
abstract common (and sometimes platform dependent) computational game related tasks
that include rendering, physics and input from the game’s specific logic. Engines exist to
allow developers to focus on their game rather than recreating said tasks.

Ward (2008) also states the existence of three types of game engines: the low level engines
(composed of libraries and middleware), mid-level engines and high level engines - He
differentiates the two latter by the amount of code required in order to create a game, being
none in the case of high level engines.

In this report, I will refer to low level engines as libraries and game middleware and mid-
level and high-level engines as game engines.

2.1.2 Approaches to Game Development

During the course of years, the way video-game software is created has evolved. No longer
are programmers required to build the game’s software components from scratch as they
were until the late 80s - as explained in Ward (2008).

When developing video-game software, developers have mainly two options: they either
build their own game engine or they use a preexisting engine as the bottom layer for their
game logic code. Both ways usually require that developers have some programming
knowledge or at least a programmer on their team.

2.1.2.1 Coding From “Scratch”

Although not literally from “scratch”, this approach requires developers to build their own
engine which increases the effort in making a video-game. In it, developers can opt to create
their engine by building its own components such as physics, AI, rendering and input
management or integrate their code with existing libraries, often called “Game Middleware”,
which contain common routines for said components. This usually gives more
implementation freedom than using a pre-made engine, as the developer can code exactly
what he wants, but it may require some additional knowledge (algebra, physics, etc...)
depending on how low level the implementation is going to be. Another disadvantage is
“integration hell”. This is caused when “Game Middleware” has faulty documentation, is
poorly coded, or it is simply not suitable to be integrated with other components or
middleware.

2.1.2.2 Using a Preexisting Game Engine

Most of the time, due to time constraints or lack of skillsets, building an engine from the
ground up is not a viable option, so using a preexisting one provides a better approach on
such cases. Nevertheless, this method of building games has two main disadvantages: some
engines are too expensive for independent developers and others are well suited for
particular types of games, requiring an additional effort to make them support other genres.

A Language for Game Design and Choreography

3

Most engines still require some programming knowledge (as will be described in subsection
2.2) in order to be used.

In this category of game development approaches, lies modding tools. Modding tools are
applications that allow modifying several aspects of an existing game (hence the name
“modding”). These tools are usually packed with games and can be manipulated in a similar
manner as game engines are. Therefore, the usage of modding tools can be considered as
using a specialized engine.

2.2 Development Tools

Widely used on Linux ported and academic games, SDL (Simple DirectMedia Layer) is a
library created in C that provides a cross platform low level access to computer components
such as audio, keyboard, mouse, network and 3D hardware through Open GL (a cross
platform library also written in C but, with bindings for other languages, that gives access to
the graphics card in order to render 2D and 3D images). This library, much like Open GL,
supports bindings for a wide variety of languages such as Java, ADA or Lisp.

Table 1 SDL Specs

Characteristics Explanation

Purpose Multimedia C/C++ low-level access library.

Key Concepts Functional programming and low level resource management (memory, etc...).

Platform Linux, Windows, BeOS, Mac OS X, FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX

System Requirements Any system, as long as its graphics card supports OpenGL.

Languages C, C++, Ada, C#, D, Eiffel, Erlang, Euphoria, Go, Guile, Haskell, Java, Lisp, Lua, ML, Objective C, Pascal,
Perl, PHP, Pike, Pliant, Python, Ruby, Smalltalk and Tcl.

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Any game genre.

Licensing Model The library can be used in commercial applications as long as it is access through dynamic link.

Behavior Modeling Behaviors can be freely coded in any way as the library does not support an API for behavior modeling.

Multiplayer Provides an external library called SDL_net to build for networking, but it can be integrated with any other
library.

Microsoft's XNA Game Studio is a framework used to create video-games for Microsoft’s
platforms which encompass Xbox, Windows and Windows Phone. It is, however, mainly
employed to create Xbox games. XNA was written on top of Direct X (Microsoft's
collection of APIs for multimedia development), and uses C# .NET as its native language.
Similar to SDL, it contains access to network, input, audio and image rendering.

Table 2 XNA Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Object Oriented Programming.

Platform Windows, Xbox and Windows Phone.

A Language for Game Design and Choreography

4

System Requirements Windows XP or later; Graphics card that supports Shader Model 1.1 and DirectX 9.0c.

Languages C#.

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Any 2D and 3D game genre.

Licensing Model Free for commercial and non-commercial PC games as long as they do not use GFWL API. Using GFWL API
for commercial games requires a special agreement with Microsoft.
Xbox commercial games requires that developers join the App Hub and pay an annual fee of 99$ as well as a
30% of revenue for Microsoft.

Behavior Modeling Behavior can be coded.

Multiplayer XNA contains GFWL network API that can be used. Other libraries such as .Net framework network API can
also be used.

Regarding browser based games, the Flash technology is still a popular choice. This
technology allows to easily create vector images, import images and videos and create
animations using key-frames, however to create more complex systems such as video-games,
one must still program using Flash's integrated language, ActionScript, which contains
functionalities similar to those found in SDL and XNA.

Table 3 Flash Specs

Characteristics Explanation

Purpose Multimedia authoring tool.

Key Concepts The screen in flash is called a stage and the entities are seen as actors that interact on said stage.

Developers must be familiar with grouping objects through parenting.

Developers must be familiar with animations created with the use of key frames.

Platform PC, Mac, Android and some Tablets.

System Requirements Intel Pentium 4; Windows® XP with SP3 or later or Mac OS X v10.6.8; 2GB of RAM; 3.5/4(for Mac) GB
HDD space; A Monitor that supports 1024x768 screen resolution; JRE 1.6; QuickTime 7.6.6; Graphics card
with at least 64MB of VRAM compatible with DirectX 9.

Languages ActionScript.

Visual Editor
Characteristics

The editor contains a timeline where developers can create animations or add events.

Developers can drag and drop objects onto the stage.

Editing some of the actors' parameters (mostly visual parameters such as size, etc...) can be done through
textboxes and combo boxes.

Game Genres Any 2D or 3D game genre.

Licensing Model The software costs 699$ and can be used to create commercial applications.

Behavior Modeling Behavior can be coded.

Multiplayer ActionScript provides a network socket-based API and additionally Adobe Flex can be acquired as it also
provides a network API.

A rising substitute to the aforementioned technology is HTML5, an updated version of
HTML, supporting, for instance, playing videos and rendering vector graphics. Akin to
Flash, building video-games using HTML5 relies on external languages such as Javascript.

A Language for Game Design and Choreography

5

Table 4 HTML5 Specs

Characteristics Explanation

Purpose Language for presenting structured WWW content.

Key Concepts Developers must be familiar with tag based languages.

Platform Any browser.

System Requirements Any computer that supports a browser.

Languages Javascript and PHP.

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Any 2D and 3D game genre.

Licensing Model Free to use for commercial and non-commercial applications.

Behavior Modeling Behaviors can be coded.

Multiplayer Multiplayer is achieved through APIs such as Websocket, ExpressJS, NodeJS, etc...

Another Multimedia tool that is widely used for 2D games is Scratch. But unlike Flash,
Scratch contains a visual language (Resnick, et al., 2009). This language works by stacking
blocks of instructions to create a program sequence. Instruction blocks contain written
commands, similar to that of textual programing languages, comprehending, for example,
“if” and “for”. Each block has arguments that can be filled in the form of combo or text
boxes. Not all blocks stack together; instead they work in a manner analogous to puzzle
pieces. Scratch, unlike most tools presented throughout this document, is oriented towards
teaching computation and mathematical concepts as well as acting as a collaborative
platform for developers to create projects cooperatively (or “remixing” projects as defined
by Scratch authors).

Table 5 Scratch Specs

Characteristics Explanation

Purpose Multimedia and programming learning tool.

Key Concepts Functional programming based on command block stacking.

The screen in scratch is called a stage and the entities are seen as actors that interact on that stage.

Platform Windows, Mac and Linux.

System Requirements Display supporting 16 bit color; Windows 2000 or later, Mac OSX 10.4 or later, Ubuntu 9.04 or later; 120MB
of HDD space; speakers and microphone.

Languages Scratch.

Visual Editor
Characteristics

The editor contains a stage where developers can drag and drop “actors”. By clicking on the actors or the stage
itself, developers can drag-and-drop predefined command blocks and stack them to form program sequences
that model stage and actor behaviors.

Game Genres Any 2D genre.

Licensing Model The software is free to use.

Behavior Modeling Behaviors can be coded. It contains predefined sensors, making it easy to develop reactive agents.

Multiplayer Contains an API for network called Scratch connections.

There are many tools that can be used in order to avoid coding every game engine
component. One of the most popular is the collection of tools provided in Havok Behavior.

A Language for Game Design and Choreography

6

These tools add computations for physics, AI and animations. They can be used as APIs but
they also allow some visual state-machine editing.

Table 6 Havok Behavior Specs

Characteristics Explanation

Purpose Dynamic character behavior development tool.

Key Concepts Developers must be familiar with state machines.

Platform PC and Consoles.

System Requirements Not found.

Languages C++, Lua and Havok Script.

Visual Editor
Characteristics

The visual editor contains a viewport where developers can observe the animation results. There is also a
window where developers can create their state machines by linking squares (states) through arcs. Editing
parameters is done through textboxes and checkboxes.

Game Genres Any 3D Game genre.

Licensing Model Havok must be contacted prior to acquiring licensing as well as the software.

Behavior Modeling Developers can organize entities' animations in states (each state containing an animation) using its visual
editor. By adding events and linking states through arcs, developers can create state machines that model how
the entity animates given a particular situation.

Multiplayer Not applicable.

Box2D is a 2D physics API for Javascript, with bindings for other languages. It provides
simulation for constrained rigid bodies by acting forces upon them. Compound bodies can
be built by linking other, simpler, bodies. This framework also has the possibility to simulate
gravity, friction, restitution and collision detection.

Table 7 Box2D Specs

Characteristics Explanation

Purpose 2D Physics Engine.

Key Concepts Object Oriented Programming.

Basic knowledge in rigid bodies, torque, impulse and forces.

Platform Windows, Mac, Flash and Linux.

System Requirements A system running the supported platforms.

Languages C++, Flash, Java, C# and Python.

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Not applicable.

Licensing Model The software is free to use for non-commercial and commercial applications.

Behavior Modeling Physics behavior can be coded using the provided API.

Multiplayer Not applicable.

AgentSheets is a visual design environment developed for the purpose of programming
dynamic agents in simulations and other applications (Repenning & Citrin, 1993). The way
this environment works is based on spreadsheet applications, where cells can contain

A Language for Game Design and Choreography

7

formulas that affect neighboring cells. It contains a grid called worksheet where agents can
be displayed among its cells (Rausch, 1998). Here, agents can affect, or be affected by,
neighbor agents. Behaviors are modeled through rule based systems using the provided
language, AgentTalk. AgentTalk is similar to Scratch in the way that it is composed of
instruction blocks that can be dragged and dropped. Parameters can be altered through
combo boxes and other GUI components.

Table 8 AgentSheets Specs

Characteristics Explanation

Purpose Tool for the creation of agent-based games and simulations as well as a computer science learning tool.

Key Concepts Developers must be familiar with formula creation in a spreadsheet.

Developers must be familiar with rule based programming.

Content addition through brush-painting.

Platform Windows and Mac

System Requirements A system running the supported platforms.

Languages AgentTalk.

Visual Editor
Characteristics

The editor contains a grid where developers can drag and drop agents and other objects. There is also a
window containing a tile-set of said agents or objects.

Game Genres Any 2D genre.

Licensing Model The software is available for commercial use for 97€. There is also a free 3-trial available upon user registration.

Behavior Modeling Behaviors can be coded.

Multiplayer Not applicable.

Finally, the last tool presented in this subsection is ToonTalk (Kahn, 1995, 1996a, 1996b,
2000, 2006). ToonTalk offers a different way to model agent behaviors, and overall system
programming, than any of the tools mentioned in this subsection. It is an application aimed
for younger children to learn computational concepts through the use of metaphors and
examples. ToonTalk works like a sandbox video-game where the player’s avatar lives in a
city in which he is prompted to solve particular problems through the construction of
programs. As was mentioned earlier, ToonTalk relies on metaphors to illustrate computer
science concepts: the city, the avatar lives in, represents a computation; houses represent
agents; birds represent network systems. Players must manipulate these metaphorical objects
in order to build programs inductively, or by “programming by example”. This means that
players start by writing program sequences to solve particular problems and then try to
generalize those sequences. Program flow can be observed through the animation of the
metaphorical objects.

Table 9 ToonTalk Specs

Characteristics Explanation

Purpose Programming learning tool.

Key Concepts Programming by example.

Programming through animation.

Platform Windows.

A Language for Game Design and Choreography

8

System Requirements A system running the supported platforms.

Languages ToonTalk.

Visual Editor
Characteristics

The editor is made in the form of a city where each city component such as houses, etc… represent a
computational abstraction.

Game Genres Mostly puzzle games.

Licensing Model Free for commercial use since version 3.0.

Behavior Modeling Behaviors can be coded.

Multiplayer Not applicable.

2.3 Engines

UDK (the “free” version of Unreal Engine 3) is an engine primarily made for first and third
person shooters. In order to develop games using UDK, developers can script game objects’
behaviors using its property language called Unreal Script, or use the Kismet tool (a visual
scripting tool, that was made, essentially, for level design). Besides providing an easy simple
way to develop scripting events, Kismet allows for visual debugging, so developers can
observe the script's flow. The main disadvantage of using Kismet is that its coded behavior
is only valid on the level it was created, meaning that games built with this tool having more
than one level, may require most of the visual code repeated throughout its levels.

Table 10 UDK Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Optimized levels can be created directly on the editor using the supported BSP geometry.

Building games in UDK works by modding the built-in game.

Platform It builds games for PC, Mac, IOS, Flash, Android and Consoles.

System Requirements Windows XP SP2 or Windows Vista ; 2.0+ GHz processor; 2 GB system RAM; SM3-compatible video card; 3
GB free hard drive space.

Languages UnrealScript for scripting behaviors and C++ for editing the engine's source code.

Visual Editor
Characteristics

Contains a level editor that allows modeling simple geometry which serves as a skeleton for the level's
architecture. It also allows to drag and drop entities onto the level.

Entities' properties and parameters can be edited through textboxes and checkboxes.

Level scripts can be created using a visual language, Kismet, that works by linking constants (circles) and
functions (square) together through arcs.

UDK also contains a material editor that works much like Kismet, by linking algebraic operations and
constants together through arcs in order to build shaders.

It also contains a cut scene editor that has a timeline where developers can add/remove key frames and events
and preview their cut scenes.

Game Genres The engine is best optimized for level-based shooters, although with some effort other genres can be built with
it.

Licensing Model UDK is free for educational and non-commercial use.

To use the application within a business, an annual 2500$ fee is required per developer seat.

For commercial applications, a 99$ fee is required upfront and an additional 25% of revenues after the
application reaches 50000$ in revenues.

A Language for Game Design and Choreography

9

Behavior Modeling UDK contains a class called “AIController” that has methods for decision making and basic character
functions where behaviors can be coded using UnrealScript.
UDK also supports Nav Mesh and Node Waypoints placed on the level editor for path finding.

Multiplayer Provides an API to build multiplayer games with a server based architecture using RPC and state
synchronization.

Ogre is a cross-platform graphics engine that uses C++ as its coding language. Unlike other
engines mentioned in this subsection, this one has no visual tools and, therefore, is only
manipulated through code.

Table 11 Ogre Specs

Characteristics Explanation

Purpose Graphics Engine

Key Concepts Object Oriented Programming.

Platform PC, Mac and Linux.

System Requirements A system that supports Open GL or Direct X

Languages C++

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Any 2D and 3D game genre.

Licensing Model The software is free to use for non-commercial and commercial applications.

Behavior Modeling Behavior can be coded.

Multiplayer Multiplayer can be achieved by using an external library such as Raknet.

Much like Ogre, Flixel is an engine that contains no visual tools and must be manipulated
through code. It was built with ActionScript and uses that language as its native. Both Flixel
and Ogre are general purpose engines, meaning that they are prepared for the development
of any type of game.

Table 12 Flixel Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Object Oriented Programming.

Platform Flash.

System Requirements Flash system requirements.

Languages ActionScript.

Visual Editor
Characteristics

It does not contain a visual editor.

Game Genres Any 2D game genre.

Licensing Model The software is free to use for non-commercial and commercial applications.

Behavior Modeling Behavior can be coded.

Multiplayer Multiplayer can be created using external libraries and platforms such as Smart Fox Server.

A Language for Game Design and Choreography

10

Unity is a general purpose engine that, like UDK, is comprised of several visual tools. It also
contains a propriety online store called asset store, where developers can download/buy
various third party and official plugins including the “platformer kit”, a toolkit made to build
generic platform-based games, which makes coding not required for simpler games.
Nevertheless, to develop more complex video-games, programming is required and Unity
supports 3 different scripting languages: Boo (based on Python), UnityScript (based on
Javascript) and C# .Net.

Table 13 Unity Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Entities are seen as game objects that can be extended by adding one or more components (scripts) in order to
give them behaviors (such as physics, animations, AI, etc...).

Since it is a multigenre game engine additional developer tools can be made or acquired from the asset store.

It provides an API for developers to create their own visual editors or extend the ones that come with Unity.

Collision layers for physic optimization.

Platform It builds games for PC, Mac, IOS, Flash, Android and Consoles.

System Requirements Windows XP SP2 or later; Mac OS X: Intel CPU & “Snow Leopard” 10.5 or later; Graphics cards compatible
with Direct X9 and with Occlusion Query support for PC and Mac games.

Android OS 2.0 or later; Device powered by an ARMv7 (cortex family) CPU; GPU support for OpenGL ES
2.0 for Android Games.

Languages Boo, C# and UnityScript for scripting components and C++ for editing the engine's source code.

Visual Editor
Characteristics

Unity comes with simple 3D level editor where developers can drag and drop objects onto it.

It also comes with visual editors to modify game object components for developers to edit parameters through
text boxes and check boxes and an animation editor with a time-line, where developers can add/remove key-
frames for several game objects’ parameters and preview their animations.

Game Genres Any game genre but it is more suitable for 3D games.

Licensing Model A free version of the game engine is available with restrict functionality that can only make PC/Mac games. To
access the cut functionalities, Pro version must be bought for 1140€.

To develop for Flash, Android and IOS, an additional license must be acquired for 305€ and 1140€, the normal
and pro version respectively for each of the aforementioned platforms. To access the source code or console
developing licenses, unity technologies must be contacted .

Behavior Modeling Unity contains a class called “MonoBehaviour” that has methods called at certain frames (each frame, each
physics frame, etc...) where behaviors can be coded using one of the mentioned scripting languages as well as a
component called “CharacterController” for basic character functions such as moving.

The Pro version also supports Nav Meshes placed on the level editor for path finding.

Multiplayer Provides an API to build multiplayer games with a server based architecture (Raknet) using RPC and state
synchronization.

Can use external plug-ins for multiplayer.

Although not as popular for independent games as UDK, CryEngine is also an engine
oriented towards the shooting genre. It contains some visual tools, resembling UDK and
Unity. More specifically it provides an event scripting tool similar to Kismet. Another
interesting tool present in this engine is a behavior tree editor, where developers can create
behavior trees easily. This engine also offers a SDK written in C++ that allows developers
to extend the engine's capabilities, allowing the creation of other game genres, for example.

A Language for Game Design and Choreography

11

Table 14 CryEngine Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Developers must be familiar with level editing based on brush painting.

Developers must be familiar with flow charts and decision trees.

Platform PC and consoles.

System Requirements Windows XP or later; 64-bit CPU; 2GB RAM; Graphics card that supports Shader Model 3.0 or better

Languages C++ and a visual language similar to C++.

Visual Editor
Characteristics

The editor provides “brush paint” terrain editing.
Entities' parameters edit is done through textboxes and checkboxes.

The engine also provides a flow chart like visual editing to create events and character scripts.

It also provides a visual decision tree editor for AI.

Game Genres The engine is best optimized for shooters, although with some effort other genres can be built with it.

Licensing Model CryEngine is free for educational and non-commercial use. For independent game developers who want to
create commercial games, a licensing model is provided that consists in 20% royalties of the game's revenue.

Behavior Modeling Behavior can be created using a flow chart that links, through arcs, variables and methods or by creating a
visual decision tree.

Multiplayer Provides an API for client-server multiplayer architecture.

RPG Maker XP, as the name implies, is an engine built for the purpose of creating RPG
games. It is more oriented towards classic turn-based isometric 2D RPGs and contains
visual editing tools including an event editor and a tile map editor to aid the creation of such
games. Building games with core mechanics akin to Final Fantasy is made easy using the
provided tools and require no coding effort. Nevertheless, RPG Maker XP supports Ruby as
a scripting language and scripts can be used to extend the engine’s functionality.

Table 15 RPG Maker XP Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Developers must be familiar with building tile-based maps.

Platform PC.

System Requirements Microsoft XP or later; Intel Pentium III 1GHz or equivalent; 256MB Ram; A Monitor that supports 1024x768
screen resolution; DirectX compatible hardware; 100MB HDD free space.

Languages Ruby.

Visual Editor
Characteristics

Contains a level editor that allows building multi-layer tile based maps. Developers can “paint” those maps
using tiles on a tile set. They can add terrain characteristics such as non-walkable terrain, etc … in a similar
painting manner using meta tiles.

For events and character/monster edit, etc... RPG Maker provides a parameter editor based on text boxes and
checkboxes.

Game Genres Best optimized for 2D turn based isometric tile-based RPG.

Licensing Model There are 3 versions of RPG Maker: VX4, VX and XP (with VX4 having the most features and XP having the
least). Each version comes with a free trial for non-commercial use. For commercial applications, RPG Maker
must be bought. The prices are: 89.99$ for VX4, 59.99$ for VX and 29.99$ for XP.

Behavior Modeling Behaviors can be coded using the language provided and built-in game classes.

A Language for Game Design and Choreography

12

Multiplayer The application comes with the Windows API and therefore multiplayer can be built using Windows Socket.

Kodu is a 3D multigenre game engine aimed specially for children. It comprises brush
painting tools for terrain generation and a parallel rule based system used to create game
agent behaviors.

Table 16 Kodu Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts Developers must be familiar with rule based programming.

The concept of brush painting for terrain generation.

Platform PC and Xbox.

System Requirements Windows XP or later; Graphics card that supports Shader Model 2.0 or later and DirectX 9.0c; .Net
Framework 3.5 or higher; XNA framework 3.1 or higher.

Languages Kodu.

Visual Editor
Characteristics

The level editor uses brushes to help developers “paint” terrain.

Entities can be drag and dropped onto the level.

Editing the entities' behavior, works by creating a stack of rules and each of them is edited by adding/removing
context dependent components. Components are added in a pure visual way by pressing a plus icon which then
opens up a wheel containing the available components.

Game Genres Any 3D game genre.

Licensing Model Free to build non-commercial games.

Behavior Modeling Behaviors can be modeled by creating rule-based agents. Each rule uses an <condition><action> syntax. As
was mentioned in “visual editor characteristics”, these rules can be created by adding components to each
member of the syntax. Since the components are context dependent, it is impossible to create invalid rules. In
addition, Kodu provides several different sensors that can be used in the rule creation process.

Multiplayer Only offline multiplayer is supported.

Stencyl is a general purpose 2D engine made to develop IOS and Flash games, incorporating
a tile map editor and an event editor, much like RPG Maker XP. In order to create events
and game behaviors, developers are required to use Stencyl's visual language, which is
Scratch. But, unlike Scratch, the application, Stencyl's goal is only to allow developers with
no programming knowledge to create Flash games easily. Stencyl also contains an “asset
store” analogous to Unity, where developers can download toolkits to create games.

Table 17 Stencyl Specs

Characteristics Explanation

Purpose Game Engine.

Key Concepts The screen in Stencyl is called a stage and the entities are seen as actors that interact on said stage.

Functional programming based on command block stacking.

Searching for available game toolkits as to not “reinvent the wheel”

Developers must be familiar with building tile-based maps.

Platform IOS and systems that support Flash.

System Requirements No system requirements were found.

A Language for Game Design and Choreography

13

Languages Scratch.

Visual Editor
Characteristics

Contains a level editor that allows building multi-layer tile based maps onto the stage. Developers can “paint”
those maps using tiles on a tile set. They can add terrain characteristics such as non-walkable terrain, etc … in a
similar painting manner using meta tiles.

Developers can also drag and drop “actors” on to the stage.

Developers can also drag and drop behavior “blocks” onto the actors or build these blocks by stack command
blocks in order to create a program sequence.

Game Genres Any 2D game genre.

Licensing Model A free version of the software that can be used for commercial Flash games exists with limited functionality.
The extended version costs 79$ per year and to develop commercial games for IOS it is necessary to buy an
IOS subscription for 149 per year. Additionally, it is necessary to have an Apple Developer account to test
games on IOS devices.

Behavior Modeling There are available behavior kits that can be used by drag and dropping them onto entities. Additional behavior
can be coded.

Multiplayer Stencyl requires a socket server for multiplayer games and an additional plugin to build the client side code.

The last tool presented in this document is Little Big Planet 2's level editor. This editor can
be seen as a game engine as it allows developing a variety of 2D and 3D games. It provides
developers building “pieces” such as sensors, reactors, etc..., and logic operators. This way,
developers can construct mechanisms by using the editor's primitives or build more complex
creations by linking “pieces” together with operators.

Table 18 Little Big Planet level editor Specs

Characteristics Explanation

Purpose Modding tool for Little Big Planet.

Key Concepts Developers should be familiar with simple Boolean logic.

Developers should be familiar with mesh creation using “brush” painting.

Developers should be familiar with Little Big Planet mechanics such as checkpoints, etc...

Developers should know how to use a PS3 controller.

Platform PS3.

System Requirements PS3.

Languages Not applicable.

Visual Editor
Characteristics

The editor comes in form of a blank level where developers can open a popup menu to drag and drop objects
onto it. The editor also comes with mesh “brushes” to create forms and bolt objects to link forms together.
Parameter edit comes in form of a slider or check boxes.

Game Genres Almost any 3D and “2D” sidescroller game genres.

Licensing Model To use this tool, a copy of Little Big Planet 2 is required. All levels created, by third party users, using this tool
should be non-commercial.

Behavior Modeling Little Big Planet provides a variety of sensors such as timers, proximity sensors, etc... , logic operations such as
AND, OR and NOT and reactors such as movers, shooters, etc... Reactive and rule based agents can be easily
modeled using these tools.

Multiplayer Levels created in this tool are multiplayer levels.

A Language for Game Design and Choreography

14

2.4 Approaches to Define Computational Game Behavior

The definition of computational game behavior follows mainly two types of approaches: It
is either manually defined by the designer or it is procedurally generated in run-time.
Nevertheless, the latter method also involves the creation of a set of rules, or design space
definition, that generators must respect in order to generate content. These definitions can
be either textual or visual (through the use of diagrams).

2.4.1 Manual Definition of Game Behavior Rules

As was stated earlier, in this set of approaches, behaviors are well-defined by the designer.
They can either be an exhaustive set of rules, where every action/reaction is accounted for
(which happens for most commercialized games) or one that allows the emergence of
behavior as in complex systems.

The most classical approach to define behavior is to do it as a code script. This, or a visual
variant of textual coding, is the default manner used in most of the tools presented in 2.2. It
consists in defining behaviors using a programming language (the examples shown use either
functional or object oriented languages). The main disadvantage of this approach is that the
designer must be familiar with computation concepts as well as with the programming
language. Nevertheless, this way provides a flexible means to create behaviors and serves as
the building blocks to the other mentioned approaches.

Another way is the creation of finite-state machines (Milligton & Funge, 2009). Finite-state
machines are a visual approach used to model simple actor behaviors, animation transitions
or, generally, game mechanics. It is composed of states and arcs linking them together. Each
state comprises a set of actions and each arc a set of conditions. Nevertheless, this approach
has scalability issues in which more complex state machines become unreadable and difficult
to maintain.

Behavior trees (Milligton & Funge, 2009) are another visual tool used to define behaviors.
Behaviors can be modeled by creating a tree where each leaf node represents an action, each
non-leaf a condition to be tested and each branch a different outcome for a given condition
test. Much like finite-state machines, behavior trees can bloat, thus becoming unreadable
and difficult to maintain.

Black box diagrams, present in UDK and CryEngine, are another graph-based tool. In both
these engines, this tool works the same way: there are a number of premade function nodes,
or “black boxes” (visually represented as squares with several inputs and outputs) and data
nodes (represented as circles). A designer can link these nodes in order to model behaviors
so that information can flow from outputs, and data nodes, into inputs. Whenever
information arrives at a function node’s input, a scripted event takes place. The presentation
in this tool is analogous to digital circuits diagrams. In addition, much like the other visual
tools, black box diagrams have a problem of becoming unreadable as the they grow.

Rule-based systems are a model in which the designer defines a set of condition-action pairs
as to design simple behaviors. This allows for emergent behaviors as shown in Baptista and
Ernesto (2008). A variation of this model is achieved by using fuzzy logic (Milligton &
Funge, 2009) in the condition part of the pair instead. Moreover, this variation is popular in
commercial video game systems.

The BDI architecture, or Belief-Desire-Intension, is another approach in modeling actor
behaviors. It was created to be akin to how humans make decisions (Woolridge, 2011). In
this architecture, an actor has a belief, desire and intention set. Beliefs represent the actor’s

A Language for Game Design and Choreography

15

perception of its inner and environment states, while desires are the actor’s preferable end-
states and intentions are the actions it chooses. This architecture has additional functions:
the belief update function that allows beliefs to be refreshed according to new perceptions,
the options function that uses actor’s beliefs and intensions in order to produce desires and
the filter function in which beliefs, desires and intensions are used to generate intentions.
These mechanisms underlying the BDI architecture result in a plan, or a set of actions, for
an actor to follow. Designers can model behaviors in this architecture by initializing the
actor with different beliefs, desires and intentions. This architecture, in conjunction with PSI
psychological theory for the display of emotions, is used in Lim, Dias, Aylett, and Paiva
(2009), with the purpose of creating autonomous NPCs in an educational RPG.

Cellular automata (Milligton & Funge, 2009) are another manner used to model behaviors.
Cellular automata are grid structures representing world space that are iteratively updated.
Each cell’s content is renewed according to a function that takes into account the content
inside a given cell’s neighbors. This approach is well suited to model crowd behaviors as
demonstrated in Bandini, Manzoni and Vizzari (2004), and for the design of emergent
behaviors as the iterative nature of cellular automata cannot be easily predicted.

The approach used in Little Big Planet 2’s level editor also provides a different way to model
behaviors. The editor supplies the designer with different types of sensors, actuators and
logic functions. By combining sensors and actuators, through logic functions, designers can
create different behaviors.

Dormans (2009) created a framework, called Machinations, which supports the definition of
game play mechanics. This framework accentuates the view that games are rule-based
dynamic systems. It provides a diagram tool so that designers can elaborate their game
mechanics (which include behaviors). More specifically, these diagrams represent the “flows
and foreground feedback structures that might exist within a game”. As such, this tool
provides a means to illustrate game mechanics that are otherwise difficult to enunciate as
they are hidden in the game’s system. The author argues that this framework, unlike other
tools, for instance, finite state machines, is accessible for designers and well-suited to
represent “games at a sufficient level of abstraction”. The main disadvantage of this
framework is that it is not appropriate to design games that rely on level design because it
does not take into account all elements of game design.

2.4.2 Procedural Content Generation

This approach offers a different perspective on the responsibility of computers in playing
interactive media. Here computers also act as dynamic content providers instead of being
the traditional content players. The dynamic nature of this approach allows for customized
experiences where each play-through is different.

One example of such approach is the interactive drama Façade (Mateas & Stern, 2005a ,
2005b). This video-game tells the story of the rupture of a marriage in a first-person
perspective. Unlike commercial games where the narrative is pre-made, in Façade it is
emergent. The system reacts to the player’s input, whether through actions or speech, to
develop plot points at run-time by mixing sequences of narrative.

Genetic Programming is also a method used in procedural content generation. Genetic
Programming is a family of algorithms that are inspired in the biological phenomenon
known as evolution. Their main objective is to generate programs in the form of a
computational tree or graph, that can solve a given problem. Their modus operandi is as
follows: a population of candidate programs are iteratively crossed together (known as

A Language for Game Design and Choreography

16

reproduction) in order to produce offspring. These offspring can also be mutated, thus
introducing diversity in the population. The original population and the offspring are filtered
using selection mechanisms in which the program candidates are selected according to their
fitness (a rank given to the performance of the program). This family of algorithms can be
used to generate behavior trees or finite state machines to model actor behaviors as was
stated in Kadlec (2008).

2.5 Usage of Petri Nets in Game Specifications

Although public research regarding the usage of Petri Nets in modeling video-game aspects
is scarce, there have been some scientific papers describing how Petri Nets can model
certain aspects of video-games with success.

Araújo and Roque (2009) showed that Petri Nets could be used to model a game. In their
case study Sagres, the game’s system and flow was modeled into Petri Nets organized in
hierarchies. It was concluded that Petri Nets, as a graphical tool, were more expressive and
easier to understand than other tools such as those provided in the UML. The simulation
capability of Petri Nets was also viewed as an advantage over other design tools as it brought
designers a means to evaluate their artifact.

Natkin, Vega and Grünvogal (2004) introduced a new methodology for temporal
representation of levels in video-games. It consisted in using Petri Nets to describe temporal
relationships in scripted events, for example, how were the actions a character must perform
to achieve certain goals related in terms of their partial order.

Brom and Abonyi (2006), developed a system, exploiting Petri Nets, for the authoring of
nonlinear plots and story management in a large interactive virtual reality world populated by
a significant amount of virtual actors. This system used Petri Nets to specify a high-level plot
detailing all of the possible events and actions that could happen which would alter the flow
of the story. This model ran on a simulator, called story manager, that kept track of the
plot’s course while checking for events to unfold and, consequently, altering the simulation
world according to where were tokens. It was concluded that the system functioned as
intended (the story manager altered the course of the simulation according to its plot whilst
giving the actors independence in their individual behaviors) and provided a means for
prototyping and validating plots.

In sum, Petri Nets have been used, by other researchers, to model some video-game aspects
such as plot and game design. It was mostly concluded that this tool was easy to learn and
understand and provided a means for validation, facilitating prototyping. Additionally, they
were also perceived as extensible and, consequently, have a wide variety of augmentations
that add functionalities which, in turn, reduces potential model complexity. Because of their
apparent smooth learning curve, validation functionality, extension capability and the
demonstrated ability to design several aspects of a video-game, this tool was considered as a
candidate for the base of the language described in this report.

2.5.1 Petri Net Definition

According to Petri and Reisig (2008) and Wang (2007), Petri Nets are a graphical tool
invented, in August 1939, by Carl Adam Petri to describe chemical processes. Generalizing,
this tool can be used to describe and analyze concurrent distributed processes (i.e. an
interactive system such as a video-game) and their flow (through simulation). Figure 1
illustrates a simple Petri Net.

A Language for Game Design and Choreography

17

Figure 1 A simple Petri Net

2.5.1.1 Graphical Definition

Graphically, Petri Nets are a subset of bipartite directed graphs composed of four primitives:
places, transitions, directed arcs and tokens. Places are circular shaped nodes that abstractly
represent conditions. Places can be filled with one or more tokens, a black and small circular
object. A token inside a place means that the place’s inherent condition was met. Directed
arcs are used to link a place to a transition, a black shaped node, or vice-versa. The place at
the head of an arc is called an input place and, likewise, a place at an arc’s tail is called an
output place. Arcs can be weighted, meaning that a certain number of tokens are either
required for a transition to fire or that they “travel” through the arc. Non-weighted arcs can
be seen as weighted arcs with the weight value of 1.

An important concept associated with Petri Nets is the concept of firing transitions. A
transition is said to fire when there are enough tokens at its input places. This leads to the
consumption of tokens from input places and the production of tokens at the output places,
which can abstractly mean that an event occurred. It is worth noting that firing is atomic,
meaning that the consumption and production of tokens regarding a given fired transition is
considered one step.

Another important concept is marking. Marking is the name given to the net’s configuration
represented by the distribution of tokens across places.

2.5.1.2 Mathematical Definition

A more formal definition of Petri Nets is that they can be represented by a 4-tuple
 , where P and T are sets of places and transitions respectively;
 represents the flow, i.e. the arcs connecting the net’s places and transitions;

 is the initial marking.

2.5.2 Petri Net Models and Editors

2.5.2.1 Data Structures

In this context, data structures are computer representations of Petri Nets. This includes in-
memory representations or even description languages. Data structures may be part of APIs
that provide functions for net manipulation.

There are several Petri Net APIs for a wide variety of languages. They provide similar
methods to manipulate Petri Net objects and their main difference seems to be which
extensions they support and whether or not they include a simulator. Examples of APIs
include JFern, the Petri Net API (Lohmann, Mennicke, & Sura, 2010) and C++ Petri Net
Framework (Nadle, 2003).

A Language for Game Design and Choreography

18

As an attempt to make Petri Net models interoperable and standard, a description language,
called Petri Net Markup Language (or PNML) (Billington, et al., 2003), was created. This
language is built upon XML and, besides describing how Petri Nets are structured, it allows
to add graphical attributes, which provides visual editors the means to render the models, as
well as to append tool-specific attributes that can only be parsed by designated editors.

From PNML was derived EPNML (Werf & Post, 2004), a XML format that is used in
Yasper. This format uses elements from PNML and, although its specification is available, it
is argued by the author that the syntax definition is incomplete.

2.5.2.2 Editors

There are several Petri Net editors available that can be used to model interactive systems.
Most of these tools are aimed to illustrate a wide variety of systems, as their main application
is to develop concept diagrams that demonstrate how systems, and workflows, function.
Therefore, they are deprived of semantics, which makes their simulation functionalities, if
present, mainly for visual debugging purposes. However, there are some editors that allow
users to add semantics to their Petri Net models. The following table offers a comparison
between Petri Net editing tools.

 1
9

Table 19 Petri Net Editor Comparison

 Editors

Characteristics PNEditor PIPE Petri Net
Editor

Tina Yasper WoPeD JPetriNet TAPAAL PetriNet
Kernel

JFern Editor Snoopy

Petri Net
Extensions
Supported

 Hierarchical
.

Colored,
Timed and
Stochastic
with
inhibitor
arcs.

Stochastic. Timed with
inhibitor arcs.

Hierarchical,
Timed with
inhibitor arcs
and XOR
transitions.

Hierarchical
with AND
and XOR
transitions.

Timed. Timed-Arc
with
inhibitor
arcs.

Hierarchical
.

Hierarchical
and Colored.

Stochastic,
Timed,
Colored,
Extended,
Hierarchical,
Music and
Hybrid.

Simulation Manual step
based.

Manual or
Automatic
step based.

Manual step
based.

Automatic step
based with
time ruler.

Manual or
Automatic
step based.

Manual or
Automatic
step based.

Automatic
step based.

Manual step
based.

Manual step
based.

Manual or
Automatic step
based.

Automatic step
based.

Semantics N/A N/A N/A N/A N/A N/A N/A N/A Tokens can
be
associated
to java
classes.

Transitions can
contain Java
scripts and
tokens can be
associated to
java classes.

Music Petri
Nets’
transitions can
play sounds on
firing.

Export Format PNML,
EPS and
PNG.

PNG, PS
and
eDSPN.

PNG and
XML.

PNML, TNP
and PNT.

VDX and
several
Image
formats.

PNML and
several Image
formats.

N/A PNG, PS
and TikZ.

PNML and
XML.

XML, ser and
jnf.

EPS, Latex,
MIF, Xfig,
ANDL,
APNN and
several
proprietary
formats.

Written
Language

 Java Java Java TCL/C++ .Net Java Java Java Java Java C++

Additional
Functionalities

 Allows to
add roles to
transitions.

Features
several
analysis
modules.

Features
several analysis
modules, a
Markov chain
generator and
the capability
to associate
probabilities to
transitions.

Features
several analysis
modules.

Allows to
add roles to
transitions.

Features
several
analysis
modules and a
graphical
layout
optimizer.

Can build a
matrix/tree
representing
the net.

Features
several
analysis
modules
and a query
mechanism.

N/A Can generate
Java source
code.

N/A

A
 L

an
gu

age fo
r G

am
e D

esign
 an

d
 C

h
o

reo
grap

h
y

A Language for Game Design and Choreography

20

As can be observed, only JFern Editor and, to some extent, Petri Net Kernel and Snoopy
allow to add user-made semantics to the net. However, JFern Editor requires the user to
introduce code manually. It is worth noting that JFern Editor is an editor using the JFern
Petri Net data structure described in the earlier sub-chapter.

2.6 MMO Architectures and Network Middleware

With the increase in popularity of developing massive online multiplayer games, it became
logical to extend the initial proposed solution so that it could work with this genre, as it
requires for the application to have a special architecture in which distributed computing,
and network programming, is needed to provide the means to play the game with various
simultaneous online players.

2.6.1 MMO Architectures

There are mainly three types of distributed architectures used in MMO games: Peer-to-Peer,
Client/Server and Hybrid.

2.6.1.1 Peer-to-Peer

This type of architecture relies on using clients (or peers) as a means to gather more
computational resources such as processing power and memory. Therefore, application data
is completely distributed among peers. In fact, in this architectural approach, there is no
centralized server.

Hampel, Bopp and Hinn (2006) introduced an architectural proposal using DHT
(Distributed Hash Tables), Pastry and Scribe. In this architecture, data is replicated and
distributed across peers and indexed on a DHT for lookup. When peers need to access data,
they look it up using Patsy and after they retrieve the requested data, it is then synchronized
across the network using Scribe. In order to achieve this, peers are given fat clients
containing every component necessary to run the game as well as additional components for
security and resource management. Anti-Cheating mechanisms are available as the
architecture elects peers, as controllers, to monitor manipulated data for inconsistent game
states. It is argued that this architecture provides attributes needed to run MMO games such
as scalability, load-balancing and traffic optimization. Nevertheless, it is not assured that this
architecture provides reduced latency for time critical applications, such as action games.

2.6.1.2 Client/Server

Unlike the previous architecture, the Client/Server relies on a centralized server to process
client requests and to act as a message router to relay information among clients.

To increase scalability in a Client/Server model, Müller and Gorlatch (2004) devised an
architecture that consisted in the addition of proxy servers to account for load balancing.
When a client, connected to a proxy, sends a game state update, it is then processed and
multicast across all proxy servers to keep them synchronized. By analytical comparison, the
authors concluded that this proposal provided more scalability than regular Client/Server or
Peer-to-Peer architectures.

A Language for Game Design and Choreography

21

2.6.1.3 Hybrid

This approach delegates some heavy computational responsibility to clients and, at the same
time, maintains a main server to secure consistency. It combines the resource availability of a
Peer-to-Peer architecture with the security of Client/Server architecture.

Axelrod and Amir (2012) developed a hybrid high-response, low bandwidth architecture for
the development of MMORTS (a genre that requires real time responses and management
of a significant amount of in-game actors). In it, they explain that some assumptions can be
made which optimizes resource consumption: groups of close agents can be processed as a
single agent since, statistically, they tend to receive similar commands (an example is walking
to position x); messages sent to the server can be compressed; the stage can be fragmented
into regions to reduce updates, as players only visualize stage portions at a given time which,
in turn, allows to cluster players into said regions; actions of simple agents can be predicted
as they are statistically similar over time; AI intensive algorithms can be distributed to the
clients to take advantage of the clients’ computer resources.

Douceur, Lorch, Uyeda and Wood (2007) also suggest distributing AI algorithms to clients
as a means of load balancing. In this architecture AI is split into server-side and client-side
components. Server-side AI computations are simple, lag intolerant and do not require
client-side computations. Client-side computations, on the other hand, are slow, stateless
and complex and may be distributed to several clients as a way to minimize failures. Server-
side AI uses client-side AI to improve its effectiveness. The authors determined, through a
prototype, that this architecture improved AI abilities in an action game with latencies up to
one second.

2.6.1.4 Comparison

In sum, each architecture provides a different approach to accommodate the existence of
applications that work across a network. From the research made, it was concluded that
each architecture has its strengths and weaknesses. Table 20 shows a comparison made
regarding the architectural concepts presented in the former subsections.

2
2

Table 20 MMO Architecture comparison

 Characteristics

Architecture Implementation
Complexity

Client
Size

Scalability Anti-Cheating
Mechanisms

Data
Consistency

State
Consistency

Latency Bandwidth

Client/Server Simple, only requires
developing a server
that receives and
sends processed
game logic.

Thin Scalability is
proportional to
the number of
servers.

Servers can check for
inconsistent game
states sent by clients.

Relevant data is
kept on a server-
side database
and as such is
consistent.

Servers must
assure that all
clients receive
the same state
updates in the
same order.

Latency may be
increased as
requests/respon
ses must go
through the
server.

Servers require
large bandwidths
to accommodate
requests/respon
ses from clients

Peer-to-Peer Complex, requires to
develop clients that
sends and receives
processed game logic
and a means to keep
data consistent
among clients.

Fat Scalability is
proportional to
the number of
connected users.

Mechanisms that
involve selected
users to act as
consistency checkers
for game state.

Data is spread
across users.
Therefore, it is
required data
replication and
consistency
checks to assure
that data is not
corrupt

Users must
check each
other’s states
for
consistency.

Peers can
communicate
directly with
each other,
decreasing
latency.

Bandwidth is
optimized
because clients
communicate
directly with
each other.

Hybrid Medium to Complex,
requires developing a
server, and clients
that can
communicate with
themselves.

Thin or
Fat

Scalability is
proportional to
the number of
connected users.

Servers can check for
inconsistent game
states.

Data can be
spread across
users as replicas
of the servers’
data. As such it
is required that
servers check for
users’ data for
consistency.

Servers must
assure that all
clients receive
the same state
updates in the
same order.

May have some
latency as some
requests must go
through the
server.

Requires
bandwidth to
accommodate
client/server
communication.

A
 L

an
gu

age fo
r G

am
e D

esign
 an

d
 C

h
o

reo
grap

h
y

A Language for Game Design and Choreography

23

2.6.2 Network Middleware

Because network programming is difficult to learn and master, there are several network
middleware tools that provided the necessary abstractions so that developers do not need to
interact with network programming and, in some cases, develop a distributed architecture in
which their game can run. As such, games relying on data exchange across a network, as
MMO games do, benefit from such middleware.

Table 21 depicts the comparison among popular network middleware regarding licensing
price, supported concurrent users, architecture and other important notes.

Table 21 Network Middleware comparison

 Characteristics

Middleware Price ($) Users supported Important Notes Architecture

Smartfox
Server

 Free

 500

 1000

 2000

 100

 100

 500

 Unlimited

 Unity API

 Cloud support

 Supports zone
fragmentation

Client/Server

Raknet Free if
revenue is
under 100k
for version 4

 Pay – per –
Application

 Unlimited

 Unlimited

 C++ API

 Unity comes with
version 3

 "Unity's" C# can be
used to communicate
with Raknet code

Client/Server

Photon
Server

 Free

 1250

 2250

 3500

 100

 500

 1000

 Unlimited

 Contains a cloud

 Business logic can be
written in C#

 Contains logic for
MMORPGs and FPS.

 Provides a free Unity
asset for networking
using the photon cloud

Hybrid

ElectroServer
5

 Free

 999

 4990

 50

 1000

 Unlimited

 Unity API
Client/Server

Badumna Pay-As-You-
Grow

 Unlimited Supports Unity
Client/Server

A Language for Game Design and Choreography

24

3. Methodology

This project followed a Design Science Research approach and its produced prototype was
developed according to an agile development process.

3.1 Objectives

As written, the main purpose behind this solution proposal was to develop an easy to use
modeling tool, based on Petri Nets, that could be used by non-programmers, to define actor
behaviors and choreographies in a game/simulation environment, whether it is running on
one machine or on a distributed system. Because of the initially stated broad definition of
actor (i.e. any game object), this authoring tool could be used not only to define entities’
computations but also general mechanics that govern the game/simulation.

Given the solution’s objectives, the proposal was devised to contain the visual language’s
specification (syntax and semantics) as well as a system comprised of three modules: a visual
editor, an execution module and a communication module.

This research aims mainly to answer two questions: whether it is possible to build a system
in which Petri Nets model actor’s behaviors and choreographies and, being possible, if it is
easy to use and understand by the intended audience.

3.2 Design Science Research

Design Science Research (Hevner & Chatterjee, 2010) is a methodology that aims to
produce a statement of learning as a consequence of research made through design or, in
other words, this methodology’s objective is to solve problems with the purpose of
producing a statement of learning.

The Design Science Research, as illustrated in Figure 2, encompasses 5 steps: Awareness of
Problem, Solution Proposal, Prototyping, Evaluation and Statement of Learning, each
producing its own artifacts. Since this methodology can be used in any area where design is
possible, the following clarification of the methodology’s steps states example artifacts best
suited in this project’s context.

Figure 2 Design Science Research steps

A Language for Game Design and Choreography

25

The first step, or Awareness of Problem, comprises the definition and identification of a
problem. In order to help clarify this definition and identification, State of the Art research
is made.

In the following step, Solution Proposal, a suggestion for the problem’s solution is created
through abduction drawn from the state of the art research made previously. This step
outputs interaction models and software architecture.

Prototyping comprehends the actual development. In this stage, software is produced, using
the conceptual models created in the previously. The artifact produced acts as a proof of
concept, proving that the proposed solution is possible.

The next step, or Evaluation, attempts to validate the prototype created in the previous stage
using an evaluation model. When such model is nonexistent, one is devised alongside other
Solution Proposal’s artifacts. This step also provides feedback, or circumscription, to the
other previous steps which permits an iterative and incremental development (the agile
development process is used during the iterations Prototype-Evaluation).

Finally, in the Statement of Learning step, the project is concluded so that knowledge can be
produced. Artifacts produced in this stage include concepts, models, methods and
prototypes.

This research method is adequate for the project in question because it promotes agile
development which ensures refinement of the application to meet the project goals and by
following its stages, it is possible to answer both research questions detailed earlier.

3.3 Work Plan

The work plan devised for this project divided in 8 steps, or activities, spread across both
semesters. Figure 3 presents the project’s expected timeline.

Figure 3 Project Timeline

3.3.1 Activities

As was mentioned earlier, the project will be developed with 8 activities in mind:

A1 State of the Art Research. This activity comprises research of relevant SoA
regarding software, similar approaches and related work in order to study the
problem this thesis intends to solve.

A2 Detailed Proposal. This activity comprises the definition of the problem’s
scope and respective solution through the elaboration of project goals,

A Language for Game Design and Choreography

26

requirements and assumptions and the creation of milestones for progression
tracking.

A3 Initial Design. This activity comprises the initial draft for the editor’s graphical
interface as well as the applications’ (editor and petri net running engine)
proposed architecture and their respective quality attributes.

A4 Mid-Term Progress Report. This activity involves the writing of this progress
report.

A5 Mid-Term Presentation. This activity, dependent on A4, includes the creation
of the project’s mid-term presentation.

A6 Prototyping. This activity comprises the implementation and testing of a
working prototype of the applications and subsequent fine-tuning based on
evaluation results.

A7 Evaluation. This activity comprises the definition of the evaluation
methodology and criteria and consequent result analysis.

A8 Statement of Learning. This activity encompasses the production of this thesis’
final report and reflection on knowledge production.

To elaborate further, the prototype activity (A6) is divided into three monthly iterations,
each involving several activities, which aim to produce this document’s project prototype.
The following figure depicts these activities in a timeline:

Figure 4 Prototype Iterations

Iteration 1:

 Engine choice and GUI Window Implementation. Activity where the
appropriate game-engine and middleware is chosen. It also comprises the creation of
the editor’s GUI window.

 Petri Net Model and Persistent Storage Mechanism. Creation of the Petri Net
model and XML file reader and writer so that it can be used to store and load said
models. Additionally, the button listeners to import/export Petri Nets to disk are
also created in this activity.

 Petri-Net manipulation Button implementation. The implementation of the
buttons and actions used to add/remove places, tokens and transitions as well as
links. This activity also comprises the implementation of a naming mechanism for
the Petri Net components.

 Creation of the Simulation Engine. Creation of the Petri Net’s engine component
responsible to simulate transitions.

 Integration of the simulation engine in the editor. Integration of the simulation
engine in the editor so that it allows to simulate Petri Nets’ executions.

 Validation mechanism implementation. The implementation of the Petri Net’s
validation mechanism and button action.

Iteration 2:

 Redo/Undo and Petri-Net Grouping Implementation. Implementation of
redo/undo buttons and actions as well as Petri Net grouping and naming.

A Language for Game Design and Choreography

27

 Script integration in the petri-net model. Integration of script incorporation in
places and transitions.

 Script integration in the simulator. Implementation of executing mechanisms that
allow for scripts to run.

 Message Queue Implementation. Implementation of the message queue used to
communicate with engine components.

 Communication with the game engine components. Implementation of the
adapters for the game engine components and consequent API calls.

Iteration 3:

 Game prototype design. The design of the prototype that demonstrates this
project’s abilities.

 Game prototype implementation. The implementation of the showcase
prototype.

3.4 Milestones

Figure 5 Project's Milestones

This project milestones, as illustrated in Figure 5, are as follows:

S1 Document stating SoA relevant to this project. Due on 30/11/2012.
S2 Prototype of the editor’s GUI. Due on 30/11/2012.
S3 Applications’ architectural diagrams (boxed and class diagrams). Due on

5/12/2012.
S4 Mid-term progress report. Due on 28/1/2013.
S5 Prototype v0.1 comprehending the editor’s GUI (with all of the MUST

requirements implemented), a means to persistently store Petri Nets and the
simulation component of the Petri Net’s interpretation engine. Due on
31/3/2013.

S6 Prototype v0.2 containing the implementation of the editor’s SHOULD
requirements as well as integration of the interpretation engine with the selected
game engine and petri-net to game engine code mapping. Due on 30/4/2013.

S7 Prototype v1.0 that comprises fine tuning of the aforementioned components
and a working prototype that allows proof of concept of the system. Due on
16/6/2013.

S8 Final progress report. Due on 3/7/2013.

A Language for Game Design and Choreography

28

3.5 Effective Work Schedule

During the second semester, the initial planning had to be revised since some activities had
discrepancies between their expected time for completion and the actual time they took.
Moreover, taking these new times into account, there was enough room for further
activities. The following figure details the effective work schedule:

Figure 6 Effective Work Schedule

A1b. Prototyping. This activity comprises the implementation and testing of a
working prototype of the applications (further details are explained in section 5).

A2b. Proof of Concept Development. This activity details the development of
the game prototype that served as the application’s proof of concept.

A3b. Writing of Scientific Paper. During this activity, an initial draft of a paper
explaining the application and its architecture proposal was written.

A4b. Evaluation. This activity covers the definition of the evaluation
methodology and criteria, consequent result analysis and application’s refinement
according to the results.

A5b. Statement of Learning. This activity encompasses the production of this
thesis’ mid-term and final report and reflection on knowledge production.

A Language for Game Design and Choreography

29

4. System Architecture Proposal

As was mentioned in subsection 3.1, the application will be subdivided into a graphical
editor that allows designers to create Petri Nets to model actor behaviors and
choreographies and an interpretation engine that simulates flow of said Petri Nets,
translating its semantics into game-engine code. This application is meant to be integrated
into an existing game engine (potential candidates are displayed in Table 1 to Table 18).

4.1 Language Functional Specification

The language used in this solution proposal contains a similar syntax to that of Hierarchical
Petri Nets (Aalst, 2011) with weighted arcs. By utilizing the capability of grouping sub-nets,
this language is able to reduce graphical complexity and thus, improve readability. Another
important advantage is that it promotes component reutilization, i.e. the same sub-net can
be used in different contexts.

4.1.1 Syntax

This section presents the grammar underlying the language. Although, this is a visual
language, spatial attributes of the net were disregarded as they have no effect on the
language’s syntax. This grammar is presented in the subsequent table:

Table 22 Language Grammar

Terminals Non Terminals Production Rules

Places (P) START START → (PRE+ MIDDLE POS+)*

Input Places (IP) PRE PRE → (PLACE | INPUTPLACE) ARC

Output Places (OP) MIDDLE MIDDLE → T | SUB

Fused Places (FP) POS POS → ARC (OUTPUTPLACE | PLACE)

Transitions (T) SUB SUB → (FUSEDPLACE A MIDDLE A FUSEDPLACE) START

Arc (A) PRESUB PLACE → P TK*

Token (TK) POSSUB INPUTPLACE → IP TK*

Weight (W) PLACE OUTPUTPLACE → OP TK*

 INPUTPLACE FUSEDPLACE → FP TK*

 OUTPUTPLACE ARC → A W+

 FUSEDPLACE

 ARC

4.1.2 Semantics

A game/simulation model is represented by a root Petri Net that contains set of Petri Nets,
each symbolizing a different actor archetype (it is worth noting that instances of an actor
archetype share the same Petri Net), as shown in Figure 7.

A Language for Game Design and Choreography

30

Figure 7 Representation of a Game Model according to the language’s spectification

Every child of “root” is an independent net that is associated to an actor and follows the
language syntax detailed earlier. These nets cannot communicate directly with one another
by means of arcs.

Places can be of four types: Input Places, Output Places, Fused Places or Regular Places
(this designation must not be confused with the naming given to places linked to/from a
transition on the original Petri Net language). Regular Places share the same meaning as
places in the Petri Net language. Input Places act as actor sensors. This means that when a
token arrives at these special places, something was perceived by the actor. Output Places,
on the other hand, assume the role of announcers, i.e. when they receive a token, it is
announced to the game world that something has happened. Furthermore, an Input Place
can be used to observe an Output Place. Finally, Fused Places are places inside sub-nets that
are linked with outer-net places, acting as proxies for their outer-net counterparts. Whenever
an outer-net place receives/loses a token, its Fused Place receives/loses the same one as
well. Unlike places, which have four different types, Tokens, just like in the Petri Net
language, stand for a condition that was met. Transitions, however, have associated
programming scripts that govern actions. When a transition fires, its script is executed,
meaning that an action is taking place.

4.2 Proposed Design for the Petri Net Editor

The interface’s design originated from an iterative process. Initially, a paper prototype was
constructed. This prototype was then evaluated through user testing so that it could be
refined. After several iterations, the prototype was converted into a mockup representation
using Balsamiq, as illustrated in Figure 8.

This proposal is adequate because the interface’s viewport provides with the necessary
information for the simulation and manipulation of the language’s constructs in a segmented
way. Because of this, users can easily interact with the editor without having to navigate
through menus in order to look for actions. Furthermore, the spatial distribution helps
organize the information so that users don’t feel overwhelmed.

A Language for Game Design and Choreography

31

Figure 8 Mockup of the petri net editor's GUI

As can be seen in Figure 8, the editor is divided into 7 panels or menus:

1. Input Panel. Here, designers are allowed to put places that represent the actor’s
inputs. These inputs can range from sensors (vision, hearing, etc…) to messages
containing information.

2. Function Panel. In this panel, designers can model the actors’ logic. As depicted in
the figure, this logic can contain both places and transitions as each may have.

3. Output Panel. Similar to the Input Panel, places set in this panel represent the
actor’s outputs, or information he transmits to the game world.

4. Group Panel. A panel that lists grouped Petri Nets.
5. Search Panel. A panel used to filter the Group Panel, through the means of a

keyword search.
6. Button Sidebar. A sidebar containing the most important action buttons. From top

to bottom, these buttons are: Play, to simulate the given petri net; Add Place, as the
name indicates, inserts a place onto one of the panels 1 to 3, as given by the cursor;
Add Transition, functioning as Add Place but adding a transition instead; Group,
used to gather selected sub Petri Nets into one transition; and Validate to check
whether the petri net is valid or not.

7. Menu Bar. A menu bar where designers can save/load petri nets to/from disk and
import/export groups, if implemented.

4.2.1 Editor Prototype

Loosely inspired by PIPE, this project’s editor, is planned to provide the user with the
following tasks (tasks are succeeded by the their requirement priority):

 Add places onto the screen (MUST)

 Add transitions onto the screen (MUST)

 Add tokens in places (MUST)

 Remove places from the screen (MUST)

 Remove transitions from the screen (MUST)

 Remove tokens from places (MUST)

 Remove arcs from the screen (MUST)

 Link places to transitions and vice-versa through arcs (MUST)

 Group Petri Nets (SHOULD)

 Edit groups (SHOULD)

A Language for Game Design and Choreography

32

 Name places, tokens, transitions, arcs or groups (MUST)

 Filter groups according to keywords (NICE)

 Export groups (NICE)

 Import groups (NICE)

 Save Petri Nets to disk (MUST)

 Load Petri Nets from disk (MUST)

 Undo action (SHOULD)

 Redo action (SHOULD)

4.2.2 Editor Architecture Proposal

Figure 9 Communication among Editor components

As shown in Figure 9, the editor’s inner structure is composed of 7 modules:

 Petri Net Model. This module contains the Petri Net’s in-memory computational
representation and corresponds to the net that the designer is editing at a given
moment. It provides the necessary data for other modules such as XML Layer and
Simulator to store the net to disk and simulate the net’s flow respectively.

 GUI. This corresponds to the visual aspect of the editor. It provides a way to render
visual components such as Petri Nets, menu bars and buttons and acts as a container
for GUI elements. It notifies the Event Listener module when there is a button
press event and receives draw calls from the Petri Net Model, Preset Library and the
Event Listener.

 Event Listener. Module responsible for the buttons’ presentation and actions. It
contains a controller that communicates with other modules by sending commands
in response to received button pressed events.

 Simulator. This represents the Petri Nets’ simulator and validator. It is used check
for Petri Nets’ syntax errors and to simulate the net’s flow for debugging purposes,
so that designers can observe how their creation works.

 XML Layer. This layer is accountable for the net’s persistence. It contains services
to save/load Petri Nets to/from disk, using an XML format. It also contains a parser

A Language for Game Design and Choreography

33

used to assemble Petri Nets from XML files so that they can be loaded into models
for the Petri Net Model and Preset Library.

 Preset Library. This Library contains a memory representation of sub-net presets.

 Creation API. Finally, this module provides functions that support the creation of
building blocks to populate the Preset Library module. For the time being, this API
will be an XSD file. This module works in conjunction with XML Layer to elaborate
XML files depicting the referred building blocks.

A more in-depth analysis is provided in Figure 10’s class diagram:

Figure 10 Petri Net Editor Class Diagram. Classes in orange symbolize Petri Nets’ data
structures; In red, they represent button actions; Green denotes the GUI class; Grey
represents the Simulation and execution engine; The XML processing class is depicted in
yellow.

The GUI class acts as a Façade for other classes by providing access methods to its
component classes. This class communicates events to its collection of Button through a
Publish/Subscribe (Observer) (Gamma, Helm, Johnson, & Vlissides, 2011) mechanism.
This class contains a Drawable interface which allows it to render itself and its Drawable
children (Button and PetriNet).

The Button class acts as a handler for a single Command (Gamma, Helm, Johnson, &
Vlissides, 2011). When notified, it executes its command (Figure 10 shows, in red, different
commands based on the user task list in 4.2.1).

The groups of classes underlying the Petri Net Model, depicted in orange, are based on the
framework presented in Nadle (2003). Each PetriNet object contains a set of Transition and
Place, which in turn contains a set of Token. These objects can be identified by an integer.

A Language for Game Design and Choreography

34

PetriNet, who is also a Façade, provides methods to add and remove places, transitions, arcs
and tokens. The Script class abstracts scripts mentioned in subsection 4.1.

4.3 Petri Net’s Simulation and Interpretation Engine

Figure 11 Petri Net Engine Architecture Diagram

Figure 11 exhibits an overview of the system’s proposed architecture. As mentioned in 3.1,
this system is to be integrated into an existing game engine; hence it is illustrated, in the
diagram, components such as Sound Engine, Renderer, Pathfinder, Input and Animator.
Regarding the Pathfinder, it is worth noting that this proposal makes the assumption that
this module is present (as it is present in most modern game engines).

Components exchange information, through messages, using two types of channels:
message queues and publish/subscribe channels (referred to as P/S out). Message queues
are used to transmit request/response commands among components in a synchronous
manner. Publish/Subscribe channels; on the other hand, are used to transmit information
asynchronously, as it becomes available, in order to avoid periodic information polling.

The PetriNet Engine is meant to run the actors’ Petri Nets, translating them into game-
engine code. It contains a Simulator, which supports flow progression in a given Petri Net,
and a Petri Net Model module, containing the memory representation of a net.

The Game Context is the collection of actors and other entities (such as scenery objects)
that compose the video game. In this proposal, there is a component called Context Cache,
which is a mirrored replica of the Game Context. Context Cache also serves as a
communication hub between the PetriNet Engine and the other engine components by
containing specific channels for each component (because the number of components is
static, this allows to avoid unnecessary overhead introduced by message rerouting). This is
because most commands also affect the game context, and consequently, its replica.

A Language for Game Design and Choreography

35

Figure 12 illustrates the class diagram for the proposed architecture formerly presented:
Classes in blue correspond to the message channels and handlers necessary to make the
communication function; Classes in red represent the engine’s components’ (in grey)
adapters (Gamma, Helm, Johnson, & Vlissides, 2011); In orange, are the classes comprising
the Petri Net Model (as explained in 4.2.2); Green classes represent the PetriNet Engine and
its simulator, which uses a strategy pattern (Gamma, Helm, Johnson, & Vlissides, 2011) to
allow the integration of different algorithms of Petri Net simulation for testing purposes;
Finally, there are a group of classes representing the game objects present in the Game
Context and Context Cache (these are Entity, Actor and Stage).

The following subsections explain, in detail, how communication is made between the
PetriNet Engine and the rest of the components.

Figure 12 Petri Net Engine Class Diagram

4.3.1 Animator Module

The Animator component is used to play animations, as such, it provides services to play or
stop them, to change its parameters and to inform that a certain animation is playing, as seen
in Figure 13. Command messages labeled as (1), originated from the PetriNet Engine, are
relayed through the Context Cache to instruct the animator module. It then responds
sending the results of (1) commands back to the PetriNet Engine, through the Context

A Language for Game Design and Choreography

36

Cache. When available, the Animator sends information depicting (2) to the Context Cache
to notify the PetriNet Engine.

Figure 13 Communication between Animator and Petri Net Engine

4.3.2 Game Context Module

The Context Cache, Figure 14, provides services to retrieve and manipulate game objects
(such as actors). PetriNet Engine makes (1) and (2) requests. Since (2) requests result in an
inconsistency between the Game Context and the Context Cache, these type of requests
originate a Game Context update. Game Context also sends updates to Context Cache,
through a publish/subscribe channel.

Figure 14 Communication between Game Context and Petri Net Engine

4.3.3 Input Module

This component, shown in Figure 15, is used to process the input (such as mouse, keyboard,
touchpads, gamepads, etc…). Data labeled as (1) is sent directly to the PetriNet Engine,
through a publish/subscribe channel, since its results do not directly affect the game

A Language for Game Design and Choreography

37

context. The PetriNet Engine sends requests labeled as (2) to the Input component which
are responded through regular messages.

Figure 15 Communication between Input and Petri Net Engine

4.3.4 Pathfinder Module

Figure 16 illustrates this component, whose purpose is to calculate paths in a given map.
The PetriNet Engine sends requests labeled as (1) or (2). Since only (1) commands require
response, (2) commands prompt a change in parameters used to calculate a path, these
responses are sent, from the Pathfinder, back to the PetriNet Engine.

Figure 16 Communication between Pathfinder and Petri Net Engine

4.3.5 Render Module

This module, in Figure 17, refers to how the visual feedback is presented and manipulated.
As such, services provided by the Context Cache that manipulate objects’ position, rotation
and scale, are presented in this diagram. PetriNet Engine sends (1) and (2) requests either
directly to the Context Cache or to the Renderer (relayed through the Context Cache).
Responses are sent back to the PetriNet Engine.

A Language for Game Design and Choreography

38

Figure 17 Communication between Renderer and Petri Net Engine

4.3.6 Sound Engine Module

The Sound Engine is used to play and manipulate sounds. As depicted in Figure 18, it
provides services to record sounds, to play, stop or pause sounds, to change sound
characteristics such as its pitch, volume or pan value. PetriNet Engine sends (1) and (3)
requests, from which only (3) generate responses from the Sound Engine. The Sound
Engine also sends data labeled as (2) so that the Context Cache can notify the PetriNet
Engine.

Figure 18 Communication between Sound and Petri Net Engine

4.4 Features

With this system, it is intended to provide the following features:

 Visual debugging of the Petri Net through simulation.

 Reuse of grouped Petri Nets.

 Develop preset Petri Nets.

 A means to create scripts and associate them with transitions.

 Integration with arbitrary game/simulation engines.

 Support for multiplayer games.

 Support for multiple actor modeling.

A Language for Game Design and Choreography

39

4.5 Quality Attributes

Intrinsically, this tool was designed to provide the ensuing quality attributes: portability so
that it would not be tied to a particular OS, interoperability which would allow to use the
tool with different game/simulation engines, usability to complement Petri Net’s
accessibility, error recovery due to the fact that designers will be working with a language
with a defined syntax and, therefore, must be warned of syntax errors and how to solve
them and, finally, scalability relative to the number of actors.

The proposed architecture fulfills all but two quality attributes: it provides adapters so that
various game/simulation engines can be used to integrate the application, thus satisfying
interoperability; the architecture includes a syntax validator module so that it can be used to
issue warning messages, ensuring error recovery; it is composed of a local game context
cache to allow local computations instead of filling the bandwidth and, consequently, the
game server, therefore promoting scalability. Portability and usability are not fulfilled by the
system’s architecture because, the former is dependent on the technology used and the latter
relates to the application’s interface.

A Language for Game Design and Choreography

40

5. Implementation

5.1 System Overview

An overview of the entire system, and how it communicates with Unity, is presented in
Figure 19. As can be seen, the editing application contains three execution threads: GUI,
Execution Engine and Communication Module. On the Unity-side, there are two execution
threads: The game logic thread, or main thread, which is responsible to handle all of the
games’ computations and the Communication Module. Both Communication Modules
exchange information with each other.

Figure 19 Deployment Diagram of the Architecture

A more in-depth view of the editor is presented in Figure 20.

Figure 20 Static Perspective on the Architecture of the Application. Red boxes indicate
editor’s components while the blue box symbolizes a Unity module. Finally, the purple box
represents a component that both the editor and Unity contain.

As illustrated, the editor contains 6 components while the game engine contains 2:

A Language for Game Design and Choreography

41

 GUI – This block contains elements that make for the interface including

EventListener which is a module that handles input events. It also contains Net

Controllers which are objects composed of a single Net element (transitions, places

or arcs) and its respective view. These controllers encompass a set of rules that

indicate which interactions are available for a given element and, likewise, how the

net’s view is presented in the GUI’s viewport; The PresetLibrary which is a container

that stores presets of sub nets so that they can be reused later.

 XML Layer – This component, comprised of PNML Parser, converts a given Petri

Net model to PNML and vice-versa.

 Net Manipulator – This module serves as a Façade (Gamma, Helm, Johnson, &

Vlissides, 2011) with a thread safe interface that allows manipulating the Petri Net

model. This is due to the fact that the Execution Engine, which contains the Petri

Net data structure, and the GUI run on separate threads.

 Simulator – The simulator performs simulation steps in order to fire transitions as

well as to trigger user-defined actions. This component contains the Petri Net data

structure as well as its syntax validator.

 Communication Module – This is the bridge between the game engine and the

editor. It provides services to send and receive XML messages. As such, the

Communication Module also includes an XML parser and an object builder. It also

contains a list of observers (Gamma, Helm, Johnson, & Vlissides, 2011) used to

notify special Petri Net places (See subsection 4.1.2) that a token is available and on

the Unity side that a command has been received.

 Actor – Represents an in-game actor. Each actor contains an Event Processor
component. This component receives instructions from the editor, relayed through
the Communication Module and, likewise, sends sensor perceived data through the
same model as well.

Communication, as hinted, is done through the exchange of XML messages much like the
SOAP protocol. But unlike SOAP, the messages’ syntax is lighter as to avoid an unnecessary
decrease in performance due to message processing. Seeing that one of the attribute qualities
of the system is interoperability, an XSD defining the syntax was created with the purpose of
being publicly accessible, so that game engines may use it to communicate with the editor.
The next code snippet illustrates the XSD file’s contents.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="MessageSyntax"
 elementFormDefault="qualified" xmlns:tns="MessageSyntax">
 <xsd:element name="Message">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="Body">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:attribute name="sender" type="xsd:string"/>
 <xsd:attribute name="receiver" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
Figure 21 Messages' XML syntax in XSD

A Language for Game Design and Choreography

42

The message consists of a single element with the attributes “sender” and “receiver” that
represent the message’s sender and receiver respectively. This element contains a Body type
child representing data that is being transmitted. Data can be any object as long as it is
serialized through XML and its XSD file, detailing an xml-to-object mapping, is shared
between the editor and the game engine. However, at the moment of writing, this feature is
restricted only to support object wrappers for native types (string, integer, float and boolean)
and a special object that contains methods to be invoked on a particular class. The type
attribute of the Body element is used to identify the object’s type so that it can be de-
serialized.

Regarding connections, the communication module contains a pool of worker threads that
are meant to handle incoming requests for more than one client. This way, designers can use
only one editor which facilitates debugging and run-time authoring of the net (having
multiple editors would require that changes made in one net to propagate across the other
editors, increasing bandwidth usage and the risk of having inconsistent models). This design
choice makes the assumption that game state consistency (how in-game actions preserve
partial order among all clients) is the engine’s responsibility. This is because state consistency
is provided by network middleware and, therefore, it is not necessary to replicate efforts
towards the editor system. This way, the execution engine of the system can use more
processing power.

The subsequent two figures showcase how the editor works with multiplayer games in peer-
to-peer and client/server architectures. Since hybrid architectures mixes communications
both peers and servers, an image of this architecture was not included as the interactions are
similar to the ones present in the following figures:

Figure 22 The system in a P2P environment

As can be observed, each peer communicates with every other peer, alongside the editor.

Figure 23 The system in a client/server environment

Unlike the previous picture, here a server acts as a gateway for clients to communicate with
the editor.

A Language for Game Design and Choreography

43

5.1.1 Petri Net Interpretation Overview

This subsection provides insights, through sequence diagrams, regarding the implemented
functionalities that contribute to the underlying mechanism that translates Petri Nets’
behavior models into in-game actions. These functionalities include system startup, how
tokens are received by input places, how transitions invoke actions and how the editor
displays to the user, available channels and scripts. It is worth stating that some classes and
methods were omitted from the sequence diagrams as to increase readability and also that
the Unity class present in most of the diagrams represents arbitrary objects in the Unity
game-engine.

The startup, presented in Figure 24, demonstrates how both the editor and the game engine
start and initiate communication. As can be observed, the main editor class, PetriNetEditor,
creates a root Net and a first child net, both of type BasicNet. It then creates the net’s visual
representation, EditorViewport, the simulator and the PostOffice, a class responsible to
send and receive network messages. On the Unity-side, the engine creates its own
PostOffice which issues a connection request to the editor. This sequence assumes that the
editor has been started before Unity.

Figure 24 System startup sequence diagram

Input Places can get tokens from two means: they either receive it from the actor’s sensors
or from an Output Place. In both cases, this is done by sending messages through the
PostOffice class even though Input Places and Output Places reside on the same editor.
This design choice was made in order to keep the code consistent and to allow for the
system to support multiple editors in the future.

Since Petri Nets may represent one or more instances of an actor archetype, knowing which
actor sent a token to a given Input Place to cause a transition to fire became a problem. To
counter this, tokens where given owners. They can be either owned by a specific actor in
which case they carry its id or they can be neutral. Id-bound tokens can only be used to fire
transitions if all of the places, linked to that transition, contain tokens with the same id or
neutral tokens.

A Language for Game Design and Choreography

44

Figure 25 illustrates how an actor in Unity, after perceiving some state from the
environment, causes a token to be inserted in an Input Place. On the right-most corner, the
actor’s component, EventProcessor, starts by building an XML representation of the
message (including the state it perceived) using the helper class, MessageBuilder. Afterwards,
it uses PostOffice to relay the message to the editor’s PostOffice. When the editor’s
PostOffice receives the message, it unwraps the message’s receiver so that it can notify the
appropriate Channel observers which are being observed by NetworkInputPlace objects.
When NetworkInputPlace objects are issued an update, they retrieve the state from the
message and use ThreadSafeNetManipulator to add a token to the affected Input Place.

Figure 25 Sending a token from Unity to Input Place sequence diagram

The other way for Input Places to get tokens is described in Figure 26. When an Output
Place receives a token from a transition, it notifies a NetworkOutputPlace object. Upon
receiving this notification, NetworkOutputPlace objects, with the help of MessageBuilder,
create a message with the token and send it through the PostOffice. Afterwards, the
algorithm works in the same manner as explained previously.

Figure 26 Sending a token from Output Place to Input Place sequence diagram

A Language for Game Design and Choreography

45

The following figure showcases how transition firing is converted to actions in-game. Since
using technologies akin to RPC had the disadvantage to be non-interoperable, invocation of
game engine-side methods is done through reflection (Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 2011). Whenever a transition, containing an action, is fired, a message,
detailing which method to invoke, is sent through the PostOffice. However, before sending
the message, it is first built using MessageBuilder. After receiving the message in the game
engine’s PostOffice, it is then relayed to the target actor’s EventProcessor which extracts the
method to invoke. At this point, one of two situations may occur, depending on the game
being online-based or not: if it is not online-based, the method is invoked using the
component’s SendMessage method. If it is online-based, it is used an RPC invocation
(Unity’s only method of sending information in a multiplayer game) in order to propagate
the state throughout other Unity clients connected to the game server as Unity’s multiplayer
middleware works by using RPC.

Figure 27 Invoking a script in Unity sequence diagram

Finally, Figure 28, illustrates how the editor gets a list of available scripts and channels to
display to the user. Whenever one of these parameters is to be sent, Unity builds a message
with the given channel/script name and sends it through the PostOffice. After sending the
message to the editor’s PostOffice, it is then converted to the channel/script and added to
the ApplicationContext, a Façade class that contains the context of the editor’s GUI. On a
side-note, scripts are confined inside methods that have a special attribute
“[PNTransitionMethod]”. This way, only methods with this attribute can be sent to the
editor in order to avoid cluttering the editor’s lists with unusable methods.

A Language for Game Design and Choreography

46

Figure 28 Update the editor with available channels/scripts sequence diagram

5.1.2 Notable Differences from the Original Architecture Proposal

During development, some modifications to the architecture proposal had to be done either
due to restrictions imposed by the technology choices or due to some design considerations
made during the implementation stage.

The first big difference is that the execution engine and the editor are not separate entities as
can be observed by the inclusion of a communication module in the editor’s architecture.
Initially it was thought to have the editor to create a static model which would then be
imported by the execution engine on the game engine’s side. Later on, this was found not to
be an ideal solution because it would require additional effort to permit interoperability.

In the editor, the creation API module is absent because it was considered deprecated due to
the possibility of creating presets using the editor instead. Additionally, the Petri Net Model
is inserted in the simulator unlike what was stated in the original proposal. This is because
JFern’s simulator requires for the model to be part of it. Finally, in the implementation’s
architecture, there is a module NetManipulator used for thread-safe operations. This was
included since the implementation contained more than one thread (an aspect which was
not considered in the initial proposal).

In the game engine-side, the differences are more notorious. As can be observed in Figure
20, there are no wrappers for game engine components. Since Unity has a component-
driven architecture in which game objects are a collection of behavior components, each
containing several engine elements (for example, input, sound or animation), introducing
wrappers for such elements would result in rewriting the engine. Instead, a better solution
was devised involving the creation of a component that communicated directly with the
communication module and offered services to either send messages to other components
in the same game object or to send data to the editor through the communication module.

5.1.3 Proof of Concept

A prototype game was developed using the system to showcase its functionalities. In order
to focus on the spawning and interaction of multiple autonomous actors I developed a game
called Orphibs, drawing inspiration from SEGA’s Sonic Adventure’s (Sega, 2001) meta
game: Chaos Garden. Chaos Garden is an Artificial Life, or A-Life, meta-game in which
players control an avatar whose purpose is to take care of autonomous fragile creatures
called Chaos. Much like Chaos Garden, Orphibs contains autonomous creatures. But unlike
the former, Orphibs does not require player interaction. Another specificity about this game

A Language for Game Design and Choreography

47

is that it can run on several computers – each spawning its own orphib into the game. This
design choice was due to the fact that it facilitates testing in a self-sufficient manner as it
doesn’t require other users to try out the game. An in-game screenshot can be seen in Figure
29:

Figure 29 Orphibs screenshot

The game’s world consists in a large grass field with several trees, a pond and a wooden
house. Occasionally, toy trucks and vegetables are spawned in random locations. Orphibs
are small, lime-green and anthropomorphic creatures. Internally, they contain a set of status
variables: hunger, boredom, tiredness and age and a list of possible atomic actions: grow, eat,
play, sleep, walk, run and stop. Status variables change as time passes in relation to different
constants. Actions, on the other hand, are a succession of tasks that span across a fixed
time-length and influence how internal status variables, excluding age, are altered. An orphib
cannot do two simultaneous actions. An exception to this rule is growing which occurs at
every time frame. The remaining actions are chosen according to a Goal-Oriented selection
method (Milligton & Funge, 2009) using the internal status variables as utility values.

The editor system was used to model the updating schedule of the internal status, the
growing routine and which action took place given an arbitrary selection. This is illustrated
in the next figure:

Figure 30 Orphibs' behavior model during the simulation’s execution

This model is composed of input places that represent sensors of the orphibs’ internal state.
For every time frame, the “status change” and “can grow” places are filled with tokens, one

A Language for Game Design and Choreography

48

for each orphib present in the game. The same thing happens for every other Input Place
when an action selection happens. The transitions correspond to scripts that either: update
the status variables, make an orphib grow or puts in motion the set of tasks that compose
eat, sleep, stop, play, eat, walk or run.

5.2 Technology Choices

The artifact was built using Java due to its portability and the interface was made with Java’s
GUI API: Swing. Initially, the editor was meant to be based on the JFern Editor because it
provided JFern’s Petri Net threaded simulation mechanism, data structure and PNML
exporting/importing API as well as views and controllers for their visual representation.
This idea was discarded because the GUI’s code was poorly documented, confusing and
some of the it classes were not made available as source code. Consequently, only the
simulator, data structure and PNML parser were used. The reason behind using JFern is that
besides offering the previously mentioned set tools, it was the only tool from the ones
researched in subsection 2.5.2 that allowed to introduce code to be executed when a
transition fires, thus reducing some programming effort when developing the editor’s
execution mechanism. Nevertheless, this tool was not used in its vanilla form but, instead, it
was modified to provide some attributes to the Petri Net object’s including message
channels.

The communication system uses TCP as its transport protocol due to its reliability.
Although UDP would seem to be a better option for a transport protocol to ensure network
scalability, it would require an application-layer reliability mechanism to guarantee that
messages sent from either the game engine or the editor reach their destinations as losing
too much datagrams would have a negative impact on games/simulations. Since TCP had a
built-in reliability mechanism, this protocol was chosen during the proof of concept to
illustrate how the communication works but was implemented in a way that it could be
easily substituted by UDP for network scalability tests.

Data exchanged across the network is done by wrapping objects in a XML layer because it is
a human-readable format (which facilitates debugging), the de-facto standard in
interoperable information exchange protocols and can be natively processed in a variety of
programming languages.

The game engine used to showcase the proof of concept was Unity. As stated in subsection
2.3, Unity is a general purpose engine, comprised of several visual tools, with support for
several scripting languages, including C# .NET. The reason behind this choice was that its
visual tools simplified the process of developing a proof of concept prototype whilst the
native support for C# .NET allowed for an easier integration with the editor as the
functionalities present in the .NET framework could be used. This allowed to circumvent
Unity’s network limitation: only Unity games can communicate with each other through the
build-in middleware. In fact, Unity-side communication was made using TCP connections as
well.

Unity is a single-threaded engine. This means that blocking operations, for instance, waiting
for connections could disrupt the game and while .NET contains multi-threading, using
Unity specific calls outside of the main thread are not permitted. To counter this, I used
Loom (“Learn When It's The Right Time”, 2011), a plug-in created for Unity that provides a
wrapper for C# thread pools and gives the developer a means to indicate, in a given
method, which segment of code can run in the main thread and which can run in worker
threads.

A Language for Game Design and Choreography

49

5.3 Development Activities

As written in subsection 3.5, the development stage spanned activities from February 11th to
June 2nd . The following list states the activities that took place in each iteration:

Iteration 1 (11/2 – 17/2) – An initial phase in which the editor’s base language and
graphical API were chosen according to the comparison of several rapid prototypes
made using different candidates.

Iteration 2 (18/2 – 10/3) – Implementation of the GUI’s layout including panels, an
object drawing system, tool bar and menu buttons as well as viewport and viewport
objects’ interactions. Additionally, a cursor manager featuring context sensitive
cursors, integration of the Petri Net data structure into the editor, the XML layer
(reading and writing files along with the conversion of the Petri Nets into PNML)
and the undo/redo mechanism were also implemented. Moreover, the validation and
simulation mechanism were also introduced in the editor during this iteration as well
as some fine tuning in JFern’s PNML file creator.

Iteration 3 (11/3 – 5/5) – During this phase the prototype game was designed and
implemented alongside the support for input and output places, class nets,
transitions’ scripts and subnets. Also during this stage, the communication modules
for both the editor and the game engine were created.

Iteration 4 (6/5 – 2/6) – Code revisions and interface remodeling were done during this
iteration as a result from usability testing.

5.4 Work Management and Prioritization

In order to manage how the development process took place, I devised two lists: a work
backlog containing what activities remained and a defect list detailing software defects,
found in the application, and their respective severity levels. At the start of each week, I
would choose a subset from both lists and divided it into tasks. During the week, I would
complete said tasks and, in case all of the them were not completed at the end of the week,
the remainder transited over to the next week. Otherwise, I would select another subset
from the aforementioned lists. After each activity was implemented, I would perform tests
to access if it was defect-free. It is worth mentioning that the work backlog would be revised
in order to add or remove elements. Examples of both these lists are stated in appendix A.

Prioritization was given according to the following order: high priority defects, tasks that
remained from earlier weeks, medium priority defects, tasks that can be tested independently
or tasks that serve as support for other tasks, tasks that are dependent from other tasks and
low priority defects. Defect prioritization was attributed in line with their capability to crash
or hinder other application functions.

5.5 Implemented Features

As presented through this section, all of the features stated in subsection 4.4 were
implemented. However, since there was excess of time during the development stage, two
additional features were also implemented:

 Model editing while simulation is running. This feature was thought to increase the
application’s utility as designers can test whether a given construct works best or not
while the game is running. This also promotes a faster game balance process and
behavior visual debugging.

A Language for Game Design and Choreography

50

 The execution engine can run in batch mode. This is important for scenarios where
Petri Nets are not intended to be edited so the application does not need to waste
resources in rendering the GUI.

A Language for Game Design and Choreography

51

6. Evaluation

6.1 Usability Tests

These evaluations were concentrated on the interface as it was a crucial part of the
application and encompassed most of the required attributes and objectives devised for the
project. The type of tests chosen to evaluate the interface were formal usability lab tests
(Sharp, Rogers, & Preece, 2002) because they provide a means that, besides recording
usability errors, result in feedback in terms of user experience and, while though these tests
are, by definition, conducted in a controlled environment, the area and conditions in which
they took place resemble actual application scenarios.

There were two main goals behind the usability tests. The first one was to identify potential
usability problems existent within the interface. The second goal was to assess if whether or
not users, experienced or not, could create a video game using the application.

6.1.1 Test Setup

As previously written, the application’s interface was evaluated by means of formal usability
lab tests. These tests were made in the Information System Research Methods belonging to
the Information Systems Group Lab (CISUC) and had an expected time of completion of
approximately 1h30m, however subjects were free to surpass this schedule.

These tests consisted in individual sessions where each voluntary tester was prompted to
setup and define the behaviors in a video-game using the thesis’ application in conjunction
with the Unity game engine and pre-existing graphical assets (level and character 3D
models). During those sessions, testers were accompanied by an evaluator, I, whose job was
to clarify any rising questions and to take notes of events that could happen during the test.
In order to help document any event, that ultimately I could not note due to lack of writing
speed, audio was recorded. Initially these audio recordings were complemented by a desktop
recording but, because of technical problems, most recording files were corrupted and had
to be discarded from the results’ analysis.

Each session followed a predefined script. Primarily, test subjects were introduced to the
project’s context and test objectives. Secondly, they were asked demographic questions for
later analysis of the population performing the test; the actual test started afterwards, when
testers were given a document with information regarding Petri Nets and were encouraged
to explore the interface for 5 minutes, after which they were given the game’s design
document and a list of tasks that contributed for the creation of said game. After each task,
test subjects estimated its difficulty in a scale of 1 to 5. Subsequently they were interviewed
to detail their overall user experience and performance and were requested to list the top 5
best and worst aspects of the interface, according to their opinion.

The game that test subjects were supposed to create was, as stated, described in a pre-made
design document and detailed in a task-list. This document defined the context of the game,
its rules, actors and sensors and scripts that were available to them. The task-list helped
guide the users in the completion of the game by dividing it into tasks. The first half of the
list contained a step-by-step guide while the second half was only comprised of textual
descriptions. This way, testers, during the first half, could learn the basics of the application
as well as its quirks. An overview of the tasks that subjects had to complete is as follows:

1. Read information regarding Petri Nets and explore the editor for 5 minutes.

A Language for Game Design and Choreography

52

2. Read the game’s design doc and start a new project.
3. Build a chronometer mechanism.
4. Create an overall score update mechanic when the chronometer reaches zero.
5. Build the player’s navigation system.
6. Create the player’s shooting mechanism.
7. Make a bot spawning mechanic.
8. Devise the enemies’ AI.
9. Integrate the overall score update with a local scoring system.
10. Make a winner announcement system.
11. Save the project.
12. Open a project and answer some questions regarding the language’s syntax and

semantics.

More detailed information regarding the task-list’s tasks can be found in appendix C.

In sum, the game consisted in a competitive first person shooter where players and AI-
controlled bots had to toss balls at each other in other to increase their team’s score. The
game’s design doc is presented in appendix B. The following screenshot illustrates the game,
as made by one of the test subjects.

Figure 31 Screenshot of the test game “Spheres of Steel” as created by one of the subjects

Tests were performed using 11 subjects (Sauro, 2011) and the data collected from the
recorded audio, demographic questionnaire, interviews and notes, was categorized into three
classes: demographic information, user performance and usability issues. Although 11 testers
participated, only 10 completed the development of the game and, therefore, the
information aggregated from the subject who had to abandon the test midway, due to
personal reasons, was only used in the demographic information and usability issues as there
was not enough information necessary to compile in the user performance category.

Demographic questionnaires required subjects to state their age, sex and highest academic
degree. They also inquired users to rate their experience, in a scale of 0 to 2 – 0 meaning
never heard of the term and 2 denoting highly proficient - in textual programming (TP),
visual programming (VP) and game development (GD). The reason for this is that textual
programming introduces people to algorithms; Experience in visual programming would
make the subjects used to the mannerism required to manipulate a visual language; and
experience in game development would make users accustomed to the steps involved in
creating a game. Table 24 in appendix E depicts the compiled information.

A Language for Game Design and Choreography

53

The population sample is composed of 2 females and 9 males, with an average age of 25.63
± 4.18. Their qualifications range from Bsc student to Phd student. From this information,
it can be deducted that the highest degree achieved by the test subjects range from High
School to a Msc coinciding with the academic education that game designers often have.

The average experience in textual and visual programming and game development is, as
stated, 1.18 ± 0.87, 0.45 ± 0.69 and 0.72 ± 0.66 respectively. This means that subjects are
familiar but not proficient in textual programming, barely know about visual programming
but have little knowledge of game development.

Overall, the subjects constituting the population sample were selected in a manner that
allowed for a heterogeneous sample, in means of qualifications and experience levels. This
way, in theory, would increase the amount of issues found by subjects.

6.1.2 Results and Analysis

6.1.2.1 User performance

In this context, user performance consists in the overall time subjects took to complete the
game’s development and each individual task and their relative perception of the difficulty of
every task. This was extrapolated from the audio recordings and ratings that testers gave
after finishing tasks. From the matrix in Table 25 two variables were derived: total time per
user, calculated by summing the matrix’s columns (Figure 32) and the average time per task
by averaging its rows (Figure 33). These were used as auxiliary variables to deduce other
expressions (see below). Likewise, using the matrix in Table 26, by averaging the columns,
the average difficulty per user was calculated and plotted in Figure 34. In the same manner,
averaging the rows gives the average difficulty per task as expressed in Figure 35.

Figure 32 Total Time per User

Figure 33 Average Duration per Task

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

1:55:12

2:09:36

1 2 3 5 6 7 8 9 10 11

Ti
m

e
 (

h
h

:m
m

:s
s)

Users

00:00

02:53

05:46

08:38

11:31

14:24

17:17

1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 (

m
m

:s
s)

Tasks

A Language for Game Design and Choreography

54

Figure 34 Average Difficulty per User

Figure 35 Average Difficulty per Task

From the data presented in Figure 32 it was concluded that on average, testers completed
the test in 1h33m09s ± 3m06s, only 3m09s above the expected time and their perception of
the test’s difficulty was, on average 2.2 ± 0.65 – this was derived from the values available in
Figure 34. This means that users thought the test they made, while using the application, was
relatively easy. Nevertheless, only 1 out of 10 subjects did not require the evaluator’s
assistance as evidenced in Table 26.

The average difficulty per task behaves quite as expected. By examining Figure 35 Average
Difficulty per Task we can observe that the easiest tasks were 1, 2 and 11. These tasks
consisted respectively in exploring the editor, opening a new project and exporting it and,
therefore, required minimal effort in comparison to other tasks. It is also noteworthy that
task 1 has a higher difficulty value than the remainder 2. This could be explained by the fact
that subjects were given a context-free timeslot to explore an application which they had not
manipulated before. When testers started to create Petri Nets, i.e. in task 3, difficulty rose as
anticipated and, as the users got costumed to the interface, their perceived difficulty
decreased progressively during tasks 4 and 5 as the mechanics were similar to those
necessary in task 3. During task 6, test subjects did not have a step-by-step guide as in
previous tasks but had, in its place, a textual description of the game mechanic they were
assumed to implement. As a result, difficulty increased, as anticipated. For tasks 7, 8, 9 and
10 an analogous behavior to tasks 4 and 5 was assumed, yet difficulty rose instead. This
could be explained by the fact that these tasks had more complex structures, than task 6, and
consequently depended upon additional problem solving expertise. However, tasks 9 and 10
have their average difficulty reduced which could be explained by the fact that testers were
now comfortable with the editor’s quirks and how to translate the task-lists’ tasks into Petri
Nets.

6.1.2.2 Usability Issues

The notes and interviews originated in a list of usability issues. These issues, after compiled
and normalized, were categorized according to their importance (Sauro, 2011), occurrence
frequency, type and occurrence by task and by user. From the usability tests, 406 issues,
distributed across 88 different events, were found. A table detailing these issues is presented
in appendix D.

There were only three importance levels given to issues: High, Medium and Low. These
levels were attributed according to the issue’s degree of prevention in completing a certain

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 5 6 7 8 9 10 11

D
if

fi
cu

lt
y

Users

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12

D
if

fi
cu

lt
y

Tasks

A Language for Game Design and Choreography

55

task. Each level corresponded to a number: High corresponded to 1, Medium to 0.66 and
Low to 0.33.

In total, there were 9 types used to classify the issues (Hourcade, 2006). These types were
Functional Error (FE), Affordance (A), Feedback (FB), Perception of System State (PSS),
Naming Interpretation (NI), Instruction Interpretation (II), Representation Interpretation
(RI), Mappings (M) and Domain Knowledge (DK).

Instead of compiling the findings into a table, the following pie-chart showcases the
distribution of these types according to the events found.

Figure 36 Frequency of issue types

The issue occurrence by task and by user was reported in a task-by-problem and user-by-
problem matrices (Sauro, 2012b). From these matrices, it was possible to calculate the
average problem frequency by user and task, which was used on a metric explained in
subsection 6.1.3, the percentage of problems found by only one user and the percentage of
problems found by users and tasks. The matrices are displayed in tables F and G, but due to
their size, they had to be split in half.

The matrices in appendixes G and F allowed to assess the problem frequency and
percentage of errors found per task and user respectively. These calculations were then
plotted for easier visualization. The former are present in figures Figure 37 and Figure 38
and the later in Figure 39 and Figure 40. These values were important during the error
correction iteration of the application’s editor.

9

10

1

5

37

8

7

4
7

Type of Events

FE

FB

PSS

A

M

NI

II

RI

DK

A Language for Game Design and Choreography

56

Figure 37 Issue Frequency by Task

Figure 38 Issue Frequency by User

Figure 39 Percentage of errors found per
task

Figure 40 Percentage of errors found per
user

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Fr
e

q
u

e
n

cy
 (

%
)

Issue

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Fr
e

q
u

e
n

cy
 (

%
)

Issues

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12

P
e

rc
e

n
ta

ge
 (

%
)

Tasks

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11

P
e

rc
e

n
ta

ge
 (

%
)

Users

A Language for Game Design and Choreography

57

Finally, Figure 41 illustrates the relative frequency obtained for the number of occurrences
for each issue, which can be consulted in appendix D.

Figure 41 Relative frequency of issue occurrence

From the pie chart in Figure 36, it can be assessed that most events lie on the category of
Mappings (Hourcade, 2006). This means there during the tests, most recorded events were
comprised discrepancies between their users’ intentions and the interface’s available actions.

Using this test setup, it can be concluded that most errors were found during the completion
of task 3 (approximately 42% of the errors were found there), as shown in Figure 39. This
may due to task 3 introducing most of the actions that are used through the rest of the test.
From the task-by-problem matrix (appendix G), it can be assessed that 36% of the problems
were only encountered once on all 12 tasks (this accounts for about 32 problems). On
average, approximately 21% ± 10.5% of the errors were encountered per task. Regarding
issue recurrence per task, on Figure 37 it is evident that only 8 out of 88 (roughly 9%) of the
issues appear at least in half of the tasks.

In Figure 40 it is revealed that each user found nearly the same amount of problems. In fact,
on average, they encountered 29% ± 4.6% of the total errors. As similar to problems that
appeared only on one task, 36% of the issues were also found by a single user. However,
unlike the most frequent issues per task, there were 15 errors that were found by more than
half of the task subjects, as is depicted in Figure 38.

6.1.3 Error Corrections

As stated, one of the usability tests’ goals was to discover usability errors present in the
editor so that it could be corrected. Yet, due to time constraints and for the fact that some
issues were mutually exclusive, meaning that fixing one problem could perpetuate another,
not all issues could be addressed. Instead, by applying the Pareto Principle (Sauro, 2012a) to
the list of errors, in theory, correcting the equivalent to “20%” would account for a
corresponding “80%” of all bad interactions. With that in mind, I devised a metric to help
identify the most critical problems and to sort accordingly so that I could elaborate a
correction plan and consequently fix most, if not all, of the critical errors.

This metric consisted in a two part algorithm. In the first part, a value, referred to as priority
level from now on, was attributed to each issue by calculating the arithmetic product
between the its frequency per user (IFU) and per task (IFT), its relative frequency (RF) and

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8
8,5

9
9,5
10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Fr
e

q
u

e
n

cy
 (

%
)

Issues

A Language for Game Design and Choreography

58

its importance (I). The formula is given by the expression
 . This results in a value ranging from 0 to 1 because all of the above-mentioned
variables were normalized beforehand. By multiplying these factors, it is assured that, for
instance, issues that appeared frequently during tasks, were encountered by most users and
tasks, and hindered the completion of said tasks are given more priority than issues that, for
example, were not as frequent or important. A chart detailing the priority levels per problem,
sorted by value, is presented in Figure 42 Priority Level per Issue.

Figure 42 Priority Level per Issue

The second step of the algorithm required introducing the resulting values in a matrix and
color scaled its cells. This means that cells were given a color in a white-red gradient
according to their distance to the minimum and maximum calculated values (0.0006 and
3.0228 respectively). Cells closer to the minimum were painted white whilst the others were
progressively colored red. Appendix H presents the calculated priority levels in a color
scaled matrix. Much like the problem-by-user and problem-by-task matrices, this one had to
be split in order to fit on a page as well.

From the table, I selected the issues whose cell color included shades of red and sorted them
by their hue (bright red as top priority and light pink as low priority). These cells
corresponded to the left most issues illustrated in Figure 42.

In appendix D, problems that contain a green cell means that they were considered to be
resolved. However, before resolving said issues, events of type DK and II were discarded
because although they were documented during the tests, they were not related to the
application per se, but to the subject’s inherent domain knowledge and interpretation skills.
Thus, the only solution to correct these issues would be to provide better information and a
task-list written more clearly. Another issue that was discarded was issue 85. The reason
behind this was that the introduction of a new structure, an “if” transition, would require a
revision of the editor’s language’s grammar in order to introduce flow control mechanisms
which was already considered for future work (see subsection 7.2). How the issues were
solved is also present in appendix D.

The revised interface is illustrated in the screenshot in Figure 43.

0

0,5

1

1,5

2

2,5

3

3,5

36 66 38 33 77 29 23 82 47 35 28 85 59 18 30 26 63 37 48 81 58 7 46 14 42 75 4 25 68 74

IF
T

x
IF

U
 x

 R
F

x
I (

%
)

Issues

A Language for Game Design and Choreography

59

Figure 43 Screenshot of the editor interface (post error correction)

6.2 Performance Tests

Since scalability was one of the attributes required for the application, some performance
tests were made in order to verify that the editor and execution mechanism could endure a
large number of actors performing simultaneously on a stage. This gave an idea on how the
application could behave on single player games.

Unfortunately, testing the scalability regarding the number of connections, i.e. players, was
not feasible as MMO scenarios contain a large number of simultaneous players which would
require resources that were unavailable. Furthermore, time constraints did not allow this
type of tests to be conducted.

6.2.1 Test Setup

Unlike usability tests, these were not executed with test subjects. Instead, they consisted in
running the editor alongside a modified version of the proof of concept game Orphibs. This
mod added a button to spawn actors on demand without additional machines connecting to
the game.

While the game was running, the spawn button was pressed in order to create as many
actors as possible until the game was left unplayable due to increased lag. During this time,
some attributes of both applications were measured using a resource monitor. These
attributes included the applications’ average CPU and GPU, physical memory and total
network usage. Additionally, the number of spawned actors was also documented.

For further comparison, these tests were executed 3 times using two different
configurations: one with the editor in batch mode and the other with it in graphic mode.
This allowed to evaluate if the editor’s renderer would impact its performance.

The machines’ hardware utilized for these tests was: a desktop computer with an Intel Core
2 Quad @2.33GHz processor, 4Gb of RAM, running a 64-bit version of Windows 7
Ultimate, NVidia GeForce 9600 GT graphics card and a connection speed of 100Mb/s and
a laptop with an Intel Core i7 CPU Q720 @1.60GHz processor, 6Gb of Ram, running a 64-
bit version Windows 7 Ultimate and a NVidia GeForce GT 330M graphics and a connection

A Language for Game Design and Choreography

60

speed of 54Mb/s. It is worth mentioning that the former machine was used to execute Unity
and the editor was deployed on the later.

6.2.2 Results and Analysis

Table 23 illustrates the results achieved during the scenarios:

Table 23 Average Resource Usage per Test Scenario

Tests Unity Editor

Configurations Number
of

Actors

 CPU
(%)

Physical
Memory

(KB)

Total
Network

(B/s)

GPU
(%)

 CPU (%) Physical
Memory

(KB)

Total
Network

(B/s)

GPU
(%)

Batch Mode

2 23 88 156 8 4 123 176 0

72 29 109 264 3 3 93 258 0

122 27 119 256 5 3 94 253 0

Graphic Mode

2 24 87 166 8 14 209 161 24

72 28 105 264 4 13 127 263 19

122 27 128 261 4 12 128 259 21

As can be observed, in both configurations, Unity’s CPU usage grows slightly when
increasing the number of actors but then stabilizes around 27-29% unlike the editor which
has a stable usage of 3-4% and 12-14% on each scenario respectively (however, 12% is high
for that particular processor as each core on the editor’s machine corresponds to 12.5% of
the total usage). This means that, even though the editor running in graphics mode occupies
one of the CPU’s core, increasing the number of actors has a bigger impact on Unity. One
thing worth noting is that while Unity stops working at around 122 actors, its CPU usage is
only 27%. This is because Unity’s default frame rate configuration allows the game to render
as fast as it can (Unity Technologies). Since the engine is single threaded (with additional
threads created by me for the communications module), the main thread occupies one of the
processor’s four cores entirely as each core is related to 25% of total usage.

Regarding physical memory, Unity’s usage increases at approximately the same rate in both
scenarios. The editor, on the other hand, decreases its memory. An explanation for this
event is that most of the objects created initially are purged by the garbage collector later on.
Nevertheless, as expected, running the editor in graphics mode has more memory usage
than running it in batch mode due to the fact that the visual editor requires to maintain GUI
structures in memory.

From all of the attributes, GPU has a more stable behavior in both applications and
scenarios. However, the editor has surprisingly more GPU usage running a 2D application
than Unity has running a 3D game.

Finally, network usage increases roughly in the same manner in both applications and
scenarios. There is a growth in network traffic when the applications have to account for 72
actors but it then stabilizes subsequently.

In conclusion, it is apparent that Unity is a bottleneck as it did not allow to add more actors
to the stage whilst the editor maintained functions. However, this is not critical for most
genres because the number of simultaneous actors present in a given stage is usually below

A Language for Game Design and Choreography

61

122 but for some genres including multi-agent simulations, MMO or even Real Time
Strategy, in which the number of simultaneous actors can reach thousands, having a
maximum number of 122 actors is not ideal. Another issue discovered from these tests is
that the editor’s GUI module needs to be optimized in order to reduce GPU, and possibly
CPU, usage. In these conditions, editing a big Petri Net could become unfeasible.

A Language for Game Design and Choreography

62

7. Further Work

7.1 Critical Aspects to Correct

There were some aspects regarding the application that were left to be corrected as future
work: Firstly, due to lack of further knowledge at the time of implementation, the thread
safe net manipulator uses the “synchronized” keyword for resource locking in order to avoid
unsafe operations. Using this keyword has some disadvantages as this method does not
allow some resource locking functionalities such as try lock. With the purpose of
circumventing this limitation, some of the coding was done in a way that could jeopardize
thread safe operations (although this was not confirmed during any of the tests). It would be
best to rewrite the thread safe net manipulator module using Java’s Lock object that was
introduced in this language’s most recent versions as it ensures more features than the
“synchronized” keyword. Secondly, it was found, at the time of writing, that places having
neutral tokens that are meant to be shared across multiple actor instances will cause race
conditions. This means that the first actor to enable a transition, in which a place with a
neutral token is linked, will cause other actors to be unable to fire said transition.
Introducing the concept of shared places where each neutral token is multiplexed according
to the number of actors would solve this issue. Another aspect was found during
performance tests. By observing their results, it was concluded that although the editor was
not a bottleneck, its graphics mode was not optimized regarding CPU and GPU usage.
Reducing draw calls could diminish the amount of usage and thus resulting in an editor
more CPU and GPU friendly. It was also assessed from these tests that Unity was CPU
intensive because it was configured to render as fast as it could. By imposing a fixed frame
rate, Unity would then decrease its CPU usage which in turn could potentially reduce, or
even remove, the bottleneck found. Finally, visual aesthetics were not considered during the
development of the prototype. It would be interesting to make the editor have a look and
feel more oriented towards its target audience.

7.2 Future Developments

One of the project’s quality attribute was scalability regarding the number of players which,
due to lack of resources and time could not be evaluated. For future developments, it would
be interesting to validate this attribute, through benchmarking, as it would mean that the
application could endure MMO scenarios. Another interesting activity would be to refine the
interface further using additional usability tests. This way, corrections made previously
would be validated and other aspects of the interface could be tested in a more in-depth
manner.

After that, two possibilities were discussed: iterate the language by adding new elements, for
instance flow control transitions, colored tokens (Aalst, 2011), and turn the existing
transitions into functions instead of script executors. The overall result would, theoretically,
lead the language to become closer to a programming language and increase its
expressiveness. The other possibility was to append a content generating mechanism to the
editor. This generator would create Petri-Nets and, through an activity logger feeding player
activity, would readjust existing nets resulting in a procedural game-design done by
feedback-reinforcement.

A Language for Game Design and Choreography

63

8. Conclusions

In this thesis, I presented a solution proposal to counter the downsides of game
programming and to allow designers to build behavior and choreography models for actors
in game/simulation contexts. This proposal consisted in a language specification, based on
Petri Nets, a system encompassing a visual editor, an interpretation/execution engine and a
communication mechanism that allowed the translation between modeled behaviors and in-
game actions on arbitrary game/simulation engines. This system was also devised to support
MMO due to its popularity as a game mode.

To validate this proposal, a proof of concept game prototype was created and it was proven
a success as the game’s actors, entirely modeled using the application functioned as intended
whether in single, or multiple, machines. Additional validation was made using usability tests
which were also proven to be successful as, on average, the heterogeneous population
sample (with different levels of experience regarding textual programming, visual
programming and game development) found the editor easy to use. Furthermore, some
scalability tests regarding the number of simultaneous actors were conducted. It was then
concluded that although the game engine presented a bottleneck that limited the number of
actors present, overall results indicate that the current configurations allow to develop most
game genres. However, due to time and resource constraints, additional scalability tests,
regarding the number of concurrent connections/players could not be performed. In sum,
the application was proven to suffice the devised objectives and, as scientific contribution,
the interaction design model, architectural proposal and application were originated from
this research.

During the course of this thesis’ research and development I had the opportunity to deepen
my knowledge base concerning several computer engineering topics. Most notably, I have
gained more information regarding Petri Nets: how do they work and what are their state of
the art applications in game development; a new research method that promotes agile
development; I have learned how MMO architectures are designed; The multi-thread and
network programming I had to do allowed to consolidate and extend my shallow knowledge
in those areas; Finally, I discovered how to devise and conduct usability tests which turned
out to be more difficult to perform than I had anticipated. Nevertheless, the practice I
gained will allow me to execute better tests in my professional future. In conclusion, this
thesis has allowed me to grow my skills in order to become a better professional.

A Language for Game Design and Choreography

64

References

Learn when it's the right time to use threads for your game and get to grips with some of the
complexities they impose. See how easy it can be to add a multithreaded functions to
your game... (2011). Unity Gems. Retrieved March 23, 2013, from
http://unitygems.com/threads/

AALborg University in Denmark. (2012). TAAPAL (Version 2.2.1) [Computer application
software]. Retrieved February 25, 2013, from http://www.tapaal.net/introduction/

Aalst, W. (2011). Hierarchical Petri-Nets. Eindhoven University of Technology. Retrieved
May 4, 2013, from http://cpntools.org/_media/book/hcpn.pdf?

Adobe Systems Software Ireland Ltd. (2012). Flash Professional CS (Version 6) [Computer
application software]. Retrieved October 3, 2012, from
http://www.adobe.com/products/flash.html

AgentSheets Inc. (2010). AgentSheets (Version 3.0) [Computer application software]. Retrieved
October 3, 2012, from http://www.agentsheets.com/

Araújo, M., & Licinio, R. (2009). Modeling Games with Petri Nets. Digital Games Research
Association (DiGRA) on Innovation in Games, Play, Practice and Theory.

Axelrod, R., & Amir, G. (2012). Massively Multiplayer Game Development 2: Architecture and
Techniques for an MMORTS. Retrieved October 29, 2012, from Gamasutra:
http://www.gamasutra.com/view/feature/130738/massively_multiplayer_game_.p
hp?print=1

Bandini, S., Manzoni, S., & Vizzari, G. (2004). Situated Cellular Agents for Crowd
Simulation and Visualization. iMES conference of Complexity and Integrated Resources
Management.

Baptista, T., & Costa, E. (2008). Evolution of a multi-agent system in a cyclical environment.
In Theory in Bioscience (pp. 141-148). Berlin: Springer-Verlag. doi:10.1007/s12064-008-
0031-2

Barbosa, A., & Azevedo, M. (2013). JPetriNet (Version 1.1) [Computer application software].
Retrieved February 25, 2013, from http://jpetrinet.sourceforge.net/

Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci, L., . . .
Weber, M. (2003). The Petri Net Markup Language: Concepts Technology and
Tools. In Applications and Theory of Petri Nets 2003 (pp. 483-505). Berlin: Springer-
Verlag.

Bonet, P., Lladó, C., & Puigjaner, R. (2007). PIPE v2.5: A Petri Net Tool for Performance
Modelling. 23rd Latin America Conference on Informatics (CLEI 2007).

Brom, C., & Abonyi, A. (2006). Petri Nets for Game Plot. AISB on Narrative AI and Games
workshop.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (2011). Reflection. In
Pattern-Oriented Software Architecture: A System of Patterns (pp. 193-219). Croydon: Wiley.

Catto, E. (2011). Box2D (Version 2.2.1) [Computer application software]. Retrieved October 3,
2012, from http://box2d.org/

A Language for Game Design and Choreography

65

Cooperative State University Karlsruhe. (2012). WoPeD (Version 3.0.1) [Computer application
software]. Retrieved February 18, 2013, from http://woped.ba-karlsruhe.de/

Crytek. (2011). CryEngine (Version 3) [Computer application software]. Retrieved October 3, 2012

Dingle, N., Knottenbelt , W., & Suto, T. (2009). PIPE2: A Tool for the Performance
Evaluation of Generalised Stochastic Petri Nets. ACM SIGMETRICS Performance
Evaluation Review, 36(4), pp. 34-39.

Dormans, J. (2009). Machinations Framework. Retrieved January 1, 2013, from Machinations
Wiki:
http://www.jorisdormans.nl/machinations/wiki/index.php?title=Machinations_Fra
mework

Douceur, J., Lorch, J., Uyeda, F., & Wood, R. (2007). Enhancing Game-Server AI with
Distributed Client Computation. 17th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV).

Electro Tank. (2012). ElectroServer 5. Retrieved October 29, 2012, from
http://www.electrotank.com/es5.html

Enterbrain Inc. (2005). RPG Maker (Version XP) [Computer application software]. Retrieved
October 3, 2012, from http://www.rpgmakerweb.com/

Epic Games. (2012, July). UDK (Version 3) [Computer application software]. Retrieved October 3,
2012, from http://www.unrealengine.com/udk/

Exit Games. (2012). Photon Server. Retrieved October 29, 2012, from
http://www.exitgames.com/Photon/

Fischer, E. (2002). PetriNet Kernel (Version 2.2) [Computer application software]. Retrieved
February 25, 2013, from http://www2.informatik.hu-berlin.de/top/pnk/

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2011). Design Patterns: Elements of Reusable
Object-Oriented Software. Westford: Addison Weasley.

gotoAndPlay(). (2012). SmartFoxServer. Retrieved October 29, 2012, from
http://www.smartfoxserver.com/

Hampel, T., Bopp, T., & Hinn, R. (2006). A Peer-To-Peer Architecture for Massive
Multiplayer Online Games. 5th ACM SIGCOMM workshop on Network and system
support for games.

Havok.com Inc. (2012). Havok Tool Suite. Retrieved October 3, 2012, from
http://www.havok.com/products

Heiner, M., Herajy, M., Liu, F., Rohr, C., & Schwarick, M. (2012). Snoopy – a unifying Petri
net tool. In Applications and Theory of Petri Nets 2012 (pp. 398-407). Berlin: Springer-
Verlag.

Hevner, A., & Chatterjee, S. (2010). The General Design Cycle. In Design Research in
Information Systems: Theory and Practice (pp. 26-27). Berlin: Springer-Verlag.

Hourcade, J. (2006). Usability Principles. University of Iowa. Retrieved May 16, 2013, from
https://www.cs.uiowa.edu/~hourcade/classes/fa06hci/lecture2.pdf?

A Language for Game Design and Choreography

66

Imperial College London. (2012). PIPE2 (Version 4.2.0) [Computer application software].
Retrieved November 5, 2012, from http://pipe2.sourceforge.net/

Jenkins Software LLC. (2012). Raknet. Retrieved October 29, 2012, from
http://www.jenkinssoftware.com/

Kadlec, R. (2008). Evolution of intelligent agent behavior in computer games. Charles
University in Prague. Retrieved January 17, 2013, from
http://artemis.ms.mff.cuni.cz/main/papers/

Kahn, K. (1995). Metaphor Design: Case Study of an Animated Programming Environment.
Computer Game Developer Conference.

Kahn, K. (1996, August). Drawings on Napkins, Video Game Animation, and other ways to
Program Computers. Communications of the ACM, 39(8), pp. 49-59.
doi:10.1145/232014.232028

Kahn, K. (1996). Seeing Systolic Computations in a Video Game World. IEEE Conference on
Visual Languages. doi:10.1109/VL.1996.545274

Kahn, K. (2000, March). Generalizing by Removing Detail: How Any Program Can Be
Created by Working with Examples. Communications of the ACM, 43(3), pp. 104-106.

Kahn, K. (2006). Time Travelling Animated Program Executions. Software Visualization
Conference.

Kahn, K. (2009). ToonTalk (Version 3) [Computer application software]. Retrieved October 3,
2012, from http://www.toontalk.com/

LAAS/CNRS. (2013). Tina (Version 3.1.0) [Computer application software]. Retrieved February
18, 2013, from http://projects.laas.fr/tina/download.php

Lantinga, S. (2012). SDL (Version 1.2.15) [Computer application software]. Retrieved October 3,
2012, from http://www.libsdl.org/

Lim, M., Dias, J., Aylett, R., & Paiva, A. (2009). Intelligent NPCs for Educational Role
Playing Game. In Agents for Games and Simulations (pp. 107-118). Berlin: Springer-
Verlag.

Lohmann, N., Mennicke, S., & Sura, C. (2010). The Petri Net API: A collection of Petri net-
related functions. 17th German Workshop on Algorithms and Tools for Petri Nets (AWPN
2010).

Mateas, M., & Stern, A. (2005). Procedural authorship: A case-study of the interactive drama
Façade. Digital Arts and Culture (DAC).

Mateas, M., & Stern, A. (2005). Structuring content in the Façade interactive drama
architecture. First Artificial Intelligence and Interactive Digital Entertainment Conference
(AIIDE).

Microsoft. (2010). Direct X SDK (Version 9.29.1962) [Computer application software]. Retrieved
October 3, 2012, from http://msdn.microsoft.com/en-
us/library/ee663274%28v=vs.85%29.aspx

Microsoft. (2010). XNA Game Studio (Version 4.0) [Computer application software]. Retrieved
October 3, 2012, from http://msdn.microsoft.com/en-us/library/bb200104.aspx

A Language for Game Design and Choreography

67

Microsoft. (2012). Kodu (Version 1.2.38.0) [Computer application software]. Retrieved October 3,
2012, from http://research.microsoft.com/en-us/projects/kodu/

Milligton, I., & Funge, J. (2009). Artificial Intelligence for games (2nd ed.). Burlington: Morgan
Kaufmann.

MIT Media Lab. (2009). Scratch (Version 1.4) [Computer application software]. Retrieved October
3, 2012, from from http://scratch.mit.edu/

Müller, J., & Gorlatch, S. (2004). A Scalable Architecture for Multiplayer Computer Game.
Informatik 2004 conference.

Nadle, D. (2003, April). A C++ Petri Net Framework For Multithreaded Programming.
ACCU Overload Journal(53). Retrieved November 5, 2012, from
http://accu.org/index.php/journals/357

Natkin, S., Vega, L., & Grünvogal, S. (2004). A new methodology for Spatiotemporal Game
Design. CGAIDE'2004, Fifth Game-On International Conference on Computer Games:
Artificial Intelligence.

Nowostawski, M. (2013, February 22). JFern (Version 4.0) [Computer application software].
Retrieved from http://sourceforge.net/projects/jfern/

Petri, C., & Reisig, W. (2008). Petri Net. Retrieved September 9, 2012, from Scholarpedia:
http://www.scholarpedia.org/article/Petri_net

Procedural Arts. (2005). Façade (Version 1.1) [Video-Game]. Retrieved January 13, 2013, from
http://www.interactivestory.net/

Rausch, M. (1998). AgentSheets – Programming above C-Level. Computer Graphik Topics,
10(3), pp. 10-12.

Repenning, A., & Citrin, W. (1993). AgentSheets: Applying Grid-Based Spatial Reasoning to
Human-Computer Interaction. IEEE Workshop on Visual Languages.
doi:10.1109/VL.1993.269581

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . .
Kafai, Y. (2009, November). Scratch: Programming for All. Communications of the
ACM, 52(11), pp. 60-67. doi:10.1145/1592761.1592779

Riesz, M., Baláž, M., & Juhás, G. (2010). PetriFlow: A Petri Net Based Framework for
Modelling and Control of Workflow Processes. Workshops of the 31st International
Conference on Application and Theory of Petri Nets and Other Models of Concurrency (PETRI
NETS 2010).

Saltsman, A. (2011). Flixel (Version 2.55) [Computer application software]. Retrieved October 3,
2012, from http://flixel.org/

Sauro, J. (2011, July). 10 Things to Know about Usability Problems. Retrieved May 25, 2013, from
http://www.measuringusability.com/

Sauro, J. (2012, September). Applying the Pareto Principle to the User Experience. Retrieved May
25, 2012, from Measuring Usability: http://www.measuringusability.com/

Sauro, J. (2012, June). Report Usability Issues in a User by Problem Matrix. Retrieved May 25,
2013, from Measuring Usability: http://www.measuringusability.com/

A Language for Game Design and Choreography

68

Scalify Pty Ltd. (2012). Badumna. Retrieved October 29, 2012, from
http://www.scalify.com/

Sega. (2001). Sonic Adventure 2 [Video-Game]. Retrieved May 5, 2013, from
http://www.sega.com/games/sonic-adventure-2/

Sharp, H., Rogers, Y., & Preece, J. (2002). Interaction Design: beyond human-computer interaction.
United States of America: Wiley.

Shilov, Y. (2013). Petri Net Editor [Computer application software]. Retrieved February 18, 2013,
from http://sourceforge.net/projects/petrineteditor/

Silicon Graphics International Corp. (2012). Open GL (Version 4.3) [Computer application
software]. Retrieved October 3, 2012, from http://www.opengl.org/

Sony Computer Entertainment Europe. (2011). Little Big Planet 2 [Video-Game]. Retrieved
October 3, 2012, from http://www.littlebigplanet.com/2/

Square Enix. (1987). Final Fantasy [Video-Game]. Retrieved October 3, 2012, from
http://na.square-enix.com/games

Stencyl, LLC. (2012). Stencyl (Version 2.1.0) [Computer application software]. Retrieved October 3,
2012, from http://www.stencyl.com/

Torus Knot Software Ltd. (2012). Ogre (Version 1.8.1) [Computer application software]. Retrieved
October 3, 2012, from http://www.ogre3d.org/

TU Eindhoven & Deloitte. (2005). Yasper [Computer application software]. Retrieved February
18, 2013, from http://www.yasper.org/

Unity Technologies. (2012). Unity 3D (Version 4) [Computer application software]. Retrieved
October 3, 2012, from http://unity3d.com/

Unity Technologies. (n.d.). targetFrameRate. Unity Script Reference. Retrieved June 28, 2013,
from http://docs.unity3d.com/Documentation/ScriptReference/Application-
targetFrameRate.html

Wang, J. (2002). Petri Nets for Dynamic Event-Driven System Modeling. In Handbook of
Dynamic System Modeling (pp. 24;1-24;16). Chapman & Hall/CRC.

Ward, J. (2008, April). What is a Game Engine? Retrieved October 3, 2012, from Game Career
Guide: http://www.gamecareerguide.com/features/529/what_is_a_game_.php

Werf, J., & Post, R. (2004). EPNML 1.1 – an XML format for Petri nets. Retrieved from
www.win.tue.nl/~jmw/_media/public/pnmldef.pdf

Woolridge, M. (2011). Practical Reasoning Agents. In In An Introduction to MultiAgent Systems
(2nd ed., pp. 65-70). Glasgow: John Wiley and Sons Ltd.

World Wide Web Consortium. (2011). HTML (Version 5) [Computer application software].
Retrieved October 3, 2012, from http://www.w3.org/TR/2011/WD-html5-
20110525/

A Language for Game Design and Choreography

69

Appendixes

A. Work Management Examples

Work Backlog

 Add support for several independent Petri nets

 Import xml models as subnets
o import models
o change ids

 Add sensor channels to XML

 Script integration
o Add actions to transitions
o Add input places
o Add output places
o Store action script and actor receiver in transitions

 Add curved arrows

Defect List

 Message XSD has syntax errors (High)

 Deleted fusion places are still present in the Petri Net model (Medium)

 Anchor points do not have the right coordinates (Low)

 Mouse events are not firing fast enough (Medium)

 Messages are not being broadcast when necessary (High)

 Dragging an arc issues a weird behavior (Low)

 Cursors’ images do not correspond to their functionalities (Medium)

A Language for Game Design and Choreography

70

B. Design Document

Introduction

“Spheres of Steel” is a single-player competitive FPS in which the player must toss balls at
his opponents and vice-versa. In this game, the player competes against several AI-
controlled bots, through several rounds.

Game structure

Control

The game takes place in an open arena in which the player can move freely. The arena is
populated by several bots and the player can interact with these bots by tossing balls, from
their endless supplies. Bots can also toss balls at the player. If a ball hits an entity, that entity
disappears unless the victim is the player. In that case, he will respawn moments later.

Both the bots and the player form each a separate team.
The game is organized in 7 timed rounds that last about 60 seconds each.

Scoring

The game keeps a scoreboard for both teams. Whenever a ball toss is successful (i.e. hits an
opponent), score is incremented for the attacking party. At the end of each round, the team
with the highest score wins the round. After 7 rounds, the team with most rounds won, wins
the game. It is worth noting that the game plays a sound to signal the end of the final round.

HUD

The HUD merely consists of text stating the remaining time as well as the scoreboard. The
scoreboard is composed of each team’s round and final scores and, additionally, the current
round. These texts should be located at the top corner of the screen.

Actions

Movement

The player can move by pressing the arrow keys or “wasd” keys. However, both the left and
right keys as well as the “a” and “d” keys will make the player strafe. Rotation is done by
moving the mouse sideways.

Fighting

Tossing balls is done by pressing the left mouse button.

AI

There is only one type of bots. When they see the player they follow him. Otherwise, they
scan their surroundings. During both phases, they can shoot balls.

Assets

In order to create this game, you must build the logic underlying the behavior of three actor
types: Player, HUD and Enemy.

A Language for Game Design and Choreography

71

Function Set

There are several available functions that you can use in order to develop this game. These
functions are spread across the three actor types.

Player

Move – Moves the player according to keyboard input.

Rotate – Rotates the player according to mouse input.

UpdateScore – Updates the enemies’ team score.

Die – Makes the player die.

Respawn – Makes the player spawn in the middle of the level.

Shoot – Makes the player shoot a ball.

Enemy

ScanSurroundings – Makes the enemy rotate on itself.

Seek – Makes the enemy seek the player.

UpdateScore – Updates the player’s team score.

Die – Makes the enemy die.

Respawn – Makes the enemy spawn in the middle of the level.

Shoot – Makes the enemy shoot a ball.

HUD

UpdateTime – Updates the HUD’s clock.

ResetTime – Resets the HUD’s clock.

PlayHornSound – Plays a Horn sound.

AnnounceWinner – Updates the HUD’s round text to announce a winner.

CheckRoundWinner – Updates the teams’ scoreboard with the round winner.

SpawnEnemies – Eliminates the existing enemies and spawns new ones.

Sensors

In addition, these actor types also have sensors.

Player

Enemyhit – A collision sensor. It is activated when an enemy ball hits the player.

inputaxisvertical – Input sensor. Corresponds to the up/down keys and equivalents.

inputaxishorizontal – Input sensor. Corresponds to the left/right keys and equivalents.

inputmousex – Input sensor. Mouse horizontal movements.

inputmousey – Input sensor. Mouse vertical movements.

A Language for Game Design and Choreography

72

inputmousebutton0stay – Input sensor. Activated when the left mouse button is kept
pressed.

inputmousebutton1stay – Input sensor. Activated when the middle mouse button is kept
pressed.

inputmousebutton2stay – Input sensor. Activated when the right mouse button is kept
pressed.

inputmousebutton0down – Input sensor. Activated when the left mouse button is pressed.

inputmousebutton1down – Input sensor. Activated when the middle mouse button is
pressed.

inputmousebutton2down – Input sensor. Activated when the right mouse button is pressed.

inputmousebutton0up – Input sensor. Activated when the left mouse button is released.

inputmousebutton1up – Input sensor. Activated when the middle mouse button is released.

inputmousebutton2up – Input sensor. Activated when the right mouse button is released.

Enemy

Playerhit – A collision sensor. It is activated when a player ball hits an enemy.

sees – Enemys’ vision sensor, activates when it sees the player.

not sees – Another enemys’ vision sensor, activates when it doesn’t see the player.

can shoot – This sensor is related to the weapon cool down. When activated, it means the
enemy can shoot.

HUD

time – Time elapsed. This sensor is updated every second.

A Language for Game Design and Choreography

73

C. Task-List

Task #1: Learn the basics

Your first task is to learn the basics of the editor by exploring it for five minutes.
A. Read the document handed to you.

B. Open the editor.

C. Explore the editor.

Be sure to say what you are looking at and what you are thinking, from now on.

Task #2: Starting out
A. Read the design doc handed to you.

B. Create a blank project.

C. Add 2 more class nets.

D. Name the class nets: “Player”, “HUD” and “Coward”.

Task #3: HUD Clock
A. Switch the current class net to “HUD”.

B. Add an input place for the sensor “time” and name it “Time”.

C. Add a transition called “Update Time” and make it run the script “UpdateTime” and

associate it to the “hud” channel.

D. Link, through an arc, the recently added input place and transition.

E. Add another transition named “Reset Time”, making it run the script “ResetTime”

on the “hud” channel and create two regular places: “Tick” and “Reset”.

F. Add arcs linking “Update Time” to “Tick”, “Tick” to “Reset Time” and “Reset

Time” to “Reset”.

G. Increase the weight of the arc linking “Tick” to “Reset Time” to 60.

H. Start the system (game + simulation) and check if the clock on the screen works.

Task #4: Score board update
A. Switch the current class net to “HUD”.

B. Create a transition “Check Round Winner” with the script “CheckRoundWinner”

and “hud” attached.

C. Link “Reset” to “Check Round Winner”.

D. Add a regular place called “ScoreBoard Updated”.

E. Add a transition “Reset Round Score” that executes “ResetRoundScore” on the

“hud” channel and a place called “Scores Reset”.

F. Link “Check Round Winner” to “ScoreBoard Updated”, “ScoreBoard Updated” to

“Reset Round Score” and “Reset Round Score” to “Scores Reset”.

G. Start the system (game + simulation) and add tokens manually to “ScoreBoard

Updated” and see if the score is incremented on the screen.

Task #5: Player Movement
A. Switch the current class net to “Player”.

B. Add three input places for the sensors “inputaxisvertical”, “inputaxishorizontal” and

“mousex” and name them “Axis Vertical”, “Axis Horizontal” and “Can Rotate”

respectively.

A Language for Game Design and Choreography

74

C. Add two transitions, both called “Or”, and link the places “Axis Vertical” and “Axis

Horizontal”, each to a different “Or”.

D. Add a regular place called “Can Move” and link both “Or” to this place.

E. Add a transition “Move” that executes the script “Move” on the “player” channel

and a place named “Moved”.

F. Link “Can Move” to “Move” and “Move” to “Moved”.

G. Add a transition “Rotate” that executes “Rotate” on the “player” channel and a place

called “Rotated”.

H. Link “Can Rotate” to “Rotate” and “Rotate” to “Rotated”.

I. Start the system (game + simulation) and check if the player moves and rotates.

Task #6: Player Shooting

From now on, tasks will not have a step by step guide. Use the design doc for specifications
on controls, sensors and adequate functions.

On the “Player” Class net, make a sequence that allows for the player to shoot balls. After
you are done, test the system to see if the player shoots a ball when possible.

Task #7: Enemy Spawning

On the “HUD” Class net, create the enemy spawning mechanism. After checking the round
winner, enemies should be spawned. Test the game by manually adding tokens to the place
that will enable firing the transition responsible for spawning.

Task #8: Enemy AI

On the “Coward” Class net, make it so that actors seek when the see the player, scan
surroundings when they don’t see him and shoot whenever it is possible. Start the system
and check whether or not the enemies act this way.

Task #9: Scoring mechanism

Add to the “Coward” and “Player” a mechanism to update scores. This mechanism should
work when the player is hit by an enemy and vice versa. After updating scores, enemies
should die and the player should respawn. Test the game afterwards to see if this mechanism
works as stated.

Task #10: Winner Announcement

On the “HUD” add a system that can announce a winner after the round score has been
reset 8 times and play a sound when the winner is announced. Try out the game to verify if
this works correctly either buy playing through the 7 rounds or by manually adding tokens to
the affected places.

Task #11: Save for posterity

Save the project and name it after the number that was given to you at the start of the test.

Task #12: Time for interpretation

Import a project named “test.pnml” and explain how would an actor behave according to
the presented petri-net.

A Language for Game Design and Choreography

75

D. Issue Compilation

Number Issue # Type Importance Task ID User ID Fixed/Di

scarded
Solution

1 Did not know that
objects are draggable.

1 A
Low

;4; ;8;

 2 Expected alphabetical
order on lists.

9 A
Medium

;3;4;5;6;8
;9;10

;3;4;6;7;8;9
;10;11;

X List were sorted alphabetically.

3 Expected that pausing
the application would
make it stop receiving
tokens.

2 A

Medium

;3; ;3;10;

4 Expected that the
starting the simulation
would run unity or vice
versa.

1 A

Low

;3; ;5;

5 Subnet did not show it
could be unwrapped.

2 A
High

;1;12; ;2;5;

6 Did not understand
how Petri Net
simulation works.

3 DK

High

;3;4;6; ;2; X Not related to application.

7 Did not understand the
concept of sensor.

1 DK
High

;3; ;2; X Not related to application.

8 Did not understand the
concept of weight.

4 DK
High

;3;10; ;2;6;7;11; X Not related to application.

9 Problem interpreting
language semantics.

7 DK
High

;6;7;8; ;2;6;8;11; X Not related to application.

10 Problem interpreting
Petri Net syntax.

18 DK
High

;1;3;5;7;8
;9;10;12;

;1;2;3;4;6;7
;8;9;11;

X Not related to application.

11 Problem understanding
the concept of
receivers.

1 DK

High

;7; ;4; X Not related to application.

12 Buttons in tool bar are
not fully sized.

2 FB
Low

;1;7; ;8;

13 Did not find edit square
present in the arcs.

3 FB
High

;3; ;1;4;9; X Increased the thickness and size
of the edit square’s border.

14 Did not know that
numbers inside places
corresponded to
tokens.

1 FB

Medium

;3; ;1;

15 Did not notice that
place types are color
coded.

1 FB

Low

;7; ;7;

16 Did not notice he/she
had the wrong cursor.

5 FB

Medium

;1;4;8;9;1
0;

;3;9;10; X Cursor’s size was increased and
there were added cursor
changing toggle buttons.

17 Did not understand
that he/she created a
class net.

1 FB

Low

;1; ;10;

18 Expected the dialogs to
appear at center of
window.

3 FB

Low

;4;5;8; ;3;5;9; X Made the dialogs appear where
the click event was made.

19 Expected fusion places
to be better indicated.

1 FB
High

;12; ;3;

20 Got confused by Petri
Net validator warning
messages.

1 FB

Medium

;3; ;3;

21 Ignored validator
warning messages.

1 FB
Medium

;10; ;1;

22 Arc did not disappear
when changing cursors.

3 FE
Medium

;1;7;9; ;8; X See Issue 39.

23 Communication system
stopped working.

6 FE

High

;7;9;10; ;7;8;9;11; X Added a better handler for
when connections are
ungracefully reset.

24 Editor crashed. 9 FE

High

;1;6;8;9;1
0;11;

;1;6;8;9;10;
11;

X Moved the message building
call to another thread as to
avoid a deadlock.

25 Editor viewport
teleported after drag
action.

1 FE

Low

;8; ;8;

26 Graphical artifact. 3 FE
Low

;5;10; ;2;3;6;

A Language for Game Design and Choreography

76

27 Mouse click was not
registered properly.

39 FE

Low

;1;3;4;5;6
;7;8;9;10;

;1;2;3;4;5;6
;7;8;9;10;1
1;

X Changed mouse event type
from click to released.

28 Object teleported after
undo.

5 FE
Low

;1;3;5;7;8
;

;3;4;11; X Drag starting location
coordinates were changed.

29 Play did not fire
transitions.

5 FE

High

;4;7;10; ;4;5;8;9;11; X Made so that adding arcs would
prompt the simulator to do
another simulation step.

30 Validator not working. 2 FE
High

;3;4; ;5;8;

31 Did not read crash
course fully.

2 II
High

;1;12; ;2; X Not related to application.

32 Did not read design
doc fully.

15 II
High

;6;7;8;9;1
0;

;1;3;5;6;7;8
;9;10;11;

X Not related to application.

33 Did not read task list
fully.

9 II
High

;3;8;9;10; ;2;4;5;6;7;8
;11;

X Not related to application.

34 Problem interpreting
crash course.

3 II
High

;1;12; ;3;7;8; X Not related to application.

35 Problem interpreting
design doc.

4 II
High

;2;6;7;9; ;2;6; X Not related to application.

36 Problem interpreting
task list.

20 II

High

;3;4;5;6;7
;8;9;10;1
1;

;1;2;3;4;6;8
;9;10;11;

X Not related to application.

37 Problem understanding
what to do.

2 II
High

;6; ;4;8; X Not related to application.

38 Tried to drag the cursor
to create an arc.

13 M
Medium

;1;3;5;8;9
;

;4;5;6;7;8;9
;10;11;

X Made so that dragging the
cursor would create arcs.

39 Tried to drag from the
add place button in
order to create a place.

2 M

Low

;1;3; ;4;

40 Used wheel scroll to
move viewport.

1 M
Low

;3; ;4;

41 Deleted class net by
mistake.

3 M

High

;2;8; ;3;5;9; X Made removal of class nets to
use the same method as other
objects' removal.

42 Did not expect double
clicks to remove
elements.

1 M

Medium

;4; ;5;

43 Did not find how to
edit class net.

1 M
Medium

;2; ;2;

44 Did not find where
create class net button
was.

6 M

High

;2; ;1;2;5;6;8;1
0;

X Added "add class net" button to
the tool bar.

45 Expected arcs to
arrange themselves on
object drag.

6 M

Low

;1;3;4; ;2;3;5;7;11; X Changed the arc anchor point
and made the arc’s curve
control point increment when
moving a linked object.

46 Expected a confirm
dialog after new
project.

1 M

High

;2; ;5;

47 Expected copy paste. 5 M
Medium

;5;9; ;3;5;7;9;10; X Added copy paste.

48 Expected that pressing
delete key would
remove objects.

2 M

Low

;4;6; ;2;10;

49 Expected dialogs to
auto adjust their size.

3 M
Low

;4;8; ;7;11;

50 Expected group
selection.

4 M
Medium

;2;5;9; ;1;5;7; X Added Group selection.

51 Expected place dialog
to have initial marking.

2 M
Medium

;4;8; ;3;7;

52 Exported to the wrong
net by accident.

1 M
High

;11; ;2;

53 Mouse cursor hotspot
was not calibrated.

7 M

Medium

;1;2;4;5;9
;

;4;5;6;9;10;
11;

X Cursor hotspots were adapted
according to the cursor’s shape
and size.

54 Pressed enter to
confirm dialog.

31 M
Low

;2;3;4;5;6
;7;8;9;10;

;1;2;3;5;6;7
;8;9;10;11;

X Allowed to confirm dialogs by
pressing the Enter key.

55 Pressed ESC to cancel
dialog.

5 M
Low

;1;3;4;5;8
;

;1;4;11; X Allowed to cancel dialogs by
pressing the ESC key.

56 Pressed wrong buttons
on the tool bar.

4 M

Medium

;1;4;5;8; ;2;5;8;10; X Changed the order of the tool
bar and added special
separators.

57 Problem identifying
how to change a place’s
type to input.

1 M

Medium

;3; ;1;

A Language for Game Design and Choreography

77

58 Tried to double right
click to edit objects.

2 M
Low

;3;5; ;8;

59 Tried pressing ESC to
undo special cursor.

4 M
Low

;2;4;5;6; ;1;2;4; X Made the ESC key a shortcut to
undo special cursors.

60 Tried one click to
change class net’s
name.

1 M

Low

;2; ;4;

61 Tried one click to
delete objects.

2 M
Medium

;4; ;2;4;

62 Tried to cancel cursor
by clicking outside of
viewport.

3 M

Low

;1;5;9; ;2;3;6; X Added "default cursor" button.

63 Tried to click on
object’s name to edit its
properties.

2 M

Medium

;3;6; ;2;5; X See Issue 64.

64 Tried to click on name
to rename object.

7 M
Medium

;3;6;7;8; ;4;6;7;11; X Made it so clicks on name
would open property dialogs.

65 Tried to click outside of
dialogue to close it.

3 M
Low

;3;5;8; ;4;6;

66 Tried to double click
on arcs to edit their
properties.

15 M

High

;1;3;5;6;8
;10;

;1;2;3;4;5;6
;7;8;9;10;1
1;

X Introduced Arc property dialogs
activated on double mouse
click.

67 Tried to double click to
add an object.

2 M
Low

;2;5; ;6;8;

68 Tried to press ESC to
remove objects.

1 M
Low

;1; ;2;

69 Tried to press on object
border expecting an
action.

5 M

Medium

;1;3; ;3;4;6;8;11; X See Issue 39.

70 Tried to type with class
selected in order to
change its name.

1 M

Low

;2; ;6;

71 Turned off the editor
by mistake.

1 M
High

;8; ;2;

72 Used right click to edit
objects’ properties.

1 M
Low

;2; ;7;

73 Was confused on how
to change to the default
cursor.

2 M

Medium

;3;7; ;4;7; X See Issue 16.

74 Tried to drag a place to
create an arc.

1 M
Low

;3; ;7;

75 Confused because of
output places.

1 NI
Medium

;9; ;1;

76 Did not know channel
== sensor.

7 NI
High

;3;9; ;3;4;5;6;7;9
;

X Changed name to sensor.

77 Did not know export
== save.

10 NI
Medium

;4;11; ;1;2;4;5;6;7
;9;10;11;

X Export was changed to save.

78 Did not know receiver
== channel.

6 NI
High

;3;9; ;3;4;6;7;9; X Change the "Receiver" label to
"Actor ID".

79 Did not know regular
== normal.

3 NI
Low

;3;5; ;4;7;8; X Not related to application.

80 Did not know script
== invoke.

4 NI
High

;3;7; ;6;7;8;9; X Changed the "Invoke" label to
"Script".

81 Did not know what
“input” is.

2 NI
Medium

;3;8; ;11;

82 Did not understand the
language's naming.

4 NI
High

;1;2;3; ;2;3;4;7; X Changed "Transition" label to
Action.

83 Did not understand
what is the receiver.

5 DK
High

;7;8;9; ;1;6;7;8;11; X Not related to application.

84 Did not notice state of
simulation.

7 PSS

Medium

;1;3;4;6;7
;8;

;2;3;4;6;8;1
0;11;

X Changed "Play" button to
toggle button so that it is
appears to be pressed when the
simulation is running.

85 Expected if transition. 4 RI
Medium

;1;8; ;5;6;10;11; X Potential Future Work.

86 Expected OR
transition.

1 RI
Medium

;5; ;10; X Potential Future Work.

87 Tried to stack
transitions onto places .

2 RI
Low

;1; ;4;6;

88 Tried to use transitions
to add arcs.

2 RI
Low

;1; ;2;9;

 Totals 406

 50

A Language for Game Design and Choreography

78

E. Raw data from Usability tests

Table 24 Demographic information of the test subjects

 Demographic Information

Participant Age Sex Qualification TP VP GD

1 23 M Msc Student 0 0 0

2 23 M Msc Student 1 0 0

3 23 M Bsc Student 2 0 1

4 36 M Msc Student 1 1 1

5 28 M Phd Student 2 0 1

6 22 M Msc Student 0 0 0

7 29 M Bsc 1 1 1

8 22 F Msc Student 0 0 0

9 26 F Msc Student 2 0 1

10 26 M Bsc 2 1 1

11 24 M Msc Student 2 2 2

Average 25,63 9M,2F 1 Bsc Student,2
Bsc, 7 Msc

Students, 1 Phd
Student

1,18 0,45 0,72

Table 25 Time per Task per User

 Users

Tasks 1 2 3 5 6 7 8 9 10 11

1
 05:31 05:51 04:35 05:56 07:45 02:27 05:44 06:03 07:43 05:31

2
 07:41 07:16 06:40 08:15 10:42 09:14 06:36 05:27 04:38 05:29

3
 08:52 13:25 15:25 12:16 10:12 13:25 11:43 11:10 05:49 06:46

4
 06:25 07:42 09:19 07:11 06:07 10:18 10:19 05:31 04:39 06:36

5
 06:40 09:48 08:56 07:32 11:07 11:30 09:14 07:37 06:33 08:54

6
 03:45 08:59 04:40 05:09 10:00 07:45 15:22 04:34 06:26 07:03

7
 05:03 08:13 06:05 04:13 08:14 10:43 13:24 05:15 04:02 06:44

8
 08:05 09:06 08:44 07:56 11:22 13:05 17:02 22:48 09:02 11:24

9
 14:55 13:54 21:21 07:40 12:04 22:02 14:26 12:48 08:18 12:13

10
 08:32 06:20 06:53 03:03 05:43 11:39 10:26 08:46 03:28 08:32

11
 01:02 00:40 00:40 00:23 00:44 01:08 00:44 00:59 00:38 00:33

12
 07:23 09:49 05:41 03:08 02:09 04:37 05:03 04:03 02:29 02:19

A Language for Game Design and Choreography

79

Table 26 Difficulty per Task per User

 Participants

Tasks 1 2 3 5 6 7 8 9 10 11

1 1 1 1 2* 3* 1* 1 2 2 3*

2 1 1* 1 1 2 2 2* 1 1 1

3 1* 2* 1* 2* 3* 2* 4* 4* 2 2*

4 1* 2 1* 2 3 2* 3 3 1 3

5 1 2 1 1 3* 2 3 2 1 2*

6 1 5* 1 1* 4* 2* 5* 2* 2 4

7 2* 4* 2* 2 4* 2* 5* 2 1 4*

8 1 3* 2* 2 4* 2 5 5 2 5

9 2* 2* 3* 1 5* 3* 4* 3 2 5*

10 2* 2* 3* 1* 4* 3* 4* 2 1 4*

11 1 1* 1 1 1 1 2 1 1 1

12 1 1 1 1 2 3* 5* 2 1 3

*= asked for evaluator’s help.

8
0

F. User by Problem Matrix

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1

1
0 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

 4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

1
0 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

A
 L

an
gu

age fo
r G

am
e D

esign
 an

d
 C

h
o

reo
grap

h
y

8
1

G. Task by Problem Matrix

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

1

1

1

1

1 1

1

1

1 1

1

1

1 1
 2

1

1

1 1

3

1 1 1

1 1 1

1

1 1

1

1 1

1

1

1

1 1 1
 4 1 1

1

1

1

1

1 1

1

1

 5

1

1

1

1 1 1

1

1
 6

1

1

1

1

1

1

1 1 1

 7

1 1 1 1

1

1 1

1 1 1

1

1 1
 8

1

1 1

1

1

1 1

1 1

1 1

1

1

1

 9

1

1

1

1 1 1

1

1 1

1 1

1
 1

0

1

1

1

1

1 1

1 1

1

1 1

1
 1

1

1

1
 1

2

1

1

1

1

1

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1

7 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1
1
0 1 1
1
1 1 1
1
2

A
 L

an
gu

age fo
r G

am
e D

esign
 an

d
 C

h
o

reo
grap

h
y

8
2

H. Priority leveled issues with color scaled values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0,0006
21983

0,5373
93641

0,0049
75867

0,0006
21983

0,0149
27601

0,0167
93551

0,0018
6595

0,0597
10405

0,1567
39812

2,4182
71384

0,0018
6595

0,0024
87934

0,0167
93551

0,0012
43967

0,0006
21983

0,0932
97507

0,0006
21983

0,0167
93551

0,0018
6595

0,0012
44

0,0012
44

0,0111
957

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0,1343
4841

0,6045
6785

0,0006
2198

0,0111
95701

2,4014
7783

0,0466
488

0,1399
4626

0,0149
276

0,0074
63801

1,2595
163

0,4702
194

0,0335
87103

0,0597
10405

3,0228
3923

0,0074
63801

0,6468
62716

0,0024
87934

0,0006
21983

0,0335
87103

0,0012
43967

0,0012
43967

0,0671
74205

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

0,0559
78504

0,0018
6595

0,0621
98338

0,0049
75867

0,0074
63801

0,0447
82803

0,0099
51734

0,0018
6595

0,2612
3302

1,7353
33632

0,0466
48754

0,0796
13873

0,0012
43967

0,0024
87934

0,0298
55202

0,0006
21983

0,0049
75867

0,0167
93551

0,0099
51734

0,1393
24277

0,0111
95701

1,8472
9064

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

0,0049
75867

0,0006
21983

0,0621
98338

0,0006
21983

0,0018
6595

0,0006
21983

0,0099
51734

0,0006
21983

0,0012
43967

0,1567
39812

0,2239
14017

0,1119
57009

0,0111
95701

0,0597
10405

0,0049
75867

0,0895
65607

0,1399
46261

0,3657
26228

0,0398
06936

0,0012
43967

0,0024
87934

0,0024
87934

A
 L

an
gu

age fo
r G

am
e D

esign
 an

d
 C

h
o

reo
grap

h
y

