

YoubeQ Management
Platform

>

Nuno Fauso Da Paixão Khan

nfkhan@student.dei.uc.pt

DEI Supervisor:

Fernando Barros

iNovmapping Supervisor:

André Santos

Date: 2 July 2013

MSc in Informatics Engineering
Internship
Final Report

youbeQ Management Platform

Abstract

System integration and distributed systems are essential concepts in our
current web development era. When relying on these aspects, one must
acknowledge the importance of having a system that is mature, secure, reliable
and scalable.

The internship consists on the development of a management platform, called
youbeQadmin, a web based application that integrates and manages youbeQ
and Smarturbia, two existing applications developed by the company.

These applications, already exist as independent web applications , that are
now partially integrated in one single management platform.

youbeqAdmin platform manages the youbeQ statistics and Smarturbia content
(APPS). It enforces a distributed architecture while allowing the integration of
these two modules/applications with the original web applications and with the
possibility of easily integrating new modules into the platform in the future.

The development of youbeQadmin required significant modifications to
Smarturbia, mostly to allow a REST communication between them and to add
new features like changing the vehicle color or applying area limits for the user
to explore the world.

Keywords

“youbeQ”, ”Smarturbia”, ”REST”, “Management”, “Web
Development”,”DJANGO”, “Web Frameworks”, “youbeQadmin”

1

Index
 1 Introduction...6
 2 State Of The Art ..8

 2.1 Available Solutions..8
 2.2 Web Frameworks...12

 2.2.1 Features..13
 2.2.2 Advantages...15
 2.2.3 Disadvantages..16

 2.3 Object-Relational Mapping (ORM)..18
 2.3.1 Performance..18
 2.3.2 ORM Main Obstacles ..19
 2.3.3 Possible improvements for ORM..21

 2.4 Conclusion...22
 3 Project Planning...23

 3.1 Software Development Process...23
 3.2 Planning...25

 3.2.1 First Semester...25
 3.2.2 Second Semester..26

 4 Proposed Approach..27
 4.1 Requirements..27
 4.2 Requirements Status...28
 4.3 Use Cases..31
 4.4 Architecture...36

 4.4.1 Component Diagram...37
 4.4.2 youbeQ Module Architecture...39
 4.4.3 Smarturbia Module Architecture...41
 4.4.4 Tasks...45

 5 Risk Analysis..46
 6 Achievements..47

 6.1 youbeQadmin (BETA version)..47
 7 Tests..52

 7.1 Traceability Matrix for Unit Testing...52
 7.2 Performance Testing..54

 7.2.1 Load Testing..55
 7.3 Usability Testing...56

 8 Conclusions...57
 8.1 Future Work...58

Index of Tables
Table 1: Definitions..4
Table 2: Acronyms...5
Table 3: Software Requirements..30
Table 4: DJANGO Framework Modules..38
Table 5: Risk Analysis Problems and Solutions..46
Table 6: Traceability Matrix..54

Index of Figures
Figure 1: Smarturbia tour screenshot..9
Figure 2: GEFS (Google Earth Flight Simulator Screenshot)...............................10
Figure 3: Planet In Action (A-Team Van) Screenshot...10
Figure 4: Sailing Alone Around the World Screenshot..11
Figure 5: Software Development Model in iNovmapping...................................24

youbeQ Management Platform

Figure 6: Planning 1º Semester...25
Figure 7: Planning 2º Semester...26
Figure 8: youbeQadmin Use Case (Full View)..31
Figure 9: Smarturbia Administrator Use Case..33
Figure 10: Smarturbia User Use Case..33
Figure 11: youbeQ Use Case Module...36
Figure 12: Component Diagram...38
Figure 13: youbeQ Module (Full View)...40
Figure 14: youbeQ Class Diagram (Partial View)..41
Figure 15: Smarturbia Activity Diagram...42
Figure 16: Smarturbia Activity Diagram...43
Figure 17: Smarturbia Class Diagram (Partial View)..44
Figure 18: Login Page..47
Figure 19: Main Page...48
Figure 20: youbeQadmin statistics for the administrator of youbeQ and
Smarturbia...49
Figure 21: Smarturbia APPS...50
Figure 22: Smarturbia APP Creation/Editing...51
Figure 23: Testing Error % Post data Load Test...55
Figure 24: Testing Throughput of Post data Load Test..56

3

youbeQ Management Platform

Definition Description
APACHE STRUTS Web Framework

API Is a specification intended to be used as an
interface by software components to
communicate with each other

COUCHDB Open Source Non Relational Database

DJANGO Web Framework

GIT Version control system

JAVASCRIPT Scripting Language

JSON Lightweight data-interchange format

MVC Architecture for building interactive
applications

MVT Architecture for building interactive
applications

MYSQL SQL Open Source Database

NO-SQL Non-Relational Database

PHP Scripting Language

PYTHON Scripting Language

REST Protocol specification for exchanging
structured information

RUBY ON RAILS Web Framework

SOAP Protocol specification for exchanging
structured information

SQL Programming language for RDBMS

SVN Version control system

XML Extensible Markup Language

YII Web Framework

Table 1: Definitions

4

youbeQ Management Platform

Acronym Description
API Application Programming Interface

APP Application

JSON JavaScript Object Notation

MVC Model-View-Controller

MVT Model-View-Template

PHP Hypertext Preprocessor

RDBMS Relational Database Management Systems

REST Representative State Transfer

SOAP Simple Object Access Protocol

SVN Subversion

XML Extensible Markup Language

Table 2: Acronyms

5

youbeQ Management Platform

 1 Introduction

The internship consists on the development of a management platform, called
youbeQadmin, which is a web based application that integrates and manages
applications inside the companies scope. For now, these applications that
require management are youbeQ and Smarturbia which are already deployed
and available for the Internet users.

youbeQ and Smarturbia are using two products/services, Google Maps (web
mapping service application and technology) and Google Earth (virtual globe,
map and geographical information program), and since Google has provided an
API to access this services from external sources, it has given the ability for
third party companies to simply integrate their ideas and products with this
services as well as others.

youbeQ as well as Smarturbia are the current main iNovmapping
products/services, and these products are web applications that run on top of
Google Earth/Maps API.

The main difference between them is the fact that youbeQ is the first Google
Earth/Maps 3D social network where a user can meet other users online like
other common social network except for the fact that it actually happens in a
real Google Earth/Maps 3D environment.

Smarturbia is the second product that is well alike youbeQ except for the fact
that at this point there is no “social” component making the application simply
a means to travel inside Google earth with the companies own 3D models
(cars, boats, airplanes).

youbeQAdmin will integrate the management of the applications into one
single web based platform providing a faster and more reliable way to do all
the operations required by the company. These operations include adding
components, removing and editing them, having the desired effect on the
original applications right after the server data replication.

youbeqAdmin platform manages the youbeQ statistics and Smarturbia content
(APPS). It enforces a distributed architecture while allowing the integration of
these two modules/applications with the original web applications and with the
possibility of easily integrating new modules into the platform in the future.

The development of youbeQadmin required significant modifications to
Smarturbia, mostly to allow a REST communication between them. The rest of
the modifications were to add some new features to Smarturbia, like for
example limit the area where the user can explore with a certain vehicle, or
change the color of a vehicle.

The first part of the internship will focus around the requirements and design
phase. During this period an elaborate State of the Art will be made in order to
do a technology assessment to implement the requirements specifications.

6

youbeQ Management Platform

The choice of the right tools and technologies for the development of this
application, must be closely tied to the companies requirements and
specifications as they are the the primary objectives. The other part of the
internship will focus around implementation, verification and maintenance.
During this period there will also be testing to validate the implemented code.

7

youbeQ Management Platform

 2 State Of The Art

This chapter shows the differences between Smarturbia and some other similar
alternatives out there that also make use of the Google Earth API.

It also provides a study of Web Frameworks, and describes the
advantages/disadvantages of using them for the development of youbeQadmin
as opposed to not using one.

We also study the possibility of using ORM (Object Relational Mapping) for the
development of youbeqadmin, if in fact we choose to use a Web Framework.

The annex for this chapter can be found at “Annex A - State Of The Art”.

For the state of the art, the only restriction imposed by the company was the
PYTHON programming language and, if in fact a Web Framework was suitable
for the companies needs after the study of the state of the art, DJANGO Web
Framework [1] would be the main choice.

The use of open source technologies for the development of the application
was the other restriction due to the companies current financial situation to
purchase licenses and software beliefs.

Due to this restrictions, the Web Framework features will be according to
DJANGO Web Framework features when comparing to developing the
application without using a Web Framework.

 2.1 Available Solutions

In this chapter we will do a brief description about available products on the
Internet similar to iNovmapping's products (that use Google Earth/Maps API).

We will start by understanding what each one of the following presented
products do, and in the end how are they different from iNovmapping's
products (Smarturbia).

• Smarturbia

◦ Smarturbia is a Web application that allows users to do virtual
travelings around the world using the Google Earth/Maps API with a
customized vehicle or standard vehicles (cars, bikes, race cars, boats,
airplanes). Users can also create points of interest to be visited,
delimit city areas and rate user/admin created APPS. Figure 1 shows a
screenshot of this Web application.

8

youbeQ Management Platform

• GEFS (Google Earth Flight Simulator)

◦ GEFS (Google Earth Flight Simulator) is a real flight simulator Web
application that uses Google Earth/Maps API to enable users to have a
more realistic experience by traveling through an existing 3D virtual
landscape. The flight models are complete enough to deliver a
realistic flight simulation. Figure 2 shows a screenshot of this Web
application.

9

Figure 1: Smarturbia tour screenshot

youbeQ Management Platform

• Planet In Action (A-Team Van)

◦ A-Team Van is a Web application based on the movie “A-Team” that
uses Google Earth/Maps API to enable users to drive around the world
guided by specific tasks such as reaching a certain amount of speed,
performing a variety of jumps, crashing the van a certain number of
times. Figure 3 shows a screenshot of this Web application.

10

Figure 2: GEFS (Google Earth Flight Simulator Screenshot)

Figure 3: Planet In Action (A-Team Van) Screenshot

youbeQ Management Platform

• Sailing Alone Around the World

◦ Sailing Alone Around the World is a Web application based on the book
“Sailing Alone Around the World“ that uses Google Earth/Maps API to
enable the user to experience the voyages of captain Joshua Slocum
[2]. These are guided tours with a narrator impersonating Joshua
Slocum and narrating his experiences. Figure 4 shows a screenshot of
this Web application.

When comparing iNovmapping's Smarturbia and the rest of the presented
alternatives we can arrive at a few conclusions:

• All of these web applications use Google Earth/Maps API.

• All of them involve vehicles controlled by the user with the exception of
“Sailing Alone Around the World” where the user only has a visual
representation of the boat sailing but cannot actually control the boat.

• GEFS is a real flight simulator, so a user must be a flight simulator
affectionate, this is not a web application for the conventional user.

• Sailing Alone Around the World is only for people interested on the
voyage stories of Joshua Slocum.

11

Figure 4: Sailing Alone Around the World Screenshot

youbeQ Management Platform

• Each one of them uses only one specific vehicle, with the exception of
Smarturbia that uses more than one vehicle.

• Only Smarturbia allows user vehicle customization, adding points of
interest and delimiting areas to travel.

• Smarturbia and A-Team van seem to be ideal WEB applications for the
average user.

 2.2 Web Frameworks

Web frameworks [3] are frameworks that help developers build strong and
reliable Web applications without concerning themselves with some
minor/larger details that usually appear when developing applications without
these frameworks.

“DJANGO is a high-level PYTHON Web Framework that encourages rapid
development and clean, pragmatic design.” [1]

The idea of the framework is to alleviate that additional overhead that many
times comes associated with the developers everyday tasks. An example would
be a proper authentication / registration system that most dynamic
websites/web applications tend to have. This authentication system would in
fact take some amount of time to develop every time we decided to develop a
website with it.

Other examples would be the fact that many frameworks provide libraries for
database access, templating frameworks and session management and they
often promote re-usability of code, which can be our own code in our current
application or another application we have developed, or even third party code
integration with our applications.

Frameworks are in fact strongly present in software development. Even if we
decide not to use a Web Framework, we will definitely have to use another
framework, even if we decided to write all of our own code from scratch it
would be almost impractical to not use them.

“Tasks that usually would take you hours and hundreds of lines of code to
write, can now be done in minutes with pre-built functions. Development
becomes a lot easier, so if it’s easier it’s faster, and consequently efficient.” [4]

In this section we will be discussing its features, exploit its advantages and
disadvantages and try to relate heavily to the idea of not using them and what
that would mean.

12

youbeQ Management Platform

 2.2.1 Features

This section will introduce to features commonly offered by Web Frameworks.

The features are as follows:

• Web Template System

◦ A web template system is a software used to produce dynamic web
pages, this system uses a template engine which in turn is a software
designed to process web templates and content information to
produce output web documents. Templates play an important role
when wanting to separate the presentation layer from the business
logic layer, or even the Model Layer (in an MVC environment). This is
done due to the fact that in a template there is no need to know the
server-side programming language, just the HTML and the frameworks
template system syntax which is in most cases quite simple and
similar to plain HTML.

• Caching

◦ The most common trade-off in dynamic websites is that each time a
user requests a page, the Web Server makes calculations from the
database actual query, to the business logic to provide the information
for the template rendering in order to create the web page seen by
the user. This is quiet expensive in terms of a processing-overhead
perspective. For most web applications, this might not be an issue, but
for high traffic web applications it is essential to reduce the overhead
as much as we can.

• Security

◦ This is an everyday concern in the development world, where
developers must work on the authentication and authorization of the
application. Some applications provide help with this matter, bringing
along some authorization and authentication frameworks built in the
Web Framework.

◦ There are also other things we must worry about with our applications
security such as SQL injection, cross site scripting (XSS), cross site
request forgery (CSRF), click-jacking, etc. Mature frameworks should
be able to help developers easily protect their Web applications views
against this matters.

• Database access, mapping and configuration

◦ To avoid configuration and mapping hassles, most frameworks provide
an API that allows a quick and painless database setup. Developers
are able to simply choose the name and type of the database that
they want to use, enter the database credentials and its all ready for
them to start using it.

13

youbeQ Management Platform

◦ Some databases provide ORM (object relational mapping) for the
object mapping.

• URL Mapping

◦ A URL mapping system, allows the use of regular expressions for
pattern matching, increasing the simplicity of the site, and allowing
better indexing by the search engines. This allows the URL to be easily
read and written by the users and provides the search engines with
better information about the applications structural layout.

• Ajax (Asynchronous JavaScript and XML)

◦ This is a very common technology used in web development for
asynchronous communication between the client and the server. The
main idea here is to give the possibility to create web pages that look
more responsive by exchanging small packets of data with the server
so that the entire page doesn't have to reload every time we decide to
put some new and dynamic content. Some Web Frameworks have a
native Ajax library support built in, others have third party resources
for easy Ajax support and integration.

• Web Services

◦ Web Services are an indispensable feature in web development, due
to this fact some Web Frameworks have native support, and others
also support it by third party applications integration.

For the specific case of DJANGO Web Framework [1], the highlighted features
from its creators are as follows:

• MVT (Similar to MVC)

◦ MVT is essentially the same as MVC [5] in terms of architecture. The
only difference is the fact that the DJANGO developers did not agree
with the MVC nomenclature (Model-View-Controller) and decided to
rename it (Model-View-Template) where the Model is the same in both
architectural patterns, but the MVT view and template are actually
swapped around with the MVC view and controller, so the direct
translation would be MVC-MTV.

• Object-relational mapper (ORM)

◦ DJANGO gives the ability to write entire database models in pure
PYTHON. It gives a free ORM Framework with a dynamic database-
access API. Nevertheless it is still possible to write raw SQL when
optimizations become needed.

• Automatic administration interface

◦ DJANGO gives a “ready to use” administration interface. After the
developer has defined the database models, he can easily import

14

youbeQ Management Platform

them to the administration interface, and start using it, without the
need to write the “standard” code to interact with the designed
models.

• Elegant URL design (REGEX)

◦ The URL design was already explained above, but there is a need to
emphasize that the URL design in DJANGO is fairly easy to use, as it is
listed in a particular URLS file and it also allows sub-URLS from within each
URL.

• Template system

◦ DJANGO comes with its own template language, and although its not
Python, it still is very similar and brings the ability to have a layer
separating the design, content and Python code.

• Cache system

◦ DJANGO allows developers to choose between different types of cache
(MEMCACHE, Database Caching, File system cache etc) giving
complete power to the developer according to his needs.

• Internationalization

◦ Internationalization is something very important in a mature
framework, and its goal is to allow a single Web application to have
its content in different languages and formats according to the
applications targets.

• Security

◦ DJANGO has most of the up to date security measures, some of them
are cross site scripting protection, cross site request forgery
protection, SQL injection protection, click-jacking protection,
SSL/HTTPS, host header validation.

 2.2.2 Advantages

There are in fact some big advantages when developing software with Web
Frameworks, and we will present some of them below:

• Reusable Code

◦ We can easily reuse our own code or third party code with new
applications, in other words its just like connecting two different
applications and make them work together to achieve a certain goal.

• Rapid Development and with less code

◦ Web Frameworks help us work faster because we have a lot of tasks
that may be already built in the Web Framework core, or we can easily
install that code from third party sources. A good example is DJANGO-

15

youbeQ Management Platform

registration module.

• Security (big security implementations)

◦ The best security experts in the world have contributed to this open
source project (DJANGO), so its safe to assume that the best security
policies and implementations are being applied to each DJANGO
version.

• Organized application structure (MVC/MVT)

◦ DJANGO enforces an MVT (similar to MVC) architecture with its folder
structure, and way of making the application files interact with each
other, so we know how well organized our application is when we start
developing it.

• Scalable Applications

◦ If properly coded, DJANGO allows applications to be scalable. DJANGO
applications within a project can be easily separated from each other
to be deployed on different machines. This is one of the DJANGO
philosophies, to provide potential scalable applications.

• Easy database interaction (flexibility)

◦ We can easily choose the type of relational database engine that we
want to use and if we use ORM models, everything on the
programming side stays exactly the same, except if a certain
database engine provides specific features that others do not possess.

• Lower development costs

◦ The faster we develop our applications, the cheaper the development
costs will be.

 2.2.3 Disadvantages

Whenever we have advantages we definitely have disadvantages, and in this
section we will also present some of them:

• Additional Overhead

◦ There is a lot of unwanted/not needed code in DJANGO's core. This is
due to the fact that depending on the application we develop, we
might need some specific code or not.

• Lost understanding on third party source code

◦ Its not easy to understand how another programmer developed his
application without proper documentation. Reading the documentation
can help us with this matter, but might not be enough for us to quickly
add our own modifications to someone else's code.

16

youbeQ Management Platform

• Very steep learning curve

◦ Its not easy to start using Web Frameworks. The learning curve is
steep as at the beginning we do not understand the framework's way
of doing things until we actually start developing our own application.
When migrating from a different framework, this process can become
easier thou.

• Inflexible when we want to change core functionalities

◦ Changing core functionalities of Web Frameworks might not be a good
idea. We would have to understand it internally really well before we
can do any change that wasn't meant to be done by its developers.

• Configuration Cliff

◦ Easy configurations are easy to do in Web Frameworks. But complex
configuration do require a better understanding of the specific Web
Framework and a lot of documentation reading.

• Framework Errors

◦ As every piece of software, we always encounter “bugs”. When
encountering Web Frameworks bugs, we will probably have to wait for
the Web Framework developer to fix the bug, or take a big risk and try
to fix is ourselves (if it is open source).

17

youbeQ Management Platform

 2.3 Object-Relational Mapping (ORM)

Since the early days of computing, it became clear how important it was for the
applications to retain the content of data structures not only in memory, but
also in a non-volatile storage, like an Hard Drive. This process is called
Persistence, and without it data exists only in memory and is lost whenever the
application shuts down.

Object-relational mapping (ORM) [6], is a technique for converting data
between incompatible type systems in object-oriented programming
languages. The common primary feature of an ORM implementation (such as
Hibernate for example) is mapping from the programming language classes to
database tables (consequently from its data types to SQL data types). An ORM
implementation will also provide data query and retrieval facilities.

The ORM implementation automatically generates the SQL code, and allows
the developer to only focus in a class object-oriented point of view for the
development of the application. The querying also tends to be much simpler
then a raw SQL query, at least for the ORM implementations supported queries.

ORM has constantly been a target when it comes to performance. In this
section, we will elaborate a bit more on the ORM performance issues, main
obstacles for its adoption and a possible direction it could take to be able to
eliminate this issues.

 2.3.1 Performance

Before we proceed, in this chapter we must bear in mind that ORM is a fairly
recent technology [6] , and although earlier implementations were clumsy and
slow, there has been room for constant and substantial improvements. The
popular and current ORM solutions, by contrast, provide features that save time
for software developers and improve performance and normalization.

Some of the most significant an impressive improvements to ORM systems
have been in the area of performance. Still, early criticisms about ORM have
been around the fact that an ORM solution is often worst than raw SQL,
performance wise. This is generally true, and it is due to the fact that ORM
adds overhead (extra layers of abstraction) to our code.

Since this is a valid concern, and because of this modern ORM implementations
use a variety of tricks to improve performance. A few examples are:

• Caching

◦ Since ORM suffers from poor performance in relation to raw SQL
solutions, caching the results of queries locally, applications
communicate less with the database improving performance.

18

youbeQ Management Platform

• Lazy Fetching

◦ Decides whether to load child objects while loading the Parent Object.
This is in fact an improvement, as the applications may not need the
child objects but if it does, they will all be previously fetched and
stored in memory for the applications use, subsequently providing less
database accesses.

• Dirty Checking

◦ Is an ORM feature that checks if an object has been modified or not,
and determines if the object needs to be updated or not. As long as
the object is in a persistence state, the ORM implementation monitors
any changes to the objects and executes the SQL. Note that for dirty
checking to exist, the object must exist in cache.

These tricks reduce the frequency with which the application has to connect
and communicate with the database, becoming an optimized solution.

 2.3.2 ORM Main Obstacles

Although ORM is a mature technology and has a vast number of increasingly
advanced and readily available solutions, ORM has yet to see its adoption in
everyday industrial operations. In this section we will show what are the main
obstacles that are keeping ORM from being adopted by every
developer/company.

• The Learning Curve

◦ Since ORM is not a standard technology in the industry, not every
developer knows how to use it. From the perspective of a software
developing company, this may become a serious obstacle, as in order
to effectively start using ORM, they would have to train their
developers and this could be less cost effective.

◦ Another reason is the fact that ORM is not natively available in every
programming language, so this would mean having to install it in
every machine in the company for the purposes of developing, testing
and deploying.

• Perceived performance limitations

◦ Many developers and managers have the idea that an ORM solution is
slower than raw SQL. This is in fact true, but nevertheless this analysis
is based on old ORM implementations. Old naive architectural ORM
implementations, as well as new ones, will indeed be slower then
hand-crafted persistence code, as they introduce the additional
overhead of reading meta-data, reflecting on classes (if necessary),
generating the SQL code, and so on. In a raw SQL this overhead would
simply not exist.

19

youbeQ Management Platform

◦ However, modern popular ORM implementations like for example
Hibernate (JAVA) do not have a naive architecture. Instead, they do
introduce performance innovations like lazy checking and automatic
caching to try and balance out the additional overhead they introduce.
This improvements can also be done in raw SQL but the programming
cost to do so is in fact high.

◦ Regardless of this improvements, ORM still is slower then raw SQL. But
if the ORM implementation is well architectured, it is not that slow and
because of its advantages becomes plausible enough to be
standardized in a company, and only resort to raw SQL for
optimization tasks.

• Sensitivity to architectural revisions

◦ ORM would work best once the mapping was completed and in fact no
more architectural changes were made to the application, database or
meta-data, ever again. Unfortunately this scenario is unrealistic, as in
reality developers frequently want to make architectural changes late
in the development cycle.

◦ Sometimes this modifications can be modest (like for example just
adding an attribute to an existing object(database), but other times it
can be more complex then that like for example rearranging the
structure of previously unrelated objects to make them related, as well
as adding an elaborate inheritance hierarchy. This would implicate a
change in all three components of the persistence system, the
application, the database and the meta-data.

◦ This operations are very difficult to automate, consequently most ORM
solutions have unsatisfactory support for revisions of the architecture
of a system after it has been mapped. Nevertheless this operations
are also painful in hand-mapped solutions.

• Accommodation of legacy systems

◦ Legacy systems are new applications that must use previously
available databases, or a data source provided by a client or third
party. In this case, the new application has no input in the matter of
the legacy database architecture, having to use it exactly has they
were designed. In insufficiently flexible automated persistence layers,
this can be problematic. If the meta-data language is not especially
inexpressive, it may even be difficult or even impossible to represent
the mapping to the legacy database.

◦ Problems also arise the other way around, in other words when an
application that does not use ORM tries to use a database that was
created and is managed by an ORM system. This happens, because
many ORM products expect to have full ownership of their databases.
This is because in particular, they may implement caching,
transactional and delayed persistence strategies that make this

20

youbeQ Management Platform

assumption. As an example we can imagine an ORM application that
retrieves some information from the database. Later on the NON ORM
application changes that information, and latter on when the ORM
application tries to retrieve that object it may go directly to the cache,
as it does not have the information that the object has been changed
in the database making the data inconsistent and obsolete.

• Limitations in expressing queries

◦ ORM does a good job at keeping track of the structural relationships
between objects , and shuffling data between objects and databases.
But unfortunately it does not perform that well when it comes to
writing more complex queries. When this happens if then we might
have the lock away ORM for a while and write raw SQL code.

 2.3.3 Possible improvements for ORM

• Improve awareness of ORM and ORM tools

◦ Unfamiliarity with ORM and its current improvements and methods
may cause developers to avoid ORM. Making them aware of ORM's
advantages (as well as disadvantages) may in fact help ORM become
a standardized solution.

• Continue to improve performance

◦ Most developers care more about performance than rapid
development and comfort, making performance a very important
weakness of ORM. And like every other technology, there is always
room for improvement.

◦ The largest improvements can be made by reducing the frequency on
which the application communicates with the database, by making
caching algorithms smarter and by somehow improving the
performance of expensive procedures such as navigating object
graphs.

• Standardize persistence solutions

◦ This is probably the most important goal for ORM. When every
developer can just know one ORM solution and apply the same
knowledge and use it in another ORM solution, then the learning curve
will definitely decrease. This will gain the developers attention.

• Integrate transparent persistence into object-oriented languages

◦ In the future, ORM implementations could natively be integrated in all
object-oriented programming languages eliminating the hassle of
using third party libraries.

21

youbeQ Management Platform

• Improve automated support for architectural revisions

◦ When a developer decides to restructure its database, ORM should
have better algorithms for identify this changes and providing support
for automating architectural revisions.

• Better accommodate legacy systems

◦ Shared databases across applications are a common thing nowadays.
ORM should be able to play nicely with ORM and non ORM systems
that want to use those databases, by means of configuration for the
object-relational mappers to work alongside legacy and other
applications that might want to use it.

• Support expressive, powerful queries

◦ Complex queries are a technical and conceptual problem for many
ORM solutions. Future querying solutions should avoid the raw SQL
fall-back by providing an easier way for complex queries.

 2.4 Conclusion

After finishing the study of the State Of The Art, it was possible to have a more
enlightened idea on what are Web Frameworks, and how can they be used to
help us achieve a complete and mature Web Application with less development
time.

DJANGO has in fact proven to be a mature solution as it offers most of the
common features of Web Frameworks as well has some own particular
advantages over some other Frameworks.

At the beginning the company was a little reluctant due to performance issues,
but after this study, and after knowing that optimizations can easily be added
with DJANGO at a later stage (if in fact they are needed) the decision to adopt
DJANGO Web Framework for the development of this project was taken.

22

youbeQ Management Platform

 3 Project Planning

This section refers to the project planning for the internship.

First we will see the software development process used in iNovmapping.
Afterwards we will go through the planned tasks for the duration of the
internship, as well as presenting some GANTT diagrams.

All the annexes for this chapter can be found at “Annex B - Software
Requirements”.

 3.1 Software Development Process

youbeQadmin follows a hybrid approach between the WATERFALL model [7]
and the AGILE development methodology [8].

This is given to the fact that all the classic WATERFALL steps are followed, in
other words:

• Firstly the team analysis, then determines and prioritizes requirements /
needs.

• After, in the design phase business requirements are translated into IT
solutions, and a decision taken about which technology (PYTHON, JAVA or
MySQL,etc) is to be used.

• Once processes are defined, code implementation takes place.

• The next stage evolves into a fully tested/verified solution for
implementation and testing for evaluation by the end-user.

• The last and final stage involves evaluation and maintenance,with the
latter ensuring everything works fine.

This approach seems efficient in theory, but in practice some problems may
arise and this is an issue in this specific project where the platforms to be
managed are still in development and new features are being introduced,
making it impossible to close the requirements phase.

That is why the AGILE development also comes into play by allowing the quick
implementation of new features that came along making it a hybrid approach.

23

youbeQ Management Platform

The Software Development Process for the youbeQAdmin is presented in Figure
5 :

We can easily acknowledge that all phases start even if the previous one isn't
completely closed. But we can also notice a reduction of the previous phases in
favor of the new ones.

• Project Execution Control

◦ There are regular meetings with the project supervisor, to monitor the
project related subjects, such as its execution and possible deviations
from the original planning.

• VERSIONING

◦ The project uses GIT, a distributed revision control system available
for VERSIONING of documents and software. This repository stores all
the documentation and code related to the project.

24

Figure 5: Software Development Model in iNovmapping

youbeQ Management Platform

 3.2 Planning

 3.2.1 First Semester

The first semester had a research component, consisting of the state of the art.
This was the basis for the creation of all the documentation for the project,
such as software requirements and architecture.

The state of the art involved the study of Web Frameworks, more specifically
DJANGO and ORM (Object Relational Mapping). It also involved a comparison
between Smarturbia and other similar alternatives.

Afterwards the software requirements were specified for the two modules as
well as the main system.

Regarding the architecture, some UML diagrams where specified to better
understand the overall system. This diagrams include, component, use cases,
activity diagrams and class diagrams.

The work done during the First Semester corresponded to the requirements
phase , design phase and part of the implementation of a prototype. Figure 6
shows this GANTT diagram.

25

Figure 6: Planning 1º Semester

youbeQ Management Platform

 3.2.2 Second Semester
The goal for the second semester is to finish the specification of the
architecture for both modules, and start the development. The second
semester will correspond to the implementation phase , verification phase and
maintenance phase. Figure 7 shows this GANTT diagram.

26

Figure 7: Planning 2º Semester

youbeQ Management Platform

 4 Proposed Approach

 4.1 Requirements

This chapter presents a summary of the Requirements Specification for the
youbeQadmin application and its modules.

The complete Requirements Specification can be found in “Annex B – Software
Requirements”.

youbeQadmin as well as its modules follow a set of functional requirements,
these being:

• Registration

• Authentication

• Error Handling (Registration, Authentication, Server, Connection)

• User Management (Create, Edit and Delete)

• Application Management (Create, Edit and Delete)

The next modules also extend the previous functional requirements, as well as
adding a few of their own.

• youbeQ Module of youbeQAdmin:

◦ Statistics Management (Add servers, edit servers, remove servers,
alerts, server configuration)

◦ Real Time Monitoring

◦ Manage Publicity

• Smarturbia Module of youbeQAdmin:

◦ APP Management (Create, Edit, Delete)

◦ Basic Info Management

◦ Category Listing

◦ User APP Rating

Aside from the functional requirements, we also have the following non-
functional requirements:

• Performance Requirement (Support at least 10.000 users)

• Data Integrity Requirement (Consistent Database, FIFO Database
Updates)

• Usability Requirement (Web Usability)

• Interface Requirement (Social Networks external API's)

27

youbeQ Management Platform

• Operation Requirement (Need resource such as web servers, databases)

• Security Requirement (Secure user authentication, Password Encryption,
HTTP's, user permissions)

• Portability Requirement (Multi-platform)

• Interoperability Requirement (APP integration)

• Fast Development and easy third party module integration

 4.2 Requirements Status

In this section, we will see the requirements for the project including their
priorities and if they were completed or not.

An incomplete requirement basically means that the company decided to
reduce their priority level. All of these incomplete requirements should be
implemented in the future, but for the purpose of this internship they are not
that important.

The full details of each requirement is in “Annex B – Software Requirements”.

28

youbeQ Management Platform

Requirement Code STATUS

REGISTRATION YOUBEQADMIN-SRS-00010 COMPLETE

REGISTRATION ERROR HANDLING YOUBEQADMIN-SRS-00020 COMPLETE

AUTHENTICATION YOUBEQADMIN-SRS-00030 COMPLETE

AUTHENTICATION ERROR
HANDLING

YOUBEQADMIN-SRS-00040 COMPLETE

USER MANAGEMENT:
ADD USER
EDIT USER
DELETE USER

YOUBEQADMIN-SRS-00050
YOUBEQADMIN-SRS-00051
YOUBEQADMIN-SRS-00052
YOUBEQADMIN-SRS-00053

COMPLETE

APPLICATION MANAGEMENT
DIFFERENT ACCOUNT TYPES

YOUBEQADMIN-SRS-00060
YOUBEQADMIN-SRS-00061

COMPLETE

ACCOUNT CONFIGURATION YOUBEQADMIN-SRS-00070 NOT COMPLETE

USER PROFILE INFO YOUBEQADMIN-SRS-00080 NOT COMPLETE

EDIT USER PROFILE INFO YOUBEQADMIN-SRS-00090 NOT COMPLETE

CONNECTION ERRORS HANDLING YOUBEQADMIN-SRS-00100 COMPLETE

SERVER ERRORS HANDLING YOUBEQADMIN-SRS-00110 COMPLETE

APP MANAGEMENT
CREATE APP
EDIT APP
REMOVE APP
TRY APP

YOUBEQADMIN-SRS-00150
YOUBEQADMIN-SRS-00151
YOUBEQADMIN-SRS-00152
YOUBEQADMIN-SRS-00153
YOUBEQADMIN-SRS-00154

COMPLETE

INFO MANAGEMENT YOUBEQADMIN-SRS-00160 COMPLETE

AREA LIMITS YOUBEQADMIN-SRS-00170 COMPLETE

CREATE AREA YOUBEQADMIN-SRS-00171 COMPLETE

EDIT AREA YOUBEQADMIN-SRS-00172 COMPLETE

REMOVE AREA YOUBEQADMIN-SRS-00173 COMPLETE

KMZ/KML MODELS YOUBEQADMIN-SRS-00180 COMPLETE

CREATE KMZ/KML MODELS YOUBEQADMIN-SRS-00181 COMPLETE

EDIT REMOVE KMZ/KML MODELS YOUBEQADMIN-SRS-00182 COMPLETE

POIS MANAGEMENT YOUBEQADMIN-SRS-00190 COMPLETE

ADD POI YOUBEQADMIN-SRS-00191 COMPLETE

EDIT POI YOUBEQADMIN-SRS-00192 COMPLETE

REMOVE POI YOUBEQADMIN-SRS-00193 COMPLETE

POIS CONNECTION YOUBEQADMIN-SRS-00200 NOT COMPLETE

EDIT POI ICON YOUBEQADMIN-SRS-00201 NOT COMPLETE

29

youbeQ Management Platform

TOP APPS YOUBEQADMIN-SRS-00210 COMPLETE

CATEGORY LISTING YOUBEQADMIN-SRS-00220 COMPLETE

USER RATING YOUBEQADMIN-SRS-00230 COMPLETE

USER ADD RATING YOUBEQADMIN-SRS-00231 COMPLETE

USER EDIT RATING YOUBEQADMIN-SRS-00232 COMPLETE

USER COMMENTS YOUBEQADMIN-SRS-00240 NOT COMPLETE

USER ADD COMMENTS YOUBEQADMIN-SRS-00241 NOT COMPLETE

USER EDIT COMMENTS YOUBEQADMIN-SRS-00242 NOT COMPLETE

ADMIN REMOVE COMMENTS YOUBEQADMIN-SRS-00243 COMPLETE

USER REPORT APPS YOUBEQADMIN-SRS-00244 NOT COMPLETE

AUTOMATICALLY REMOVE APP YOUBEQADMIN-SRS-00245 NOT COMPLETE

MANAGE PUBLICITY YOUBEQADMIN-SRS-00470 NOT COMPLETE

STATISTICS MANAGEMENT
ADD SERVER
EDIT SERVER
REMOVE SERVER

YOUBEQADMIN-SRS-00100
YOUBEQADMIN-SRS-00101
YOUBEQADMIN-SRS-00102
YOUBEQADMIN-SRS-00103

COMPLETE

ALERTS YOUBEQADMIN-SRS-00110 COMPLETE

ALERTS THRESHOLD
CONFIGURATION

YOUBEQADMIN-SRS-00111 COMPLETE

ALERTS ADD EMAIL TO NOTIFY YOUBEQADMIN-SRS-00112 COMPLETE

ALERTS DELETE EMAIL TO NOTIFY YOUBEQADMIN-SRS-00113 COMPLETE

REAL TIME MONITORING YOUBEQADMIN-SRS-00130 COMPLETE

STATISTICS
REQUEST STATISTICS
PARSE STATISTICS
SAVE STATISTICS

YOUBEQADMIN-SRS-00140
YOUBEQADMIN-SRS-00141
YOUBEQADMIN-SRS-00142
YOUBEQADMIN-SRS-00143

COMPLETE

USERS STATISTICS YOUBEQADMIN-SRS-00400 COMPLETE

JOURNAL STATISTICS YOUBEQADMIN-SRS-00410 COMPLETE

STAMPS STATISTICS YOUBEQADMIN-SRS-00420 COMPLETE

CHAT STATISTICS YOUBEQADMIN-SRS-00430 COMPLETE

TELEPORTS STATISTICS YOUBEQADMIN-SRS-00440 COMPLETE

DEMOGRAPHICS STATISTICS YOUBEQADMIN-SRS-00450 COMPLETE

USERS LIST STATISTICS YOUBEQADMIN-SRS-00460 COMPLETE

Table 3: Software Requirements

30

youbeQ Management Platform

 4.3 Use Cases

In this section we will present youbeQadmin use cases. Figure 8 shows the use
case for youbeQadmin.

• Actors List

◦ The actors of this application are the following:

▪ Administrator – Has full access to the youbeQ Admin platform

▪ User – Has restricted access to the youbeQ Admin platform

• youbeQ Administration

◦ We have an actor that is the Administrator, with super user powers
and permissions . This actor uses the youbeQ Administration, which in
turn uses other modules like authentication and registration, and has
modules that extend it, inheriting its attributes and behavior.

31

Figure 8: youbeQadmin Use Case (Full View)

youbeQ Management Platform

• Smarturbia Administration

◦ The other actor is a normal user with privileges granted by the
administrator. It extends the youbeQ administration attributes and
behavior but it has limited access to the views it can access and which
attributes it can edit.

◦ Registration

▪ The user can choose between normal registration or social network
registration (Facebook). He is able to register himself if he isn't
already registered, otherwise he will be properly notified. An
administrator can only be registered by another administrator using
DJANGO's administration site also built in with DJANGO's
Framework.

◦ Authentication

▪ The user or administration can / should authenticate themselves in
order to keep using youbeQ administration / Smarturbia
administration features. This authentication like the registration
can also be normal, or social network authentication.

◦ Manage Users

▪ There is an administration interface with the purpose of managing
users. The administrator can manage all user profile details,
account details and permissions.

◦ Manage Smarturbia

▪ This is a submodule that extends youbeQ Administration. It inherits
all the registration, authentication and user management
capabilities. Apart from this capabilities Smarturbia can manage
APPS (also know has cities in Smarturbia) giving features for APP
creation, editing and removal. There are two use cases for this
module, Figure 9 for the administrator, and Figure 10 for the normal
user.

32

youbeQ Management Platform

33

Figure 9: Smarturbia Administrator Use Case

Figure 10: Smarturbia User Use Case

youbeQ Management Platform

• Create APP

◦ A user or administrator can create a new APP, proving its details
(some of them required), city limits, area name and points of
interest.

• Edit APP

◦ A user or administrator can edit a APP, proving its details (some
of them required) or city limits or area name or points of
interest. Please note that a normal user can only edit a city that
he created.

• Remove APP

◦ A user or administrator can delete APPS. Please note that a
normal user can only delete APPS that he created.

• Manage Area

◦ A user or administrator can add area limits. Only administrators
can edit and remove areas.

• Manage Category

◦ Administrators can add categories, edit and remove them.

• Manage POIS

◦ A user or administrator can add, edit and remove points of
interest, when creating or editing an APP.

• Manage Ratings

◦ A user or administrator can add ratings, but only administrators
can edit ratings of APPS.

◦ Manage youbeQ

▪ This is a submodule that extends youbeQ Administration. It inherits
all the registration, authentication and user management
capabilities.

▪ Manage Publicity

• Add Publicity Area

◦ The administrator can create a new publicity, providing its
details (some of them required), limits and area.

• Edit Publicity Area

◦ The administrator can edit a publicity, providing its details
(some of them required) or limits or area.

34

youbeQ Management Platform

• Remove Publicity Area

◦ The administrator can remove a given publicity.

• Purchase Publicity Area

◦ The user can purchase/rent a given publicity area.

▪ Statistics

◦ youbeQ Administration provides us with statistics for
youbeQ's Messages, Journal, Places , Registrations, Login,
Teleports, Data Visualization (2D and 3D) and filter content by
Data, Date Interval, Gender, Age and Age Interval. It also
gives statistics for the Smarturbia registered users, last login,
average APPS per user.

• Server Management Statistics

◦ Server Management Statistics extends the statistics module
and is specifically designed to provide statistics about the
servers. We can also add servers, edit and remove them
inside this module.

• Statistics Management Add Server

◦ Statistics Management Add Server extends the Server
Management Statistics module and is specifically designed to
add new Servers in order to get their statistics.

• Statistics Management Edit Server

◦ Statistics Management Edit Server extends the Server
Management Statistics module and is specifically designed to
edit Servers in order to get their statistics.

• Statistics Management Remove Server

◦ Statistics Management Remove Server extends the Server
Management Statistics module and is specifically designed to
remove Servers in order to get their statistics.

• Notifications

◦ In order to get the statistical information and alerts, with
need this notification modules that will manage all content
related to providing statistical information.

▪ Real Time Monitoring

• This module is dedicated to providing information about
memory usage, CPU usage and online users. It shall be used in
conjunction with the statistical and notification modules.

35

youbeQ Management Platform

 4.4 Architecture

All the annexes for this chapter can be found at “Annex C - Software
Architecture”.

The managing platform will be divided into two different modules, youbeQ and
Smarturbia.

Its concept centers around the idea of having a web based application that
manages all of youbeQ and Smarturbia content's enforcing a distributed
architecture while allowing the integration of this two modules/applications.

Nevertheless at the time the company decided to still keep their already
existing applications re-enforcing the need for integrating the new platforms
with the old ones.

Some of its contents have been migrated to the new platform others were
simply redesigned and upgraded.

DJANGO uses ORM, which basically means that our programmed classes will be
directly and automatically mapped to our database entities.
This brings great comfort to the programmer because he doesn't have to worry

36

Figure 11: youbeQ Use Case Module

youbeQ Management Platform

about all the “low level” connections to the database and database access.

We simply instantiate an object from a model class already mapped to our SQL
database, and we can immediately start filling its attributes or making queries.

 4.4.1 Component Diagram

This is the component diagram, and represents the full system. It shows the

REST interfaces for the communication between the modules as well as the

MySQL connectors for the communication of certain modules with their

databases.

In figure 12 the blue color represents the full implementations created during
the internship, the green modules represent the modules that where changed

during the internship period.

Finally the orange color represents modules that where simply used to achieve
certain purposes and were not internally modified.

37

youbeQ Management Platform

In order to take full advantage of DJANGO's concepts, we integrate our code
with third party DJANGO modules.

Although DJANGO is a complete and stable framework, its users have the ability
to install third party submodules also called “reusable APPS”. This submodules
allow us to have, in the majority of the time, a well written and tested reusable
code where we can just “plug” into our existing project and we can
immediately start using it. Nevertheless we can always implement our own
code if we wish to or even modify open source third party code.

Below in table 4 is the list of dependencies for this project. All the details for
each module are in Annex C - Software Architecture.

Framework Modules
DJANGO-
registration
0.8

DJANGO-
tastypie
0.9.11

DJANGO-
celery

South 0.7.5 DJANGO-
social-auth
0.7.9

DJANGO_
extensions
0.9

Pillow 1.7.7

Table 4: DJANGO Framework Modules

38

Figure 12: Component Diagram

youbeQ Management Platform

 4.4.2 youbeQ Module Architecture

The main task of the youbeQ module is to get the statistical information from
the main youbeQ application through a RESTFULL API.

The youbeQ application has a DJANGO written module that will provide the
RESTFULL API resources to be consumed only by the youbeQ module from the
youbeQAdmin project.

This DJANGO module called youbeQ_django sole purpose is to compute in real
time the statistical information provided by the software functional
requirements, and supply this information as a resource in the RESTFULL API to
be consumed, as well as keeping track of the historic data of previous requests
in a local database.

The youbeQ module will also give the ability to add specific machines for
statistical monitoring as well as other requirements specified in “Annex B –
Software Requirements”.

The other task of the youbeQ module is to be responsible for the user area
purchasing, including the publicity management (publicity creation, edition and
deletion) over the purchased area. The areas are created only by the
administrators.
Each area can have many publicities purchased by different users.

• Activity Diagram

• YoubeQ Module (Full View)

◦ This activity diagram in Figure 13 shows the youbeQ module
architecture. From the start point we have four available options
(publicity and statistics). Each one of this options have their own
sequence diagram (see annex C) as this is only a full overview of
the system. After that we go back to our main options chooser or
we terminate by reaching the final state.

39

youbeQ Management Platform

• Class Diagram

◦ This class diagram in Figure 14 represents the ORM abstraction for
youbeQ module. It also shows the existing relationships between
the classe entities before being mapped into tables.

40

Figure 13: youbeQ Module (Full View)

youbeQ Management Platform

 4.4.3 Smarturbia Module Architecture

The Smarturbia module is responsible for the creation of new APPS (cities), new
categories for the APPS, and rating/commenting of the APPS. It also allows the
user to edit the APPS and remove them, as well as editing the rating and
comments for the APPS.
Note that only the administrators have permission to create new categories.

Every change occurring in the Smarturbia module will also be replicated to the
Smarturbia APP server in order to become visible to the users. This is also done
using a RESTFULL API, communicating through JSON messages.

The replication is accomplished using Celery which is “...an asynchronous task
queue/job queue based on distributed message passing” [9]. This way we
ensure that all the replication is done asynchronously, allowing the user to
continue using the management platform simultaneously.

41

Figure 14: youbeQ Class Diagram (Partial View)

youbeQ Management Platform

This replication clearly asks for a FIFO implementation in order for the data to
be consistent in both databases.

• Activity Diagram

◦ Inside the Smarturbia module we find different options that aren't
related between themselves. After choosing any of the available
options (with the exception of “Try APP”) the page gets redirected
back to the main Smarturbia page.

◦ If we choose “Try APP” instead, we get redirected to a different server
that will contain the information we created or edited so that we can
test them.

◦ This activity diagram below in Figure 15 is only the administrator, for a
normal user it becomes slightly different and will also be presented.

42

Figure 15: Smarturbia Activity Diagram

youbeQ Management Platform

The following activity diagram in Figure 16 will be for a normal user without
superuser permissions.

• Class Diagram

◦ This class diagram in Figure 17 represents the ORM abstraction for
Smarturbia module. It also shows the existing relationships between
the classe entities before being mapped into tables.

43

Figure 16: Smarturbia Activity Diagram

youbeQ Management Platform

44

Figure 17: Smarturbia Class Diagram (Partial View)

youbeQ Management Platform

 4.4.4 Tasks

For the execution of certain tasks, like for example data replication to remote
servers, or database updates and so on, we decided to use Celery [9] which is
a module that can be easily integrated with DJANGO in order to manage tasks,
similar to a CRON job application.

We are also using REDIS that is our Celery broker (temporary database acting
similarly to a cache database).

• Celery

◦ The main advantage of using CRON jobs (Celery) is that the appointed
tasks are executed by an independent DEAMON that can actually run
on a independent server and as part of a cluster of DEAMONS
executing individual or collective tasks. This brings great advantage
when we decide to scale our applications, and we must notice that
Celery requires very little configuration (at a basic level) in order to
get things up and running and integrating with our application. Celery
workers execute their given tasks at a specific time and order
(decided by the default values or overridden by the developer).

• REDIS

◦ REDIS is a NO-SQL key/value high performance database similar to a
hash-table, in other words we can retrieve the value by providing the
key associated to the value.

◦ Celery requires a broker in order to store its workers, and assigned
tasks. The broker choice can be REDIS, RABBITMQ, COUCHDB, MySQL
Db or any other database supported by Celery. Each one of them has
their own particularities and the choice should be based upon those
particularities and their integration with Celery.

45

youbeQ Management Platform

 5 Risk Analysis

In this section we present a table associated with the risk analysis, where we
present the problems we may encounter and possible solutions.

Problems Solutions
Not knowing the used

framework
Study and explore used technologies

and tools

Not knowing the programming
languages

Study and explore used technologies
and tools

Not knowing the
communication technologies
such as REST, SOAP, JSON,

XML, etc

Study and explore used technologies
and tools

Limited control over changes
on remote databases

No solution

Main development on remote
applications made by others

and poorly documented

Study and explore , build prototypes

Strong dependency on Google's
API in order for application to

fully work

Use another API

Possible learning and usage of
automated testing tools

Study and explore used technologies
and tools , document evolution in order
to see what can be done in a specific

amount of time

Table 5: Risk Analysis Problems and Solutions

When developing youbeQadmin some of this risks appeared. This risks where:

• Not knowing the programming languages
◦ PHP and JAVASCRIPT were fairly new to me, so I had to learn the basics

• Main development on remote applications made by others and
poorly documented
◦ Smarturbia had undocumented and uncommented code, so I had to

study and explore the code on my own.
• Possible learning and usage of automated testing tools

◦ I had never done proper automated testing, so this was a new
experience and I had to read a lot of documentation to understand
how the testing frameworks work.

46

youbeQ Management Platform

 6 Achievements

 6.1 youbeQadmin (BETA version)

Before the end of the Internship the youbeQadmin application and modules
developed were deployed into production. In this section there are some print-
screens of the web pages of the final product.

To avoid confusion to the user because of the name, the logo was renamed
from youbeQadmin to Smarturbia Admin, the rest remains the same.

Figure 18 is the main Login Page for the youbeQadmin from the Smarturbia
perspective where the user or administrator authenticate themselves with valid
credentials.

47

Figure 18: Login Page

youbeQ Management Platform

Once authenticated the main page in Figure 19 comes into place, with all the
available modules / services that can be managed.

48

Figure 19: Main Page

youbeQ Management Platform

Figure 20 is the statistics module, where we can see all statistics related to
iNovmapping's products (for now only youbeQ and Smarturbia are available).

49

Figure 20: youbeQadmin statistics for the administrator of youbeQ and
Smarturbia

youbeQ Management Platform

In Figure 21 we have a list of all available APPS/cities (created by the user or
admin) in Smarturbia module, where we have the power to delete, edit, try,
rate, and create new ones.

When editing or creating an APP/cities Figure 22 is the screen that we go into

50

Figure 21: Smarturbia APPS

youbeQ Management Platform

51

Figure 22: Smarturbia APP Creation/Editing

youbeQ Management Platform

 7 Tests

This section presents the tests results for the youbeQadmin project.

DJANGO comes with a unit testing framework for an easy to use automated
testing. We can use a collection of tests (test suite) to solve or avoid a number
of problems.

The tests tried to cover most of the functionalities. There were some aspects
that weren’t fully tested, mainly the exception handling.

Others were tested while developing and they are no automated testing, like to
example to test the if when creating an APP in Smarturbia module, if it
replicates properly to the Smarturbia server. There were no automated tests for
this scenario because of the time it would involve to develop such complex
scripts.

There are some aspects of the application that still need to be fixed but a BETA
version is already in production for users to use it.

There where also some performance testing (load balancing) and usability
testing.

The complete test case specification and results can be found in “Annex D -
Software Testing”.

The server specifications and all the rest of the performance information can
also be found in this same annex.

The results for the usability testing can be found at “Annex E - Usability Tests”.

Below we have a traceability Matrix with the software requirement(s), and the
corresponding test(s).

 7.1 Traceability Matrix for Unit Testing

All test details can be found at “Annex D - Software Testing”. The following
table is the traceability matrix.

52

youbeQ Management Platform

Requirement Test Item(s)

YOUBEQADMIN-SRS-00010-
REGISTRATION

YOUBEQADMIN-TCS-00010

YOUBEQADMIN-SRS-00020-
REGISTRATION ERROR HANDLING

YOUBEQADMIN-TCS-00020
YOUBEQADMIN-TCS-00021

YOUBEQADMIN-SRS-00030-
AUTHENTICATION

YOUBEQADMIN-TCS-00030
YOUBEQADMIN-TCS-00031

YOUBEQADMIN-SRS-00040-
AUTHENTICATION ERROR HANDLING

YOUBEQADMIN-TCS-00040
YOUBEQADMIN-TCS-00041

YOUBEQADMIN-SRS-00050-USER
MANAGEMENT

YOUBEQADMIN-TCS-00051
YOUBEQADMIN-TCS-00052
YOUBEQADMIN-TCS-00053

YOUBEQADMIN-SRS-00060-
APPLICATION MANAGEMENT
YOUBEQADMIN-SRS-00061-
APPLICATION MANAGEMENT

YOUBEQADMIN-TCS-00060

YOUBEQADMIN-SRS-00150-APP
MANAGEMENT
YOUBEQADMIN-SRS-00151-CREATE
APP
YOUBEQADMIN-SRS-00152-EDIT APP
YOUBEQADMIN-SRS-00153-REMOVE
APP
YOUBEQADMIN-SRS-00154-TRY APP

YOUBEQADMIN-TCS-00151
YOUBEQADMIN-TCS-00152
YOUBEQADMIN-TCS-00153
YOUBEQADMIN-TCS-00154

YOUBEQADMIN-SRS-00231-USER ADD
RATING

YOUBEQADMIN-TCS-00231

YOUBEQADMIN-SRS-00232-USER EDIT
RATING

YOUBEQADMIN-TCS-00232

YOUBEQADMIN-SRS-00110-
STATISTICS MANAGEMENT ALERTS

YOUBEQADMIN-TCS-00110

YOUBEQADMIN-SRS-00111-
STATISTICS MANAGEMENT ALERTS
THRESHOLD CONFIGURATION

YOUBEQADMIN-TCS-00111

YOUBEQADMIN-SRS-00112-
STATISTICS MANAGEMENT ALERTS
ADD
EMAIL TO NOTIFY

YOUBEQADMIN-TCS-00112

YOUBEQADMIN-SRS-00113-
STATISTICS MANAGEMENT ALERTS
DELETE EMAIL TO NOTIFY

YOUBEQADMIN-TCS-00113

YOUBEQADMIN-SRS-00130-REAL TIME YOUBEQADMIN-TCS-00130

53

youbeQ Management Platform

MONITORING

YOUBEQADMIN-SRS-00140-STATISTICS
YOUBEQADMIN-SRS-00141-REQUEST
STATISTICS
YOUBEQADMIN-SRS-00142-PARSE
STATISTICS
YOUBEQADMIN-SRS-00143-SAVE
STATISTICS

YOUBEQADMIN-TCS-00140

YOUBEQADMIN-SRS-00400-USERS
STATISTICS

YOUBEQADMIN-TCS-00400

YOUBEQADMIN-SRS-00410-JOURNAL
STATISTICS

YOUBEQADMIN-TCS-00410

YOUBEQADMIN-SRS-00420-STAMPS
STATISTICS

YOUBEQADMIN-TCS-00420

YOUBEQADMIN-SRS-00430-CHAT
STATISTICS

YOUBEQADMIN-TCS-00430

YOUBEQADMIN-SRS-00440-TELEPORTS
STATISTICS

YOUBEQADMIN-TCS-00440

YOUBEQADMIN-SRS-00450-
DEMOGRAPHICS STATISTICS

YOUBEQADMIN-TCS-00450

YOUBEQADMIN-SRS-00460-USERS LIST
STATISTICS

YOUBEQADMIN-TCS-00460

Table 6: Traceability Matrix

 7.2 Performance Testing

In order to test the performance of the developed Web Application, some load
balancing tests were made [10].

The complete performance test server specification and results can be found in
“Annex D - Software Testing”.

The tests are actually comprised of two requests, one GET request to fetch the
login.html page (this is done because all POST views are CSRF protected)
followed by a POST request which is actually the login.

But the relevant results [11] are only for the POST request, where there is an
interaction with the database for the login of the user.

Each test was made for 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000
and 10.000 requests using Apache JMETER which is a load testing tool written
in JAVA.

54

youbeQ Management Platform

 7.2.1 Load Testing

The following Figure 23 is the Error % for the POST request to do the login after
the GET requests of the login.html so the browser can generate a CSRF token.

As we can see the error % increases when we increase the number of requests.
This behavior is expected and also considered normal.

Still, the maximum error % for the maximum number of requests (10.000
requests) is relatively small (still less then 1%) which is acceptable.

The following Figure 24 is the throughput (requests per second) results for the
POST request to do the login after the GET requests of the login.html so the
browser can generate a CSRF token.

55

Figure 23: Testing Error % Post data Load Test

200*10 300*10 400*10 500*10 600*10 700*10 800*10 900*10 1000*10
0

0.1

0.2

0.3

0.4

0.5

0.6

Error (%)

1000 Threads * 10 Loop = 10.000 Requests

youbeQ Management Platform

With the testing we were able to satisfy about 40 requests per second for 2.000
requests. This number tends to decrease as the number of requests increase. It
does make sense, as this load test implies an interaction with the database and
the more requests, the more resources need to be allocated, so the more
requests we ask to the server, the longer it takes to process.

 7.3 Usability Testing

For the purposes of evaluating the developed software by letting the users test,
some usability tests were made.

All the information related to the Usability tests are in “Annex E - Usability
Tests” for further consultation.

There were a total of 26 responses to the usability tests, that should take about
10 min total for each user. The usability test included the user
registration/login, the creation of a SMARTURBIA APP, the editing of this APP,
and the deletion of the APP. For each one of these tasks, the users had to rate
their experience from 1 (very easy) to 5(very hard) as well as the estimated
time he/she took to complete the given task.

In general, the user response was very positive. The users were able to execute
all this tasks with minimum effort and rapidly.

56

Figure 24: Testing Throughput of Post data Load Test

200*10 300*10 400*10 500*10 600*10 700*10 800*10 900*10 1000*10
0

5

10

15

20

25

30

35

40

45

Throughput (Req/Sec)

1000 Threads * 10 Loop = 10.000 Requests

youbeQ Management Platform

 8 Conclusions

In this internship we developed youbeQadmin, a management platform for
youbeQ and Smarturbia.

Since time was an important factor there was a study in the state of the art to
know what feasible alternatives were available, that could help speed up the
development process in order to fulfill all or at the very least most of the
software requirements while at the same time maintaining a well written,
organized and scalable application.

So a decision had to be made regarding the use of a Web Framework, as
opposed to developing everything without one. The advantages and
disadvantages of Web Frameworks had to be taken into account when deciding
this matter and if in fact a Web Framework was a proper solution for fast and
reliable development, DJANGO (PYTHON) would be the companies chosen Web
Framework.

Another decision that had to be made was the use of ORM when developing the
application. Once again the advantages and disadvantages are a very good
starting point to deciding whether to use this technology or just fall back to
good old SQL.

After a thorough study of the state of the art, the decision to use Web
Framework (DJANGO) was made, as well as using ORM for the prototyping
phase (BETA release).

The project planing as well as the software requirements and architecture have
proven to be extremely important allowing us to clearly see most of the stages
to come and anticipate future problems avoiding schedule deviations.

The risk analysis has also proven to be of high importance as we can solve, or
start solving problems that can delay the project right from the beginning.

All this software engineering tools are in fact reliable and time saving, as they
help us build an healthy and strong base for our project and allow us to easily
add improvements over the specifications in the future.

The testing phase was of equal importance. Automated Unit tests, performance
tests and usability tests were made, although if there weren't so many complex
requirements more automated unit tests could have been made.

Unfortunately, and specially for someone who is not very comfortable with
automated testing, they can prove to be a little complex and time consuming
at the beginning. In fact, before the internship I didn't really have much
experience with automated testing.

While developing the manage platform, I also had to be in contact with other
programming languages aside from PYTHON as well as open source
technologies, in order to be able to integrate with the already existing and
deployed applications.

Web development is certainly a System Information area of its own and I found

57

youbeQ Management Platform

myself confronted with many problems that I could not anticipate due to the
lack of experience in the area. This was a task that I did overcome in time and
that brought me very elucidative knowledge on the subjects.

 8.1 Future Work

The work done for this project is not complete although the architecture has a
solid base to support new requirements that may arise in the future.

There are some requirements that still need to be implemented, that are
already specified but due to the lack of time and more prioritized requirements
could not be completed.

There is also room for software optimizations. Some of them are already
thought of since before even starting the development,when it was still in the
specifying the requirements and architecture phase. The most important one is
to speed up the database by converting the existing ORM solution to raw SQL.
The database is usually the bottleneck of the DJANGO developed applications
and the best optimization found until today was converting ORM to raw SQL
(apart from SQL better written queries). The only problem for doing this right at
the beginning is that it can take more time and it might make the development
more complex.

There is in fact an article, from a MOZZILA FOUNDATION developer that was
using DJANGO Web Framework to develop the MOZILLA VERBATIM website [12]
and after developing it, he converted all queries to raw SQL and could speed up
the database performance up to one thousand times faster [13].

This does in fact make us wonder why don't we just write raw SQL code, and
the answer to this is that although optimization is always good, the time and
resources that it takes might not compensate the amount of traffic that our
web application has. This is the current case for the company, where the web
traffic for some of its web applications do not match the investment.

58

youbeQ Management Platform

References
1: Django Authors, Django Documentation, 2013
2: Brian D. Murphy, SLOCUM, JOSHUA, 1994,
http://www.biographi.ca/en/bio/slocum_joshua_13E.html accessed June, 2013
3: Docforge, Web application framework, ,
http://docforge.com/wiki/Web_application_framework accessed June 2013
4: Ruben D'Oliveira, Pros And Cons Of Using Frameworks, 2011,
http://www.1stwebdesigner.com/design/pros-cons-frameworks/ accessed June
2013
5: Robert Eckstein, Java SE Application Design With MVC, 2007
6: Jeffrey M. Barnes, Object-Relational Mapping as a PersistenceMechanism for
Object-Oriented Applications, 2007
7: BHARGAV_VISANI, Waterfall Model,
8: Agile Alliance, Agile Development, , http://www.agilealliance.org/the-
alliance/what-is-agile/ acessed June,2013
9: Celery Team, Celery: Distributed Task Queue, ,
http://celeryproject.org/accessed June, 2013
10: Brandon Konkle, Load Testing with JMeter, 2013,
http://lincolnloop.com/blog/2011/sep/21/load-testing-jmeter-part-1-getting-
started/ accessed June, 2013
11: Mike Kelly, Tips For Interpreting Results Jmeter, ,
http://searchsoftwarequality.techtarget.com/tip/Tips-for-interpreting-JMeter-
results accessed June, 2013
12: Mozilla, Mozilla Verbatim, , https://localize.mozilla.org/ accesses June, 2013
13: Peter Bengtsson, An optimization story with Django – one thousand times
faster!, , http://blog.mozilla.org/webdev/2011/12/15/django-optimization-story-
thousand-times-faster/ accessed June, 2013

59

youbeQ Management Platform

Annex A – State Of The Art

60

youbeQ Management Platform

Annex B – Software
Requirements

61

youbeQ Management Platform

Annex C – Software
Architecture

62

youbeQ Management Platform

Annex D – Software Testing

63

youbeQ Management Platform

Annex E – Usability Tests

64

