
Masters’ Degree in Informatics Engineering
Dissertation
Final report

Subset Selection Algorithms in Multiobjective
Optimisation

Daniel Jorge Ramos Vaz
dvaz@student.dei.uc.pt

Adviser:
Lúıs Paquete

July 2, 2013

Abstract

The main focus of this work is on the design and analysis of algorithms for
finding a representative subset of solutions of a multiobjective combinatorial
optimisation problem. This problem is recast as a particular optimisation
problem.
Two types of problems are discussed in this report. The first problem consists
in finding a subset of elements that is as close as possible to a reference set
with respect to the ε-indicator. In particular, new results with respect to the
correctness of a known algorithm and three new approaches that improve the
current time complexity are presented and discussed. Their performance is
also compared from an experimental point of view.
In the second problem, the goal is to find a subset of elements of a set ac-
cording to some property of interest. Three properties are taken into account:
Uniformity, Coverage, and ε-indicator. The multiobjective problem that arises
from the combination of these properties is also discussed. Two approaches
are presented for each problem: one that is based on principles of dynamic
programming and other that solves a sequence of feasibility problems. The
algorithms are assessed in terms of time complexity and running time.

Keywords

Algorithm design and analysis
Computational complexity
Multiobjective combinatorial optimization
Subset selection
ε-indicator

Resumo

O foco deste trabalho é o design e análise de algoritmos que encontrem um
subconjunto representativo de soluções de um problema de optimização com-
binatória multiobjectivo. Este problema é reformulado como um determinado
problema de optimização.
Dois tipos de problemas são discutidos neste documento. O primeiro problema
consiste na pesquisa de um subconjunto de elementos que seja tão próximo
quanto posśıvel de um conjunto de referência, de acordo com o Indicador-ε.
Concretamente, são apresentados e discutidos novos resultados respeitantes à
exactidão de um algoritmo conhecido, bem como três novas abordagens que
melhoram a sua complexidade temporal. O desempenho destas abordagens é
ainda comparada de forma experimental.
No segundo problema, o objectivo é encontrar um subconjunto de elementos
de um conjunto, de acordo com uma dada propriedade. Três propriedades
diferentes são tidas em conta: Uniformidade, Cobertura e Indicador-ε. É
ainda discutido o problema multiobjectivo resultante da combinação dessas
propriedades. Duas abordagens são apresentadas para cada problema: uma
delas é baseada em prinćıpios de programação dinâmica, e a outra resolve
vários problemas de exequibilidade em sequência. Os algoritmos são avaliados
relativamente à complexidade temporal e ao tempo de execução.

Palavras-chave

Design e análise de algoritmos
Complexidade computacional
Optimização combinatória multiobjectivo
Selecção de subconjuntos
Indicador-ε

Acknowledgements

I would like to thank my family, particularly my parents and sister, for sup-
porting me, providing a great familiar environment, and helping me get to
where I am today. To my friends, thank you for the leisurely moments, which
are part of a healthy lifestyle and coexist with the hard work. My thanks to
my adviser, Prof. Lúıs Paquete, for guiding my work and for all the incen-
tive and effort to make my thesis better. My thanks also go to the ECOS
lab, for the company and work environment, and for allowing me to access
and use their cluster. I would also like to thank Prof. Kathrin Klamroth and
Prof. Michael Stiglmayr for providing different points of view and for the dis-
cussion of the results of the thesis. For the support and for the opportunity
of visiting the University of Wuppertal, I also express my appreciation to the
RepSys project – Representation systems with quality guarantees for multi-
objective optimization problems, Germany/Portugal Bilateral Cooperation
Research Project funded by DAAD/CRUP.

Contents

1 Introduction 1

2 State of the Art 5
2.1 Ranking-based Approaches . 5
2.2 Indicator-based Approaches . 6
2.3 Subset Selection . 7

3 Methodology 9

4 Subset Selection using ε-indicator 11
4.1 Threshold Algorithm . 11
4.2 Correctness . 13
4.3 Improvements on the Algorithm . 14

4.3.1 Set Covering . 14
4.3.2 Merge Sort . 14
4.3.3 Fractional Cascading . 15

4.4 Complexity and Results . 17
4.4.1 Experimental Results . 18

4.5 Extension to 3D . 20

5 Representation Problem using ε-indicator 23
5.1 Threshold Algorithm . 23

5.1.1 Alternative Algorithm . 24
5.2 Dynamic Programming . 25

5.2.1 Improvements . 28
5.3 Complexity and Results . 30

5.3.1 Experimental Results . 31

6 Representation Problem using Coverage 33
6.1 Threshold Algorithm . 33
6.2 Dynamic Programming . 34
6.3 Complexity and Results . 35

7 Representation Problem using Uniformity 37
7.1 Threshold Algorithm . 37
7.2 Dynamic Programming . 39
7.3 Complexity and Results . 40

7.3.1 Experimental Results . 40

i

ii CONTENTS

8 Representation Problem using ε-indicator and Coverage 43
8.1 Threshold Algorithm . 43

8.1.1 Search Method . 44
8.1.2 Set Covering Procedure . 45
8.1.3 Time Complexity . 46

8.2 Dynamic Programming . 46
8.3 Complexity and Results . 48

8.3.1 Experimental Results . 48

9 Representation Problem using ε-indicator and Uniformity 51
9.1 Threshold Algorithm . 51

9.1.1 Set Covering Procedure . 52
9.1.2 Time Complexity . 52

9.2 Dynamic Programming . 53
9.3 Complexity and Results . 53

9.3.1 Experimental Results . 54

10 Triobjective Representation Problem 57
10.1 Threshold Algorithm . 57
10.2 Dynamic Programming . 58
10.3 Complexity and Results . 59

10.3.1 Experimental Results . 59

11 Conclusion 63
11.1 Future Work . 63

A Proof of Correctness for ε-indicator and Uniformity 65
A.1 Threshold Algorithm . 65

Bibliography 69

Chapter 1

Introduction

Optimisation problems arise in many real-life situations, such as finding a shortest
path between two locations with a navigation system or finding a good scheduling of
classes that maximises the preferences of the staff. In order to generate realistic solutions,
there is the need to consider conflicting interaction between the players of the optimisation
problem. For example, if we consider the preferences of the students when scheduling
classes, these may be incompatible with those of the teachers: while teachers may want
to have the classes concentrated in one or two days, students prefer to have classes spread
over the week or only during the afternoon. Therefore, we may need to consider multiple
objectives in order to solve more realistic problems.

When we have two or more conflicting objectives, it may be impossible to find a
solution that satisfies all of them. One way to overcome this problem is to find a set of
“trade-off” solutions, each of which representing a compromise between the objectives.
Then, this set of solutions, which we denote by trade-off set, is presented to a decision
maker that chooses the most appropriate solution for the problem at hand. Figure 1.1
presents several timetables as points, whose coordinates correspond to staff preferences
(y-axis) and students’ preferences (x-axis). If we choose the uppermost timetable, we are
satisfying 38% of the staff preferences, but only 10% of the students’ preferences. On the
other hand, if we choose the third point from the left, we obtain a timetable that satisfies
27% of the staff preferences, while satisfying 31% of the students’ preferences. This is a
compromise solution, which does not completely satisfy both parties. However, we may
also choose a timetable that favours students, like the rightmost point, which satisfies
54% of the students’ preferences, while only 7% of the staff preferences.

Unfortunately, these problems may generate a large number of solutions, which may
overload the decision maker. Therefore, it is important to find a small number of rep-
resentative solutions. This describes the problem of subset selection, i.e. the problem of
choosing a fixed number of elements from a given set according to some properties.

Since the representative subset can be seen as an approximation, we can use well-
known measures of quality of approximations to characterise these sets. Two measures
are commonly used: i) Uniformity, which is related to the distance between a solution
and its neighbours and whose goal is to prevent large gaps in the chosen subset and ii)
Coverage, which measures how close are the chosen elements from those that were not
chosen [10]. Figure 1.2 presents two subsets of four solutions for the same timetable
instance as shown in Figure 1.1. The subset represented on the left has high Uniformity,
since the solutions are evenly spaced, i.e, the distance between neighbour solutions is

1

2 CHAPTER 1. INTRODUCTION

0 10 20 30 40 50 60
0

10

20

30

40

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

Figure 1.1: Example of trade-off set of solutions for a timetable problem

large. The subset represented on the right has low Uniformity, since there is a large gap
between the two groups of solutions, while three of the solutions are very close to each
other. Therefore, if the points represented in the Figure on the right are given to the
decision maker, he is forced to choose extreme solutions that favour either the staff or
the students. Another possibility is to use an indicator, such as the hypervolume [15] or
the ε-indicator [9], which assign a scalar value to a set. (see Section 2.2 for an in-depth
discussion of these indicators)

The aim of this thesis is to develop and analyse algorithms that find representative
subsets of discrete sets of solutions, which is understood as a combinatorial optimisation
problem. Two types of problems will be considered. The first problem is to select a
subset of the trade-off set satisfying some properties, which may be used, for example,
to present a small number of representative solutions to a decision maker. The second
problem is to select a subset of solutions with respect to a reference set. This may be
useful, for instance, in evolutionary algorithms, when selecting the individuals for the
next generation. In either case, we assume that the desired cardinality of the subset is
given a priori and that we want to obtain a subset with some guaranteed properties, such
as Coverage, Uniformity and/or ε-indicator.

In the following paragraph, we introduce the notation and definitions that are needed
to understand the thesis. A multiobjective combinatorial optimisation problem consists of
a pair (X, f), whereX is a discrete set composed of all feasible solutions, and f = X 7→ Rd

is the (vector) objective function, with d real-valued objectives. The image of X in the
objective space is denoted by Y . The goal of these problems is to find the solution x ∈ X
that maximises f(x) (w.l.o.g we assume maximisation of the d objectives). An element
x ∈ X is denoted solution, and f(x) is its objective vector, or simply vector. For two
solutions x, x′ ∈ X, we say x weakly dominates x′ or f(x) ≥ f(x′) if f(x) is greater or
equal than f(x′) for every objective. Additionally, if f(x) ≥ f(x′) and f(x) 6= f(x′),
we say x dominates x′ or f(x) > f(x′). If, for x ∈ X, there is no x′ ∈ X such that
f(x′) > f(x), we say that x is efficient and f(x) is non-dominated. The set Y ND ⊂ Rd

denotes the set of all non-dominated vectors, named non-dominated set, and XE denotes
the set of all efficient solutions, named efficient set. We also say that set Y i = Y \

⋃i−1
j=1 Y

j

is the i-th non-dominated front, where Y 1 = {y | @ y′ ≥ y, y, y′ ∈ Y }.

3

0 20 40 60
0

10

20

30

40

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

0 20 40 60
0

10

20

30

40

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

Figure 1.2: Two subsets of points with good Uniformity (left) and bad Uniformity (right)

The two problems mentioned above can be defined more formally as follows:

Let Y R ⊆ Y be a set of mutually non-dominated vectors, that is, y 6≥ y′ and y′ 6≥ y
holds for all y, y′ ∈ Y R.

• Problem 1: Find a subset Y ∗ ⊆ Y R, |Y ∗| = k, where k is given, which optimises
a given property.

• Problem 2: Let Y ′ ⊆ Y be a set of mutually non-dominated vectors, satisfying
∀ y′ ∈ Y ′,∃ yR ∈ Y R s.t. yR ≥ y′. We want to find a subset Ȳ ⊆ Y ′, |Ȳ | = k, where
k is given, that is as close as possible to set Y R, according to a given measure.

The main contribution of this thesis is the discussion of these problems and the
proposal of algorithms to solve them. Regarding the second problem, we propose three
improvements to a known algorithm that optimises the ε-indicator, prove that the original
algorithm is correct, and discuss the general case of the problem for more than two
dimensions.

For the first problem, and with regard to the ε-indicator, we adapt the same algorithm
for that specific case, present an alternative version, which is useful for multiobjective
formulations of the problem, and adapt a known dynamic programming algorithm to use
the ε-indicator. Then, we present other formulations of the problem, using Uniformity,
Coverage, and combinations of these with the ε-indicator. For each discussed problem,
we propose new versions of the algorithm that solve these problems, and use adaptations
of known dynamic programming approaches to solve the same problems.

The document is structured as follows. We start by reviewing the literature concerning
subset selection methods in Chapter 2. Then, we present the methodology that is used
in the remainder of the thesis, in Chapter 3. In Chapter 4 we present an algorithm for
the general 2D subset selection problem using the ε-indicator proposed by Ponte et al.
[9], together with our contributions: i) the proof of correctness of the algorithm, and ii)
three improvements that allow us to reduce its time complexity.

In the following chapters, we discuss the first problem described above, also identi-
fied as representation problem, using several properties to optimise. In Chapter 5, we
introduce the representation problem, associated with the ε-indicator, and present two
solutions, one of which is based on the work presented in Chapter 4, while the other
uses the dynamic programming technique. In Chapters 6 and 7, we introduce two new

4 CHAPTER 1. INTRODUCTION

indicators two optimise, Coverage and Uniformity, respectively. Then, we discuss the
applicability of the previous algorithms for these new indicators.

We then present some multiobjective properties, that is, problems for which we want
to optimise combinations of indicators. In Chapter 8, we discuss the case where we
consider the ε-indicator and Coverage simultaneously, and describe the necessary modi-
fications to the algorithms. In Chapter 9, we use Uniformity instead of Coverage. Uni-
formity is not structurally similar to ε-indicator and Coverage, that is, it is calculated
in a different way, and therefore this adaptation introduces new problems. Then, we
combine these approaches and get a three objective problem, using ε-indicator, Coverage
and Uniformity.

Finally, we present a general discussion and conclusions in Chapter 11. Additionally,
we present some ideas for further work.

Chapter 2

State of the Art

Most of the approaches to multiobjective problems are based on evolutionary algo-
rithms, since the idea of iteratively improving a set of solutions fits with the notion of
trade-off set. These algorithms follow a common structure, starting with a set of solu-
tions with fixed cardinality, called population. The algorithms work iteratively, applying
biologically inspired operators, like mutation and crossover, to the elements of the popu-
lation, called individuals. During the course of each iteration, single objective algorithms
assign a fitness value to each individual to be used for selecting the elements that will
form the population of the next iteration. However, the existence of multiple objectives
implies that it is not possible to totally order the population. Multiobjective evolutionary
algorithms use different techniques to overcome this problem.

In this chapter, we review subset selection techniques that have been used within
population-based algorithms for multiobjective optimisation problems. These techniques
select elements of the population for the next iteration and, therefore, are related to
the main goals of this work. In Section 2.1 we present some algorithms that use the
dominance relation to order the elements. In Section 2.2 we discuss two algorithms that
use indicators to assign a quality value to each individual. Finally, in Section 2.3 we
present some algorithms that use subset selection approaches in a more explicit manner.

2.1 Ranking-based Approaches

One of the earliest solutions to the problem of selecting the next population, used
throughout some of the first multiobjective evolutionary algorithms, like MOGA [5],
SPEA2 [14], and NSGA-II [4], is to order, in some manner, the solutions using a ranking
function obtained from the dominance relation. For example, MOGA sorts the individuals
according to the number of individuals in the population that dominate them, assigning a
fitness value according to this ordering; SPEA2 takes into account the number of elements
of the population that dominate and the elements that are dominated by an individual;
NSGA-II divides the population in non-dominated fronts, assigning a rank according to
the front an element belongs to.

In addition, the approaches above use techniques to maintain diversity: SPEA2 uses
the distance to the k-th nearest neighbour, NSGA-II uses a crowding measure, and MOGA
uses a fitness sharing technique. However, these approaches are used only to distinguish
between individuals with the same ranking, either by giving a small weight to the di-

5

6 CHAPTER 2. STATE OF THE ART

0 20 40 60
0

10

20

30

40

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

0 20 40 60
0

10

20

30

40
B

A

A′

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

Figure 2.1: Illustration of the hypervolume and ε-indicator for the example of Figure 1.1

versity measure (SPEA2) or by comparing it only when the individuals have the same
ranking (NSGA-II). Therefore, we conclude that, in these approaches, diversity is seen
as a secondary goal.

Finally, MOGA presents an approach to incorporate decision making in the algorithm,
by defining goals that specify “interesting” regions of the objective space. This approach
allows a decision maker to use his knowledge of the problem to guide the search process,
allowing the algorithm to obtain solutions that are more relevant to him.

2.2 Indicator-based Approaches

The indicator-based approaches measure the quality of a set by assigning it a real
value. Then, this measure is used to guide the selection process. One of the most
common indicators is the hypervolume. Given a set of vectors and a reference vector
dominated by all the elements of the set, the hypervolume indicator is the measure of the
region of the objective space defined by the set of vectors that dominate the reference
vector and are dominated by at least a vector in the given set. In the left plot of Figure
2.1, the hypervolume indicator gives us the area of the shaded region, considering (0, 0)
as the reference point. Another example is the ε-indicator. We say a vector a ε-dominates
a vector b or b is ε-dominated by a if ε · a ≥ b. Given a set A and a reference set B, the
ε-indicator is the minimum value ε such that every b ∈ B is ε-dominated by an a ∈ A,
that is,

Iε(A,B) = max
b∈B

min
a∈A

ε(a, b),

where ε(a, b) = maxi∈{1,...,d} (bi/ai). In the right plot of Figure 2.1, an example of two
sets, A (light green) and B (blue) are presented. Additionally, the figure illustrates that
every element of B is dominated by an element of the set A′ (dark green), obtained by
multiplying the elements of set A by ε(A,B).

One of the advantages of these approaches is that they assign a quality value on a
continuous scale, allowing us to use a scalar value to measure the difference between
two sets [16]. However, indicators are often independent from the dominance relation,
i. e. a greater indicator value (assuming maximisation) does not imply one of the sets is
dominated. For instance, even if a set A has greater hypervolume than a set B, we cannot

2.3. SUBSET SELECTION 7

conclude that A dominates B. Additionally, some indicators encompass information
about the quality and diversity of the solutions, which means those approaches do not
need to use a separate diversity technique [13].

Indicator-based approaches are used in various known algorithms, such as IBEA [13]
and SMS-EMOA [2]. Both algorithms implement the hypervolume indicator and IBEA
also presents a variation of the ε-indicator. Both these indicators are used to calculate
a fitness value, using not only the element whose fitness is being calculated, but also
information about the other individuals. In SMS-EMOA, the fitness of an individual
is its individual contribution to the hypervolume, i.e. the hypervolume of the region
dominated by the individual, but not by any other element in the population. IBEA
presents a different notion of indicators, named binary indicators, that operate over two
sets. For instance, the presented binary hypervolume indicator gives the volume of the
space dominated by the second operand, but not by the first. However, the algorithm
uses these operators with singleton sets, calculating fitness as the sum of the indicator
values of an individual against the other individuals of the population. In other words,
the algorithm calculates the indicator values for each pair of elements, and calculates the
fitness as the sum of all the values where an element was used as a second operand.

While this is clearly an improvement in terms of flexibility and results [13], the in-
dividuals are still being compared using their one-dimensional fitness value. However,
we have no guarantee that the greedy approach of choosing the best individual elements
results in the optimal subset, according to a given indicator.

2.3 Subset Selection

The approach of subset selection consists in selecting the best subset with a given
cardinality, according to some property of interest. Not many approaches use this tech-
nique: Bader [1] describes it for the hypervolume indicator, and Ponte et al. [9] uses the
ε-indicator subset selection within a beam search algorithm.

Bader proposes an algorithm for biobjective problems that calculates the subset with
largest hypervolume, given a fixed cardinality. The author also postulates that the subset
selection problem, using the hypervolume, is NP-hard for more than two objectives, and
presents a greedy alternative, similar to the approach described in SMS-EMOA. However,
the author does not use this subset selection technique in any of his algorithms.

Regarding the ε-indicator, Ponte et al. propose a beam search algorithm for multiob-
jective optimisation, focusing on the biobjective {0, 1} knapsack problem. The authors
proposed a subset selection method for biobjective problems, within the beam search
algorithm, using the ε-indicator. This approach is discussed in more detail in Chapter 4.

8 CHAPTER 2. STATE OF THE ART

Chapter 3

Methodology

In the following chapters, we describe various algorithms that solve different prob-
lems. In order to compare the algorithms, we quantify their time complexity, using the
random-access machine model, and then use experimental results to measure the per-
formance of the different approaches for the same problems. Since all these algorithms
are deterministic and return optimal solutions, we chose to do five repetitions for each
instance of the problem, to account for slight fluctuations in running time. In these tests,
running time is the only aspect of the execution which we compare, since the quality of
the solutions for all the algorithms will be the same.

The tests were run in eight similar nodes of a cluster running the Sun Grid Engine
for job management. The nodes where the tests were run are equipped with 16 GB of
RAM and “Intel(R) Core(TM) i7-3770K” CPUs running at 1600MHz, with four jobs per
node.

The source code for the implementations was written in C++ and compiled with
GCC 4.4.3. C++ was chosen over C for its convenience, since its compiler is less strict.
However, the Standard Template Library (STL) and the object-oriented features were
not used. The only exception is the use of “vector” to store the solutions in the imple-
mentation of the algorithm described in Section 10.1.

Moreover, even though the tests were run in order to compare the performance of
the different algorithms, they also served a second purpose of testing the correctness of
the code. Since we know that the quality of the solutions must be the same for all the
implementations for a given problem, then there must be an error if this does not happen.
For any of the problems we describe, there are at least two different algorithms, that are
written independently and using different ideas. Therefore, it is unlikely that the same
error occurs in both implementations, in such a way that it is not detected. Furthermore,
other more traditional tests were also used, such as modifying the input in predictable
ways (changing one element, switching two elements) and comparing the output of small
instances with the result obtained manually.

The sets of 2D vectors were generated randomly by sampling vectors from the in-
tersection of a quarter circumference with the first quadrant. Then, each vector was
rounded to obtain positive integer coordinates and the whole set was checked for dom-
inated vectors. By generating more vectors than were required, the script accounts for
the dominated vectors that are removed. Therefore, even if some vectors are removed,
the desired cardinality is still obtained. If there are too many dominated vectors and
the mechanism fails, exceptions are raised to ensure that the problem is noticed, and the

9

10 CHAPTER 3. METHODOLOGY

instance can be manually regenerated.

The tests done for each chapter are dependent of the parameters that influence the
time complexity of the algorithms. In Chapter 4, there are two sets, A and B, whose size
influences the complexity. Therefore, the tests focus on five different relations between
the two variables |A| and |B|:
• |A| = |B|, with 50 ≤ |A| ≤ 8000

• |A| = log |B|, with 50 ≤ |B| ≤ 8000

• |B| = log |A|, with 50 ≤ |A| ≤ 8000

• |A| =
√
|B|, with 50 ≤ |B| ≤ 8000

• |B| =
√
|A|, with 50 ≤ |A| ≤ 8000

For this particular problem, we need to generate two sets A and B, such that the
elements in B are not dominated by elements in A. Therefore, we use two different
circumferences, such that they do not intersect in the first quadrant. Consequently, we
assure that each of the elements of one set is dominated by at least an element of the
other and thus satisfy the required condition.

For the remaining chapters, only one set is used as input, and parameter n denotes its
size. Furthermore, some of the algorithms are influenced by the parameter k, representing
the size of the desired subset. For the experimental tests in these chapters, two tests were
run, allowing us to compare the influence of n and k individually.

The first test measures the influence of n in the running time. Therefore, several
instances are generated for different values of n, while k is kept constant. The second
test is similar, although the studied parameter is k. The various instances of the second
test have different values of k, and n is kept constant.

In Chapters 5 and 7, parameter n varies between 50 and 2000 in the first test, with
k taking the value 20. For the second test, the maximum value for n, 2000, is used, and
k takes values between 50 and 1000. Chapters 8 and 9 use similar values. However, the
maximum values of n and k are 1000 and 500, respectively. In Chapter 10, these values
are reduced further to 100 and 50, respectively.

Chapter 4

Subset Selection using ε-indicator

Given two sets of vectors A and B, and k, the subset selection problem consists in
finding a subset R ⊆ A, with |R| = k, which minimises the value of ε, such that each
element of B is dominated by an element of the set R′, obtained by multiplying each
element of R by ε. Using the notation introduced in Chapter 2, our goal is to find:

arg min
R⊆A
|R|=k

Iε(R,B)

This problem can also be formulated using graph notation, since the problem of
finding the minimum value of ε is related to the set covering problem in a bipartite
network, where the two parts of the network are the sets A and B. Therefore, we may
define G = (A,B,E), where each edge (a, b) ∈ E, with a ∈ A and b ∈ B has weight
ε(a, b).

In this chapter, Section 4.1 describes the algorithm proposed by Ponte et al. [9] to
solve the bidimensional case of the problem described above. In Section 4.2, we show
that the algorithm is correct, demonstrating some less trivial steps. In Section 4.3, we
propose some improvements to the algorithm by Ponte et al., which allow us to reduce
the time complexity of the original algorithm. In Section 4.5, we show that this approach
cannot be easily extended for three or more dimensions.

4.1 Threshold Algorithm

Ponte et al. [9] proposed an algorithm that solves the subset selection problem for the
bidimensional case, using the ε-indicator. This algorithm has two main phases: first, it
finds the optimal value for the ε-indicator, εopt, and then uses it to find a subset R such
that Iε(R,B) = εopt.

Let ε1, ε2, ..., ε|A|·|B| be the sorted list of the weights of the edges in E (in non-decreasing
order). For each value of εi, we consider the graph Gi = (A,B,Ei), where Ei is the set
of all the edges in E whose weight is less than or equal to εi. Consequently, each edge
(a, b) ∈ Ei means that εi · a ≥ b or, in other words, ε(a, b) ≤ εi. An example is given
in Figure 4.1, where we consider a value of εi = 2. In this case, each element a ∈ A is
connected to an element b ∈ B if 2a ≥ b.

We know that εopt takes the value of one of the edge weights, since these are the

11

12 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

0 10 20 30 40 50 60
0

10

20

30

40

B

A

Students’ preferences (%)

S
ta

ff
p
re

fe
re

n
ce

s
(%

)

Figure 4.1: Example of a graph Gi for the example given in Figure 2.1

minimum values for each configuration of edges. Consequently, we simply have to test
each value of εi and find the minimum value that allows us to get an appropriate subset
R ⊆ A.

In order to accomplish its goal, the algorithm tests each εi by finding the smallest
subset Ri ⊆ A such that each element b ∈ B has an edge connecting it to an element
r ∈ Ri in the graph Gi. If |Ri| > k, then the edges of Gi are not sufficient to obtain the
desired subset. Consequently, we need to use more edges, which means that εopt > εi.
On the other hand, if |Ri| < k, we may add any element a ∈ A \ Ri to Ri, since the
ε-indicator Iε(Ri, B) is calculated by finding, for each b ∈ B, the minimum value of ε(r, b),
for every r ∈ Ri. Therefore, this minimum value does not increase by adding elements to
Ri, which means we may add elements to Ri without increasing Iε(Ri, B). After finding
the value of εopt, it is sufficient to find the smallest subset Ri ⊆ A, whose cardinality is at
most k. Figure 4.1 illustrates a graph where every element of B is connected to either the
first or third element of A, counting from left to right and, therefore, we have |Ri| = 2.
If, for instance, we wanted only one element, the edges in the graph presented would be
insufficient, and we would need to consider a larger value of εi, which would imply more
edges. If, on the other hand, we had k = 3, then we would test lower values for εi, in
order to determine if a better solution exists.

We can also reduce the number of values of εi to test by considering upper and lower
limits. The lower limit is given by Iε(A,B). Even though |A| > k, it is not possible to
obtain a lower ε value, since adding elements to a set will not increase the ε-indicator and
we can obtain A by adding elements to any subset. For the upper limit, we can consider
the ε values for each singleton set, since these subsets are valid solutions to our problem.
Then, we select the minimum ε found as the upper limit. Formally, we have the lower
limit εm = Iε(A,B) and the upper limit εM = mina∈A Iε({a}, B).

Based on the idea described above, the algorithm only needs to find the set Ri, given
a value of εi. This subproblem is similar to a particular case of the set covering problem,
which can be solved using the algorithm proposed by Schöbel [11]. For this particular
case, the adjacency matrix of the graph satisfies the “consecutive ones property”, i.e. the
ones in every row of the adjacency matrix are consecutive. In this case, we consider that
each row corresponds to an element b ∈ B and each column to an element a ∈ A. If we

4.2. CORRECTNESS 13

sort the rows and columns of the matrix according to the first coordinate, this statement
is true, as is demonstrated in Section 4.2.

Since the algorithm proposed by Schöbel has linear time complexity and receives, for
each row, the first and last column with the value one, we just need to find these indexes.
The paper by Ponte et al. uses the naive approach to do this by going over each row to
find where the matrix has a value of one, with time complexity O (|A| · |B|).

According to the algorithm, the procedure to find Ri must be performed for several
values of εi. In order to reduce the number of values of εi to test, the authors suggest
the use of binary search to find the value of εopt. This is possible since if |Ri| > k, we
know that εopt > εi and if |Ri| ≤ k, then εopt ≤ εi, which means we can use the value
of |Ri| to guide the binary search. However, we still need to ensure the values of |Ri|
are ordered, which we can only do by sorting the values εi, which has time complexity
O (|A| · |B| log (|A| · |B|)).

Considering this structure, we may divide the algorithm in two parts: the prepro-
cessing, which consists in sorting the values of εi, and whose time complexity we de-
note by TP (A,B), and the search itself, consisting in executing the procedure to solve
the set covering problem, with time complexity TC(A,B), repeated over TS(A,B) val-
ues of εi, resulting in a time complexity of O (TP (A,B) + TS(A,B) · TC(A,B)). For
the algorithm proposed by Ponte et al., we have the complexities given by: TP (A,B) =
O (|A| · |B| log (|A| · |B|)); TS(A,B) = O (log (|A| · |B|)); TC(A,B) = O (|A| · |B|). There-
fore, the global time complexity for the algorithm is O (|A| · |B| log (|A| · |B|)). However,
there are some improvements that can be done, leading to different time complexities.
These possibilities will be described in Section 4.3.

4.2 Correctness

Ponte et al. do not show that the algorithm described above is correct. The algorithm
is based on the adjacency matrix having the “consecutive ones property”. Therefore, in
this section we will prove this statement, guaranteeing its correctness. We start by
demonstrating that every row of the adjacency matrix has at least a one, and move on
to proving all the ones in the rows of the adjacency matrix are consecutive.

Proposition 4.2.1. If εi ≥ εm, there can be no row of the adjacency matrix of Gi

consisting completely of zeroes.

Proof. By definition, εm = Iε(A,B), i.e. it is the value of the ε-indicator if we select the
set A as our solution to the problem. If we consider a value εi ≥ εm, only edges with
weight greater than εi, and consequently greater than εm, will be removed. Therefore,
the edges of Gm, the graph corresponding to εm, will be present in Gi, which means
every element b ∈ B has at least an incident edge, or equivalently, a value of one in the
corresponding row of the matrix.

Proposition 4.2.2. The adjacency matrix of the graph Gi corresponding to the value
εi ≥ εm has the “consecutive ones property” (C1P).

Proof. To prove this property holds, we proceed by contradiction, by saying that for some
row, corresponding to an element b ∈ B, there are two ones that are not consecutive, i.e.
there is a zero between them. Notice that this is the only possibility, since a row cannot

14 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

consist only of zeroes, by Proposition 4.2.1. Formally, there are x, y, z ∈ A, x1 < y1 < z1
such that ε(x, b) ≤ εi, ε(y, b) > εi and ε(z, b) ≤ εi. Since εi ≥ ε(x, b) = max(b1/x1, b2/x2),
then b1/x1 ≤ εi. Since x1 < y1 ⇔ b1/x1 > b1/y1 and b1/x1 ≤ εi, then b1/y1 ≤ εi.
Following a similar reasoning for y, z, and knowing that y2 > z2 (or y would be dominated
by z), we conclude b2/y2 ≤ εi. Finally, since we have that ε(y, b) = max(b1/y1, b2/y2) and
both b1/y1 ≤ εi and b2/y2 ≤ εi, then ε(y, b) ≤ εi, which leads to a contradiction, finishing
our proof that the matrix has the “consecutive ones property”.

4.3 Improvements on the Algorithm

4.3.1 Set Covering

The procedure that finds the smallest subset Ri for a given εi is executed over some
values of εi, since it is used to guide the search for the value of εopt. However, this
procedure has a time complexity of TC(A,B) = O (|A| · |B|), which means that even
by removing the preprocessing step, we would still have a global time complexity of
O (|A| · |B| log (|A| · |B|)). In the following, a new search for the beginning and end
of the consecutive ones is proposed, with an improved time complexity of TC(A,B) =
O (|B| log |A|).

In order to find the entries of a row that have ones, we work with the weighted matrix
of the original network G. Since the graph Gi is obtained from G by removing the edges
whose weight is greater than εi, we simply have to find the first and last values that are
at most εi. Also, since ε(a, b) = max (b1/a1, b2/a2), each row is bitonic, as a1 increases
and consequently, a2 decreases, with the value of ε(a, b) decreasing while b1/a1 > b2/a2
and increasing when b1/a1 < b2/a2. Therefore, if the location of the minimum for each
row is known (which the algorithm may store when building the sequence εi), the bitonic
row can be split into two sorted subsequences, which allows binary search to be applied.
This means we can find the indexes in each of the two subsequences, where ε(a, b) is as
large as possible, while being at most εi, with time complexity O (log |A|). Since we
need to repeat this operation for each of the |B| rows, we have a time complexity of
O (|B| log |A|) for the procedure of finding the subset Ri.

Note that, although we have TC(A,B) = O (|B| log |A|), our time complexity is still
given by O (|A| · |B| log (|A| · |B|)), since the preprocessing step of sorting the values of
εi dominates the time complexity of the second part of the algorithm.

4.3.2 Merge Sort

After applying the improvement described in Section 4.3.1, the time complexity of the
search is reduced, and therefore the time complexity of sorting the values of εi dominates
the time complexity of the search. Therefore, in order to improve the algorithm, we must
improve the sort (or remove it), which corresponds to an improvement of TP (A,B).

Due to the bitonic nature of the rows, we are able to sort each row in linear time,
by performing a merge of the increasing and decreasing subsequences. This allows the
algorithm to sort the list of the values of εi by first sorting each row in O (|B| · |A|)
(|B| rows with |A| elements) and then merging all the rows in O (log |B|) iterations,
building sorted lists of size 2|A| in the first iteration, then 4|A|, and so on until the entire

4.3. IMPROVEMENTS ON THE ALGORITHM 15

list is sorted. Since with each iteration, the size of the lists that are merged doubles,
we need O (log |B|) iterations in order to have the entire list with size |B| · |A| sorted.
Consequently, this sorting algorithm has time complexity of O (|A| · |B| log |B|), since it
has to run through the entire list in each iteration.

Similarly to the original version, the algorithm then uses binary search to find the op-
timum value of εi. Since binary search divides the list in two at each iteration and the list
has |A| · |B| elements, the algorithm only needs log (|A| · |B|) iterations in order to reduce
the list to a single element. However, unlike the “common” binary search algorithm, the
cardinality of |Ri| is used to guide the search, so the procedure to find the set Ri, for
a given value of εi, is executed. Consequently, in each of the log (|A| · |B|) iterations, a
procedure with time complexity O (|B| log |A|) is called, which means searching for the
optimum value of ε has O (|B| log |A| log (|A| · |B|)) time complexity.

Concluding, the preprocessing step is now TP (A,B) = O (|A| · |B| log |B|), which im-
proves the global time complexity to O (|A| · |B| log |B|+ |B| log |A| log (|A| · |B|)), or,
due to the properties of logarithms, O

(
|A| · |B| log |B|+ |B| log2 |A|+ |B| log |A| log |B|

)
.

Also, since |A| asymptotically dominates log |A| and log2 |A|, then |A| · |B| log |B| dom-
inates |B| log |A| log |B| and |B| log2 |A|. Consequently, we have a simplified time com-
plexity of O (|A| · |B| log |B|).

Although this time complexity is better than the naive version, reducing the time
complexity of the sort or simply removing it could allow us to reduce the time complexity
of the whole algorithm. However, not sorting the list means we cannot use a binary search
approach, so a different approach must be used.

4.3.3 Fractional Cascading

An alternative to sorting and using binary search over the entire sorted list is to do
binary search over each individual row. Even though it is still necessary to sort the rows,
it takes time complexity O (|A| · |B|), since the rows have a bitonic nature and we only
need to merge the decreasing and increasing subsequences.

A technique proposed by Chazelle and Guibas [3], named Fractional Cascading, allows
us to speedup the algorithm by doing a single binary search, with a preprocessing step of
O (|A| · |B|). Preprocessing the data enables the algorithm to do the search in all rows
after the first using just one test, which means we only need to do a binary search in the
first row. Also, being based on binary search, we are able to adapt the idea we used in
the binary search algorithm, which allows the algorithm to search for the optimum value
of ε, instead of a fixed value.

The preprocessing step consists in creating a new matrix, based on the weighted
matrix of the graph G, in which each row is assigned an element b ∈ B and each column
an element a ∈ A. This matrix is composed of |B| rows, but unlike the original matrix,
each row may have up to 2|A| elements, including the |A| elements of the original row,
merged with some elements from rows below. Each element of the rows stores a value (in
our case, an εi), and two integer numbers. The first of these numbers stores the position
of that value within the original row, allowing the algorithm to find the position in the
original matrix, while the second number tells us where to find that value in the next
row, which will enable the algorithm to continue the search in the next row, without
searching from the beginning. When using this technique to find the optimum ε value,
we do not need to know where that value is in the original matrix, so we may discard the

16 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

1.9 3.5 5.2
1.2 2.5 4.6
1.3 4.4 6.2

1.9(1) 2.5(1) 3.5(2) 4.6(3) 5.2(4)
1.2(0) 2.5(1) 4.4(1) 4.6(2)
1.3(0) 4.4(0) 6.2(0)

Table 4.1: Example of weighted matrix (with sorted rows) and the processed matrix

first number, and keep only the values and positions in the next row.

To build the matrix, the algorithm starts by sorting each row of the original matrix,
similarly to what is done in the merge sort improvement. Then, the algorithm starts
with the last row and copies it to the new matrix. Being the last row, we do not use the
position numbers in the next row, so they do not need to be initialised. The algorithm
then moves on to the previous row, and merges the values of the original row with the
values of the next row of the new matrix that have an even position. In other words, for
the next-to-last row, it takes the values with even position (second, fourth, . . .) of the
last row and merges them with the values in the next-to-last row of the original matrix,
while at the same time initialising the position numbers. These position numbers, for
the values that are copied from the last row, are simply the position of that value in
the last row, while, for the other values in the next-to-last row, the number saved is the
index of the smallest value in the last row that is greater or equal to the value in the
next-to-last row. This procedure is repeated for every row, starting from the next-to-last
and finishing with the first.

In Table 4.1, an example of the preprocessing step is presented. Given the matrix
with sorted rows, the algorithm copies the third row to the new matrix. For the second
row of the new matrix, the original row is merged with the second element of the last row,
and the position numbers indicate the position where that element would be in the next
row. For instance, the position number of the second entry in the second row is 1 since
2.5 is between the values with indexes 0 and 1 in the last row. Repeating this process,
we obtain the first row of the new matrix by merging the first row of the original matrix
and the second and fourth elements of the second row of the new matrix. Note that since
5.2, in the first row, is larger than any value of the second row, the corresponding index
is 4, since that value would occupy the last position in the second row.

Using this new matrix, the search is done by searching for the value in the first row,
using binary search, which allows the algorithm to find the position of the optimum value
in the first row, or the smallest value greater than the optimum. Since in our case, the
algorithm is not searching for a specific value of εi, the algorithm finds the smallest value
of εi that yields a feasible solution, i.e. that results in a subset with at most k elements.
Given the position of the value in the first row, the algorithm reads the number s that
represents the position of that value in the next row. Then, the Fractional Cascading
technique guarantees that the best value of the next row is on positions s or s− 1. Also,
since the value in the position s is greater or equal than the value we found, we know
that it also represents a valid solution, so we only need to test the value in the position
s− 1 to check if it gives us a better solution. Repeating this for every row, we only need
to perform a binary search in the first row and check a value for each other row to find
the optimum value of ε.

This approach uses more space than the other versions of the algorithm, since it needs
to build a matrix of size 2|A| by |B|, storing an ε value and an integer in each entry. How-
ever, the spatial complexity is O (|A| · |B|), so even if, in practice, this version uses more

4.4. COMPLEXITY AND RESULTS 17

space, the spatial complexity is the same as in the other versions. Concerning the time
complexity, this algorithm is composed of a preprocessing step and the search with both
contributing to the final complexity. For each row of the new matrix, the preprocessing
step merges a row of the original matrix, with size |A| and a row of the new matrix, with
size at most 2|A|. Consequently, the merge operation has O (|A|) time complexity. Since
copying the last row from the original to the new matrix also has a time complexity of
O (|A|), executing these operations |B| times has O (|A| · |B|) time complexity. For the
search, the algorithm uses binary search in the first row, requiring O (log |A|) tests, with
O (|B|) more tests, one for each row. Therefore, this version of the algorithm changes
the complexities of the preprocessing step and the search to TP (A,B) = O (|A| · |B|) and
TS = O (|B|+ log |A|). Since testing each value of εi has TC(A,B) = O (|B| log |A|) time
complexity, the overall search time complexity O ((|B|+ log |A|) · |B| log |A|).

Combining the preprocessing step and search itself, we get a time complexity of
O (|A| · |B|+ (|B|+ log |A|) · |B| log |A|). Simplifying this expression, we get a time
complexity of O

(
|A| · |B|+ |B|2 log |A|+ |B| log2 |A|

)
, and since |A| dominates log2 |A|,

O (|A| · |B|+ |B|2 log |A|).
If we have |B| > |A|, this does not seem like an improvement, since it will be worse

than the previous versions. However, unlike the procedure to find Ri, the Fractional
Cascading technique is not aware of the specific problem being solved. Therefore, by
simply doing the transposition of the weighted matrix and doing the search over the
rows of this new matrix (columns of the original matrix), we change the time com-
plexity, since TS(A,B) = O (|B|+ log |A|) term becomes TS(A,B) = O (|A|+ log |B|).
Since the columns have the same bitonic nature as the rows, we can still apply the
same algorithm, but scanning over the columns of the original matrix, when doing the
preprocessing step. Consequently, using the transposition we get the time complexity
O (|A| · |B|+ (|A|+ log |B|) · |B| log |A|). This expression can be expanded, obtaining
O (|A| · |B|+ |A| · |B| log |A|+ |B| log |A| log |B|) and since |A| · |B| is dominated, we
have a final time complexity of O (|A| · |B| log |A|+ |B| log |A| log |B|).

4.4 Complexity and Results

In Table 4.2, the complexities of the different versions of the algorithm are presented.
We consider three different cases: i) General corresponds to the most general scenario;
ii) |A| = |B| arises from the case where A = B, which is related to the first goal of
this work; and iii) |A| is constant, which is usually the case that arises in evolutionary
algorithms with a population of fixed cardinality. The versions of the algorithm described
are: Original, the algorithm proposed by Ponte et al. [9]; Imp. 1, which is presented in

Version General |A| = |B| |A| is constant

Original O (|A| |B| log(|A| |B|)) O
(
|B|2 log |B|

)
O (|B| log |B|)

Imp. 1 O (|A| |B| log(|A| |B|)) O
(
|B|2 log |B|

)
O (|B| log |B|)

Imp. 2 O (|A| |B| log |B|) O
(
|B|2 log |B|

)
O (|B| log |B|)

Imp. 3a O
(
|A| |B|+ |B|2 log |A|

)
O
(
|B|2 log |B|

)
O
(
|B|2

)
Imp. 3b O (|A| |B| log |A|+ |B| log |A| log |B|) O

(
|B|2 log |B|

)
O (|B| log |B|)

Table 4.2: Summary of the time complexities of the different versions

18 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

0 2,000 4,000 6,000 8,000

10−3

10−2

10−1

100

101

102

103

|A|

T
im

e
(s

)

Original
Imp. 2
Imp. 3a
Imp. 3b

Figure 4.2: Running time for the four approaches with 50 ≤ |A| = |B| ≤ 8000, k = 20

Section 4.3.1; Imp. 2, which is presented in Section 4.3.2; Imp. 3a and Imp. 3b, which are
the first and second versions presented in Section 4.3.3, respectively.

Starting with the general case, we can see that the first improvement does not reduce
the time complexity of the algorithm, even though it reduces the time complexity of
the search, allowing us to improve the time complexity by improving the preprocessing
step. The next three versions of the algorithm have different complexities, and are in fact
incomparable, which means that we do not have an implementation that is better for all
the cases. For example, if we consider |B| > |A|, then improvement 3b is better than any
other version, since the term |B| log |A| log |B| will be dominated by any of the other
complexities, and |A| · |B| log |A| will be smaller than the other terms.

Comparing the different versions for the particular cases when |A| = |B| and |A| is
constant, gives us a different view on the complexities. For |A| = |B|, all of the versions
have the same time complexity, O (|B|2 log |B|). On the other hand, we may consider |A|
as a constant, which is the case of the beam search proposed by Ponte et al. [9]. In this
case, all the versions have a time complexity of O (|B| log |B|), except for improvement 3a
that has O (|B|2) time complexity. This improvement is one of the alternatives proposed
in Section 4.3.3, which is more suitable for the case |A| > |B|. Therefore, this approach
would not be recommended, since we are considering |A| a constant, which means that
|A| is asymptotically less than |B|.

4.4.1 Experimental Results

The complexities of all the versions of the algorithm depend on the size of the sets A
and B. Therefore, these were the dimensions we wanted to study with the experiments.
Since different algorithms may perform differently depending on the relation between the
sizes of A and B, we decided to study five different cases, expressing different relations
between |A| and |B|.

We start by looking at the simplest case, where we have |A| = |B|, and then consider
the cases in which |A| = log |B|, log |A| = |B|, |A| =

√
|B| and

√
|A| = |B|. We refer to

Chapter 3 for a more detailed discussion of the experimental methodology.

4.4. COMPLEXITY AND RESULTS 19

0 2,000 4,000 6,000 8,000

10−3

10−2

10−1

100

|A|

T
im

e
(s

)
Original
Imp. 2
Imp. 3a
Imp. 3b

0 2,000 4,000 6,000 8,000

10−3

10−2

10−1

100

101

|B|

T
im

e
(s

)

Original
Imp. 2
Imp. 3a
Imp. 3b

Figure 4.3: Running time for the cases |B| = log |A| (left) and |A| = log |B| (right)

The results for the case |A| = |B| are given in Figure 4.2. As expected, the second
improvement, using merge sort, performs better than the original version. However,
either of the Fractional Cascading versions are much slower than the original version.
This can be explained by the increased overhead of creating the matrix and the increased
number of values of ε-indicator to test, which is O (|B|+ log |A|) or O (|A|+ log |B|)
for the Fractional Cascading versions, compared to O (log (|A| · |B|)) for the original and
merge sort versions.

Looking at these results, the merge sort version is clearly the fastest when considering
these conditions, being four times as fast as the original version. However, this version
may not be the better in every case, considering that the two versions of Fractional
Cascading are aimed at the cases where |A| < |B| and |A| > |B|, which means these
algorithms may benefit from having the set A much smaller than B.

We now look at the cases where log |A| = |B|, |A| = log |B|, whose results are
presented in Figure 4.3. These results are not as clear as in the previous test, but they
nevertheless tell us two important things. First of all, it is clear that the sizes of both
A and B influence greatly the performance of the different versions of the algorithm,
allowing the algorithms to run in some milliseconds when one of the sets has less than
50 elements. The second important remark is that Improvement 3a is an exception, as
it is extremely slow, even if we consider a small number of elements of A with a large
value of |B|. In fact, while Improvement 3b performs reasonably well in both these tests,
Improvement 3a only performs well when B is relatively small. This is explained by its
time complexity, which includes a |B|2 term.

Finally, we have the two last tests, which confirm the results until now and are
presented in Figure 4.4. These tests consider a quadratic relation between the sizes of
A and B, with |B| =

√
|A| and |A| =

√
|B|, respectively. In the first test, all three

improvement versions are better than the original version, with Improvement 3a and
the merge sort version having similar performance, better than Improvement 3b. In the
second test, the opposite happens, with the merge sort version and Improvement 3b
sharing similar performance, better than the original version and Improvement 3a. Once
more, Improvement 3a is the worst version, with the |B|2 factor causing the algorithm to
slow down, even with a low |A|.

20 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

0 2,000 4,000 6,000 8,000

10−3

10−2

10−1

100

101

|A|

T
im

e
(s

)
Original
Imp. 2
Imp. 3a
Imp. 3b

0 2,000 4,000 6,000 8,000

10−3

10−1

101

|B|

T
im

e
(s

)

Original
Imp. 2
Imp. 3a
Imp. 3b

Figure 4.4: Running time for the cases |B| =
√
|A| (left) and |A| =

√
|B| (right)

In conclusion, we can see that the Fractional Cascading versions behave poorly when
the sizes of A and B are similar, and perform well on the respective cases. However,
Improvement 3a performs poorly when |B| is large, whereas Improvement 3b still performs
reasonably well when |A| is large, if |B| is small. Also important is the fact that the merge
sort version is one of the best versions in every test, and is never clearly surpassed by any
other version.

4.5 Extension to 3D

In the bidimensional case described above, the adjacency matrix of the graph has the
“consecutive ones property”, since by sorting the vectors using one coordinate, they also
become sorted by the other coordinate (in the reverse order). However, this property may
not hold for more than two dimensions, as we state in Proposition 4.5.1, which means
that the same algorithm cannot be applied to the generic case.

Proposition 4.5.1. For three or more dimensions, the adjacency matrix is not guaran-
teed to satisfy the “consecutive ones property”, even by reordering its rows or columns.

Proof. We will consider, without loss of generality, the three-dimensional case, since
for additional dimensions, the vectors may have a fixed value, which will not alter the
ε-indicator and consequently, the adjacency matrix. Let B = {(3, 5, 2), (4, 4, 8), (5, 3, 2)}
and A = {(1, 3, 2), (2, 2, 1), (3, 1, 2)}. If we denote by b1, b2, b3 the elements of B and
a1, a2, a3 the elements of A, in the presented order, then the weighted matrix for this
problem is given in Table 4.3. For εi = 4, the adjacency matrix will be composed of ones,
except for the values of the antidiagonal (in bold), which will be zero, since the values of
the weighted matrix in that positions are larger than εi. Therefore, we have three zeroes,
one in each column and one in each row, which means that independently of the ordering
of the rows or columns, one of the rows will have a zero in the central position, with two
non-consecutive ones at the leftmost and rightmost positions.

Consequently, we proved that there are instances of the problem that cannot be solved
using this approach, since the adjacency matrix does not have the required properties.

4.5. EXTENSION TO 3D 21

a1 a2 a3

b1 3 2.5 5
b2 4 8 4
b3 5 2.5 3

Table 4.3: Weighted matrix for the proof of Proposition 4.5.1

Therefore, the algorithm described for the bidimensional case cannot be easily extended
for three or more dimensions.

22 CHAPTER 4. SUBSET SELECTION USING ε-INDICATOR

Chapter 5

Representation Problem using
ε-indicator

Given a set of vectors B and k, the representation problem consists in finding a subset
R ⊆ B, with |R| = k, that optimises a given property. In this case, we want to minimise
the ε-indicator, that is, find a subset for which the value of the ε-indicator is smallest,
such that each element of B is ε-dominated by an element of R. Using the notation
introduced in Chapter 2, we have the goal given by:

arg min
R⊆B
|R|=k

Iε(R,B)

This is the first goal of this thesis, as described in Chapter 1. This problem can
be solved using an adaptation of the Threshold Algorithm, discussed in Chapter 4. In
Section 5.1 we present this algorithm, and an alternative version, which is used in later
chapters, even though it is less efficient. In Section 5.2, we present a different algorithm,
using dynamic programming.

5.1 Threshold Algorithm

The binary search algorithm presented in this section is an adaptation of the one
previously described in Chapter 4. Given the large of range of versions for the subset
selection algorithm, and given that the optimised version with merge sort was the fastest
version overall, we decided to use it for the representation problem.

First of all, we use only one set, that is, we consider A = B, which means the weight
matrix is now a square matrix with ones on the diagonal. Since the value of the ε-indicator
is at a minimum on the diagonal, it is now trivial to calculate the minimum for each row.

Also, since we proved that the weight matrix has the consecutive ones property for
the general case (see Section 4.2), the proof also applies to this specific case. Using
n = |A| = |B|, we have a complexity of O (n2 log n).

23

24 CHAPTER 5. REPRESENTATION PROBLEM USING ε-INDICATOR

5.1.1 Alternative Algorithm

Even though the algorithm described in the previous section is efficient, it is hard to
adapt its structure to other indicators, in order to use it in the multiobjective version
of the problem (see Chapter 9). Therefore, we present an alternative to the set covering
procedure presented in Chapter 4, that is more easily adapted to other indicators.

As an alternative to the previously discussed solution to the set covering problem,
Schöbel [11] describes an approach that uses a graph to obtain the solution. Even though
the algorithm is described for the weighted case, where we want to minimise the sum
of the weights of the chosen elements, we can choose a weight of 1 for each element,
obtaining a different algorithm for the same problem.

This algorithm assumes that the columns of the adjacency matrix have the “consec-
utive ones property” as well as the rows, as we assert in Proposition 5.1.1. Therefore, we
define si = min ({1 ≤ j ≤ n : ε(bi, bj) ≤ tε}) and ei = max ({1 ≤ j ≤ n : ε(bi, bj) ≤ tε}) as
the first and last elements covered by bi, respectively.

Proposition 5.1.1. For a given threshold for ε-indicator, tε, the columns of the adjacency
matrix of the corresponding graph have the “consecutive ones property” (C1P).

Proof. Let us recall that the adjacency matrix has a value of 1 in entry (i, j) only if
ε(bj, bi) ≤ tε, and otherwise has a value of 0. We know that ε(bj+`, bj) < ε(bj+`+1, bj),
for ` > 0 (see Proposition 5.2.1). Additionally, ε(bj, bj) = 1 and ε(bj+1, bj) > 1, since bj
and bj+1 are mutually non-dominated. Similarly, ε(bj−`, bj) < ε(bj−`−1, bj), for ` > 0, and
ε(bj−1, bj) > 1. Therefore, fixing a value of j, we conclude that, as i increases, ε(bi, bj)
decreases when i < j and increases when i > j. Using the notation described above, for
sj ≤ i ≤ j, ε(bi, bj) ≤ ε(bsj , bj) ≤ tε, since ε(bi, bj) is decreasing. Similarly, for j < i ≤ ej,
ε(bi, bj) ≤ ε(bej , bj) ≤ tε, since the sequence is increasing. Therefore, for a given j, every
row sj ≤ i ≤ ej has a value of 1.

Given a threshold tε, this algorithm defines a graph Gε, with the following nodes:
{hs, h1, . . . , hn, ht}. The graph has an arc (hs, hi) if the corresponding bi ∈ B covers the
first element, that is, if the entry on the first row and i-th column has the value 1. In our
case, this is equivalent to ε(bi, b1) ≤ tε. Similarly, there is an arc (hi, ht) if ε(bi, bn) ≤ tε.

As for the arcs between two of the middle elements, there is an arc (hi, hj) with i < j,
if choosing bi and bj and choosing no b`, with i < ` < j does not leave any element
uncovered. In other words, we add an arc from hi to hj with i < j if sj ≤ ei + 1.

Moreover, a path from hs to ht represents an acceptable subset for a given threshold.
This is true because hs is only connected to nodes that represent elements that cover the
first element. Moreover, the structure of the graphs ensures that all elements from b1 to
bj are covered, because of the condition for creating the arcs. Finally, only elements that
cover the last element are connected to ht, which means that every element, from b1 to
bn is covered.

In Figure 5.1, an example is presented, with the graph Gi on the left, as presented in
Section 4.1, and the corresponding graph Gε on the right. The figure also illustrates the
rule for the arcs in Gε. For example, if there was an arc from h2 to h6, then choosing
the respective elements, b2 and b6, would leave b4 uncovered. Therefore, we only have an
arc between two elements if that does not happen. Therefore, by picking a path, like the
blue path, we know that its nodes represent a subset. In this case, the nodes h2, h5 and

5.2. DYNAMIC PROGRAMMING 25

b1

b2

b3

b4

b5

b6

b1

b2

b3

b4

b5

b6

hsh1

h2

h3

h4

h5

h6 ht

Figure 5.1: Graph Gi representing set covering (left) and respective graph Gε (right)

h6, represent the subset formed by b2, b5 and b6, which is a feasible solution.

We can now find the shortest path in Gε, which corresponds to the smallest subset.
To do this, we visit each node, in the order hs, h1, . . . , hn, ht. Then, for each node, we visit
all the outgoing arcs, in order to update the size of the shortest path in the destination
nodes. After visiting every node, if the shortest path from hs to ht goes through at most
k + 1 arcs, then there is a feasible solution, and that path represents a subset R, with
|R| ≥ k.

The complexity of this procedure is O (n2), since we need to visit each arc to find the
shortest path from hs to ht. Therefore, we now have TC(n) = O (n2) and the complexity
for this version is O (n2 log n).

5.2 Dynamic Programming

We now present an algorithm using dynamic programming, similar to the one pre-
sented by Paquete et al. [8] for a different indicator. The use of dynamic programming
requires the existence of a subproblem. In this case, we can consider the subproblem of
finding the subset of k − 1 elements in a subset of B. Particularly, we sort the elements
of B according to the first coordinate, and denote the sorted elements by b1, b2, . . . , bn.
Then, the considered subproblem consists in selecting k′ < k elements from the subset
{bj, . . . , bn}, with 1 ≤ j ≤ n.

The main idea of the algorithm is to add an element to the subset, using the result for
the subproblem in order to speed-up the calculation. Indeed, if we have a subset whose

26 CHAPTER 5. REPRESENTATION PROBLEM USING ε-INDICATOR

leftmost element is b` and want to add an element bj, with j < `, then we know that
for every element bm, with ` < m, b` is preferable to bj, since ε(bm, bj) > ε(bm, b`), by
Proposition 5.2.1. In other words, bj only ε-dominates bm if b` also ε-dominates it.

Consequently, we only need to check the elements bm, with j < m < `. Moreover, b`
will be preferable to any element to its right, by Proposition 5.2.1, which means we only
need to check bj and b`.

Formally, we denote as Ri,j the optimal subset of cardinality i that contains bj and
is contained in {bj, . . . , bn}, with the ε-indicator value of T (i, j). The base case, T (1, j),
corresponds to the value obtained by considering element bj. Since bj must ε-dominate
all bm, j < m < n, T (1, j) takes the maximum value of ε(bj, bm). Also, given that the
maximum value occurs for bn, by Proposition 5.2.2, then T (1, j) = ε(bj, bn).

The value T (i, j) can be obtained by considering a subset of i−1 elements, with value
T (i− 1, `), with ` > j, and adding bj to it. This can be expressed as:

T (i, j) = min
j<`≤n−i+2

max (δj,`, T (i− 1, `))

where δj,` represents the correction to the ε-indicator value in order to consider the ele-
ments bm, with j < m < `. As we have seen before, we only need to check the elements
bm against bj and b`, obtaining:

δj,` = max
j<m<`

min (ε(bj, bm), ε(b`, bm))

However, for a given j, the elements b1, . . . , bj−1 are not considered in T (k, j), so we
need to correct the values to account for this fact. We also know that ε(bj, b1) > ε(bj, bm),
for 1 < m < j. Therefore, when correcting the value we only need to consider the value
for b1. Consequently, the optimum value of the ε-indicator is given by:

min
1≤j≤n−k+1

max (ε(b1, bj), T (k, j))

Therefore, the idea of the algorithm is to fill a matrix of k×n with the values of T (i, j).
For each entry of the matrix, we need to check all the possible values of `, which are at
most O (n). Moreover, for each value of `, we need to check whether bm is ε-dominated
by bj or b`, for j < m < `, in order to account for these intermediate elements. Since the
values of m may also be O (n), the complexity for this algorithm is O (k n3).

Moreover, the dynamic programming matrix only stores the optimal value for the
ε-indicator. In order to obtain a subset that has that ε-indicator value, it is sufficient to
save the next element of the subset, the value of `, along with the ε-indicator value, for
each position of the matrix. Consequently, we need one more matrix, P , defined as:

P (i, j) = arg min
j<`≤n−i+2

max (δj,`, T (i− 1, `))

Using this new matrix and given the first element, the algorithm finds the next element
in the subset by looking at the values in P . Formally, given that the (i−1)-th element of
the subset is the element with index j, then the i-th is the element with the index given
by P (n + 1 − i, j), which is simply the element with column j, taken from the i-th row
from the bottom. The first element of the subset is simply the one that is chosen during
the final correction of the ε-indicator value, and is given by:

5.2. DYNAMIC PROGRAMMING 27

arg min
1≤j≤n−k+1

max (ε(b1, bj), T (k, j))

Proposition 5.2.1. For a, a′, b, b′ ∈ B, with b′1 < a1 < a′1 < b1, i) ε(a, b) > ε(a′, b) and
ii) ε(a, b′) < ε(a′, b′)

Proof. We start by proving that ε(a, b) > ε(a′, b), that is,

max

(
b1
a1
,
b2
a2

)
> max

(
b1
a′1
,
b2
a′2

)
We know that a1 < a′1 < b1 and a2 > a′2 > b2. This means that b1/a1 > b2/a2, and

equivalently for a′, so we have,

b1
a1

>
b1
a′1

However, this is equivalent, by manipulation, to a1 < a′1, which we know to be true.

Similarly, we know that b′1 < a1 < a′1 and b′2 > a2 > a′2. Consequently, b′1/a1 < b′2/a2,
and equivalently for a′, so the inequality is equivalent to

b′2
a2

<
b′2
a′2

However, this is equivalent, by manipulation, to a2 > a′2, which we know to be
true.

Proposition 5.2.2. For a, a′, b, b′ ∈ B, with a1 < b1 < b′1 < a′1, i) ε(a, b) < ε(a, b′) and
ii) ε(a′, b) > ε(a′, b′).

Proof. We start by proving that ε(a, b) < ε(a, b′), that is,

max

(
b1
a1
,
b2
a2

)
< max

(
b′1
a1
,
b′2
a2

)
We know that a1 < b1 < b′1 and a2 > b2 > b′2. This means that b′1/a1 > b′2/a2, and

equivalently for b and a, so we have,

b1
a1

<
b′1
a1

This is equivalent to having b1 < b′1, which is true.

As for proving that ε(a′, b) > ε(a′, b′), we know that b1 < b′1 < a′1 and b2 > b′2 > a′2.
Consequently, b′1/a

′
1 < b′2/a

′
2, and equivalently for b and a′, so we have,

b2
a′2

>
b′2
a′2

This is equivalent to having b2 > b′2, which we know to be true.

28 CHAPTER 5. REPRESENTATION PROBLEM USING ε-INDICATOR

5.2.1 Improvements

m-improvement

The calculation of δj,` requires an extra cycle, and since we have j < m < `, m can
take O (n) different values. However, not only does this calculation allow a more efficient
implementation, but it can also be executed only once, without repeating it for each i,
by pre-calculating the values.

The main idea is that, given Propositions 5.2.2, ε(bj, bm) increases and ε(b`, bm) de-
creases, as m increases. Since the value of δj,` is the maximum over the values of m,
we can easily calculate it by knowing the right value of m, which we denote by m′`. By
Proposition 5.2.1, ε(b`, bm) < ε(b`+1, bm), which means that m′` ≤ m′`+1.

Knowing this, it is more efficient to simply increase the value of m between values
of `, which allows us to pre-calculate all the values for a given m while increasing the
value of m at most O (n) times when keeping j constant. Therefore, this procedure has
amortised time complexity O (n2), and the algorithm is now O (k n2), since we simply
need to lookup the value of δj,`.

`-improvement

Using the improvement described above, the values δj,` are pre-calculated in O (n2)
time. Since O (n2) is also the number of values we calculate, this complexity is optimal,
unless we choose to calculate a smaller number of values.

On the other hand, the dynamic programming matrix, T takes O (k n2) complexity
to calculate, even though there are only O (k n) values. Note that the algorithm iterates
over the values of `, the next element in the subset, in order to find the best possibility.

Wang et al. [12] suggest an improvement for a related problem, which can be adapted
for this algorithm. This improvement removes the need to iterate over values of `, as it is
possible to test a small number of these values, given the value used previously. Formally,
knowing that P (i, j) ≤ P (i, j + 1), and given that there are at most n different values
for P (i, j), we expect the difference between P (i, j) and P (i, j + 1) to be around one, on
average.

Moreover, it is important to know that the value for the ε-indicator considering that
` = P (i, j) is the only local minimum. This means that if by increasing or decreasing
`, the value of ε-indicator increases, we know that we have found the minimum, and so
P (i, j) = `.

We will now demonstrate that T (i, j) and δj,` are non-increasing, when j increases,
and δj,` is non-decreasing, as ` increases.

Proposition 5.2.3. For j < `, δj,` ≥ δj+1,`

Proof. We know that:

δj,` = max
j<m<`

min (ε(bj, bm), ε(b`, bm))

For j < j + 1 < m, we know, by Proposition 5.2.1, that ε(bj, bm) > ε(bj+1, bm).
Consequently, min (ε(bj+1, bm), ε(b`, bm)) ≤ min (ε(bj, bm), ε(b`, bm)), and:

δj+1,` = max
j+1<m<`

min (ε(bj+1, bm), ε(b`, bm)) ≤ max
j+1<m<`

min (ε(bj, bm), ε(b`, bm))

5.2. DYNAMIC PROGRAMMING 29

At this point, we know that adding the possibility m = j + 1 to the maximum will
not decrease the value, and therefore:

δj+1,` ≤ max
j+1<m<`

min (ε(bj, bm), ε(b`, bm)) ≤ max
j<m<`

min (ε(bj, bm), ε(b`, bm)) = δj,`

Proposition 5.2.4. For j < `, δj,` ≤ δj,`+1

Proof. We know that:

δj,` = max
j<m<`

min (ε(bj, bm), ε(b`, bm))

For m < ` < ` + 1, we know, by Proposition 5.2.1, that ε(b`, bm) < ε(b`+1, bm).
Consequently, min (ε(bj, bm), ε(b`, bm)) ≤ min (ε(bj, bm), ε(b`+1, bm)), and:

δj,` = max
j<m<`

min (ε(bj, bm), ε(b`, bm)) ≤ max
j<m<`

min (ε(bj, bm), ε(b`+1, bm))

At this point, we know that adding the possibility m = ` to the maximum will not
decrease the value, and therefore:

δj,` ≤ max
j<m<`

min (ε(bj, bm), ε(b`+1, bm)) ≤ max
j<m<`+1

min (ε(bj, bm), ε(b`+1, bm)) = δj,`+1

Proposition 5.2.5. For 1 ≤ j ≤ n− i, T (i, j) ≥ T (i, j + 1)

Proof. We know that Iε(Ri,j, {bj, . . . , bn}) = T (i, j).

We denote Bi,...,j = {bi, . . . , bj} and by R′ the set obtained by replacing bj for bj+1 in
the set Ri,j, that is, R′ = (Ri,j ∩Bj+1,...,n)∪ {bj+1}. Given that T (i, j + 1) is the optimal
value of the ε-indicator for the subset Bj+1,...,n, then T (i, j + 1) ≤ Iε (R′, {bj+1, . . . , bn}).
By Proposition 5.2.1, ε(bj, bm) ≥ ε(bj+1, bm), for m > j + 1. Therefore, using the fact
that R and R′ only differ by one element (bj+1 instead of bj), and that bj+1 results in a
lower ε-indicator value, we have that:

T (i, j + 1) ≤ Iε (R′, Bj+1,...,n)

≤ max
b∈Bj+1,...,n

min
r∈R′

ε(r, b)

≤ max
b∈Bj+1,...,n

min
r∈R

ε(r, b)

≤ max
b∈Bj,...,n

min
r∈R

ε(r, b)

≤ Iε (R,Bj,...,n)

≤ T (i, j)

The value of T (i, j) is calculated as the minimum over values of ` of the maximum of
one non-increasing sequence (T (i, `)) and one non-decreasing sequence (δj,`), as demon-
strated by Propositions 5.2.5 and 5.2.4, respectively. Therefore, the maximum of the two

30 CHAPTER 5. REPRESENTATION PROBLEM USING ε-INDICATOR

10 12 14 16 18 20
0

1

2

3

`

10 12 14 16 18 20
0

1

2

3

`

Figure 5.2: Illustration of non-increasing and non-decreasing sequences and their maxi-
mum; see text for more details

sequences will be a bitonic sequence which decreases until the non-increasing sequence
becomes smaller, and then increases. Consequently, there is only one minimum, close to
where the non-increasing sequence becomes smaller. This is represented in the plots of
Figure 5.2, with T (i, `) (in blue) decreasing until δj,` (in red) becomes larger.

Moreover, if we now look at the calculation of T (i, j − 1), the non-increasing se-
quence remains equal, but by Proposition 5.2.3, δj−1,` ≥ δj,`, which means that the
non-decreasing sequence may increase for every `. Consequently, the non-decreasing se-
quence may overcome the non-decreasing sequence for a smaller value of `, which means
that P (i, j − 1) ≤ P (i, j).

Figure 5.2 illustrates this situation, with δj,` represented with red plus marks, T (i, `)
with blue crosses and the maximum of the two sequences with black circles. In the
left plot, we have the sequences for a certain j, whereas in the right plot we have the
same sequences for j − 1. Since δj−1,` ≥ δj,`, the minimum of the maximum of the two
subsequences moves to the left in the right plot. This position is represented by the `
value of the lowest black circle, which is at ` = 15 in the left plot and ` = 14 in the right
plot. The index of this minimum is stored in P , and consequently, this figure illustrates
that P (i, j − 1) ≤ P (i, j).

In conclusion, instead of iterating over all the possible values of `, the algorithm
stops when the next value of ` increases the ε-indicator. Also, the value of P (i, j) for a
given value of j is stored and used as an upper bound for P (i, j− 1). The complexity for
calculating all the values T (i, j) is now O (k n) amortised, since on average, the algorithm
checks O (1) values of `. Adding the preprocessing in O (n2) and considering that k ≤ n,
this version of the algorithm has O (n2) time complexity.

5.3 Complexity and Results

We now have four distinct versions with the complexities given below:

• Threshold Algorithm O (n2 log n)

• Dynamic Programming O (k n3)

5.3. COMPLEXITY AND RESULTS 31

0 500 1,000 1,500 2,000

10−2

10−1

100

101

102

n

T
im

e
(s

)

Threshold
Dyn. Prog.
Dyn. Prog. (m-improv.)
Dyn. Prog. (`-improv.)

Figure 5.3: Running time for the four approaches with 50 ≤ n ≤ 2000, k = 20

• Dynamic Programming and m-improvement O (k n2)

• Dynamic Programming and `-improvement O (n2)

The Dynamic Programming algorithms get progressively better with each improve-
ment, with the best complexity being O (n2). Unlike the first two Dynamic Program-
ming versions, the time complexity of this version does not depend on k, similarly to the
Threshold Algorithm.

5.3.1 Experimental Results

Two tests were run, in order to compare the four versions of the algorithm and the
influence of the parameters n and k on the running time. We refer to Chapter 3 for a
more detailed discussion of the the experimental setup.

The results for the four approaches are present in Figure 5.3, considering k is constant.
The naive Dynamic Programming version is very slow in practice, which is natural if we
consider it hasO (k n3) complexity. Even when the value of n is around 200, this algorithm
already takes more time to finish that any of the others for n = 2000.

Regarding the remaining versions, the running times seem to be consistent with the
complexities. Perhaps the largest surprise is the small difference between the Threshold
Algorithm and the first version of the Dynamic Programming algorithm. However, since
k takes a relatively small constant value in this test, the complexity of this version of the
dynamic programming algorithm becomes O (n2).

On the other hand, in Figure 5.4 we can see what happens to the running time when
we keep n constant and vary k. Once more, the difference between the naive version of
the Dynamic Programming algorithm and the remaining three is clear. The naive version
does not even appear in the graph, since it takes too long to complete even the smaller
case (n = 2000, k = 50), taking 1383.11 seconds.

The relevance of the factor k in the complexity also becomes clear, since the version
with complexity O (k n2) is very affected by the increase in the value of k. In fact, if
we consider k = 1000, the version with m-improvement takes around twenty times more

32 CHAPTER 5. REPRESENTATION PROBLEM USING ε-INDICATOR

0 200 400 600 800 1,000

10−1

100

101

k

T
im

e
(s

)

Threshold
Dyn. Prog. (m-improv.)
Dyn. Prog. (`-improv.)

Figure 5.4: Running time for the four approaches with n = 2000, 50 ≤ k ≤ 1000

time than the other versions.

Finally, comparing the remaining versions, it seems clear that the Dynamic Program-
ming algorithm consistently performs better than the Threshold Algorithm, even if it is
a small difference, which is consistent with the time complexities of both algorithms.

Chapter 6

Representation Problem using
Coverage

In this chapter, we consider the same representation problem as in Chapter 5, using
the Coverage indicator, introduced by Sayin [10], instead of the ε-indicator. As before,
we want to find a subset with a given cardinality that minimises a given property, but
in this case the property is related to the distance between the selected elements and
the elements of the set. This problem is related to centroid-based clustering, where the
chosen elements represent the cluster centers, and we want to minimise the maximum
distance of an element to the closest center.

Formally, given a set of vectors B and k, this problem consists in finding a subset
R ⊆ B, with |R| = k with the minimum value of the Coverage indicator, that is, for each
element of B there is an element in R for which their distance is less than the value of
Coverage. Using the notation introduced in Chapter 2, we have the goal given by:

arg min
R⊆B
|R|=k

IC(R,B)

where IC represents the Coverage indicator, introduced in Chapter 1 and given by:

IC(R,B) = max
b∈B

min
r∈R
||r − b||

and ||a− b|| represents any p-norm between of the vector a− b.
In this chapter we prove that the same algorithms that are presented in Chapter 5

may be used for Coverage, by simply changing the indicator value. Additionally, since
the algorithms are almost similar, with the only change being the function that calculates
the indicator, the experimental results are very similar to those that were analysed in
Chapter 5.

6.1 Threshold Algorithm

The Threshold Algorithm is used for finding the optimal value of ε-indicator based
on the reduction to a graph covering problem. By considering the distance between the
points as the measure to determine which edges are present in the graph, we can use the
same algorithm to find the optimal subset according to Coverage. As in the ε-indicator

33

34 CHAPTER 6. REPRESENTATION PROBLEM USING COVERAGE

case, we need to prove that the rows of the adjacency matrix, for the defined graphs,
have the “consecutive ones property”.

Proposition 6.1.1. Given a threshold for Coverage, tC, the rows of the adjacency matrix
of its corresponding graph have the “consecutive ones property” (C1P).

Proof. Formally, for any non-dominated elements b, x, y, z ∈ B, with x1 < y1 < z1, we
want to show that if ||b− x|| ≤ tC and ||b− z|| ≤ tC , then ||b− y|| ≤ tC .

We need two consider two cases: i) b1 ≤ y1; ii) b1 > y1. For case i), we have that
b1 < y1 < z1 and b2 > y2 > z2 (or the elements would be dominated). Therefore, we
have y1 < z1 ⇒ y1 − b1 < z1 − b1 ⇒ |y1 − b1|p < |z1 − b1|p, since y1 − b1 and z1 − b1
are both positive. Similarly, y2 > z2 ⇒ b2 − y2 < b2 − z2 ⇒ |b2 − y2|p < |b2 − z2|p,
since b2 − y2 and b2 − z2 are both positive. Putting both results together, we have that
|y1 − b1|p + |b2 − y2|p < |z1 − b1|p + |b2 − z2|p, or equivalently, ||b− y|| < ||b− z||, which
implies that ||b− y|| ≤ tC .

For the∞-norm, ||a−b||∞ = max(|a1−b1|, |a2−b2|), it is enough that |y1−b1| < |z1−b1|
and |y2 − b2| < |z2 − b2|, which is a consequence of the case p = 1.

For the second case, a similar reasoning applies, using x instead of z. Therefore, we
conclude that ||b − y|| ≤ tC for every case, thus we can conclude that the rows of the
adjacency matrix have the C1P.

The alternative set covering procedure, discussed in Section 5.1.1, is also applicable
when using Coverage. As we mentioned, that algorithm is based on the “consecutive ones
property” of the columns of the adjacency matrix, as well as the rows. Therefore, proving
that the algorithm may be used for the problem described in this chapter is a matter of
proving that using Coverage preserves the desired property, as is asserted in Proposition
6.1.2.

Proposition 6.1.2. For a given threshold for Coverage, tC, the columns of the adjacency
matrix of the corresponding graph have the “consecutive ones property” (C1P).

Proof. We recall that the adjacency matrix has a value of 1 in entry (i, j) if ||bj−bi|| ≤ tC ,
and a value of 0 otherwise. We know that ||bj+` − bj|| < ||bj+`+1 − bj||, for ` > 0 (see
Proposition 6.2.1). This inequality is also trivially true for ` = 0. Similarly, we have that
||bj−`− bj|| < ||bj−`−1− bj||, for ` ≥ 0 (see Proposition 6.2.2). Therefore, by fixing a value
of j, we conclude that, as i increases, ||bi − bj|| decreases when i < j and increases when
i > j.

We denote, for the Coverage indicator, si = min ({1 ≤ j ≤ n : ||bi − bj|| ≤ tC}) and
ei = max ({1 ≤ j ≤ n : ||bi − bj|| ≤ tC}). Then, for sj ≤ i ≤ j, ||bi−bj|| ≤ ||bsj−bj|| ≤ tC ,
since ||bi − bj|| is decreasing. Similarly, for j < i ≤ ej, ||bi − bj|| ≤ ||bej − bj|| ≤ tC , since
the sequence is increasing. Therefore, for a given j, every row sj ≤ i ≤ ej has a value of
1.

6.2 Dynamic Programming

The Dynamic Programming algorithm proposed in Section 5.2 finds the minimum
value for the ε-indicator. However, this algorithm also works for Coverage, and it is suffi-
cient to prove that the propositions presented in that section are also true for Coverage.

6.3. COMPLEXITY AND RESULTS 35

Moreover, since the Coverage indicator is commutative, the first part of Proposition
5.2.1 and the second part of Proposition 5.2.2 are equivalent, as are the second part of
Proposition 5.2.1 and the first part of Proposition 5.2.2.

This Dynamic Programming approach is similar to that used by Paquete et al. [8],
even though the version described in this thesis is further improved.

Proposition 6.2.1. For a, b, c ∈ B, with a1 < b1 < c1, we have ||a− b|| < ||a− c||.

Proof. Since the elements are non-dominated, we have that a2 > b2 > c2. Therefore,
b1 − a1 < c1 − a1, and since b1 − a1 > 0 and c1 − a1 > 0, |b1 − a1|p < |c1 − a1|p.
Similarly for the second coordinate, a2 − b2 < a2 − c2, and since both terms are positive
|a2 − b2|p < |a2 − c2|p.

Concluding, ||a − b|| = |b1 − a1|p + |a2 − b2|p < |c1 − a1|p + |a2 − c2|p = ||a − c||.For
the ∞-norm, since |c1 − a1| > |b1 − a1| and |a2 − c2| > |a2 − b2|, we conclude that
||a− c|| = max(|c1 − a1|, |c2 − a2|) > max(|b1 − a1|, |b2 − a2|) = ||b− a||.

Proposition 6.2.2. For a, b, c ∈ B, with a1 < b1 < c1, we have ||a− c|| > ||b− c||.

Proof. Since the elements are non-dominated, we have that a2 > b2 > c2. Therefore,
c1−a1 > c1− b1, and since both sides of the inequality are positive, |c1−a1|p > |c1− b1|p.
For the the second coordinate, a2 − c2 > b2 − c2, and since both terms are positive
|a2 − c2|p > |b2 − c2|p.

Concluding, ||a − c|| = |c1 − a1|p + |a2 − c2|p > |c1 − b1|p + |b2 − c2|p = ||b − c||.
For the ∞-norm, since |c1 − a1| > |b1 − a1| and |a2 − c2| > |a2 − b2|, we conclude that
||a− c|| = max(|c1 − a1|, |c2 − a2|) > max(|c1 − b1|, |c2 − b2|) = ||b− c||.

Since these propositions are the only place in the proofs where the expression of ε(a, b)
is used, it can be replaced by ||a− b||, proving that the Dynamic Programming algorithm
is also applicable to Coverage. For example, the expression for δj,` becomes:

δj,` = max
j<m<`

min (||bj − bm||, ||b` − bm||)

6.3 Complexity and Results

Given that the algorithms are the same as those used for the ε-indicator and that
the complexity of calculating the distance is constant, as with the ε(a, b) function, the
complexity of the algorithms is also the same, with a time complexity of O (n2 log n) for
the Threshold Algorithm and O (n2) amortised for the Dynamic Programming algorithm.

Given that the same algorithms (and same implementation) are used for both indi-
cators, the experimental results are similar to the ones obtained for the ε-indicator. We
refer to Section 5.3 for a discussion of these results.

36 CHAPTER 6. REPRESENTATION PROBLEM USING COVERAGE

Chapter 7

Representation Problem using
Uniformity

In this chapter, we use a third indicator, Uniformity, to select the representative
subset. This indicator is different than the ones previously seen, since it measures how
far apart the points in the chosen subset are, instead of comparing in some way the chosen
subset with the original set, as the ε-indicator and Coverage.

Uniformity was introduced by Sayin [10], and is formally defined as the minimum
distance between any pair of elements in the subset, that is:

IU(R) = min
i,j∈{1,...,|R|}

i 6=j

||pi − pj||

.

The objective of this problem is to find a subset of a given cardinality such that
the minimum distance between any pair of elements is maximised. Using the notation
introduced in Chapter 2, we want to find:

arg max
R⊆B
|R|=k

IU(R,B)

In this chapter we present two algorithms that solve the representation problem using
Uniformity, based on the Threshold Algorithm and Dynamic Programming approach
presented in Chapter 5. The goal of this Chapter is to present the algorithms that are
then combined into the multiobjective algorithms presented in the following chapters.

7.1 Threshold Algorithm

The Threshold Algorithm for Uniformity uses the same idea that is described in
Chapter 4 and Section 5.1. The Uniformity values are distances between the elements,
and consequently the algorithm sorts the distance values between the pairs of elements,
and does a binary search over these values.

Therefore, the only necessary change is on the set covering procedure, which needs to
be changed to check if for a given Uniformity threshold, a solution exists. This modifica-
tion is not trivial, since Uniformity measures distances between chosen elements, unlike
Coverage or ε-indicator, which are measured between the chosen elements and entire set.

37

38 CHAPTER 7. REPRESENTATION PROBLEM USING UNIFORMITY

b1
b2

b3

b4

b5

b6

hsh1

h2

h3

h4

h5

h6 ht

Figure 7.1: Set of 2D points (left) and respective graph GU (right)

Setting a threshold for Uniformity means that we want to find a subset with at least
k elements such that the distances between those elements is greater or equal to the
threshold. Even though we want a subset with k elements, we may remove any elements
without the Uniformity decreasing, since it is calculated as the minimum of all the possible
distances, and by removing an element, we simply remove some distance values.

Given a threshold value tU , we define a directed acyclic graph GU with n+ 2 vertices:
a source node hs, a target node ht and a node hi corresponding to each element of bi ∈ B.
The graph GU has arcs (hs, hi) and (hi, ht) for every 1 ≤ i ≤ n. The graph GU also has
an arc (hi, hj) for each pair of nodes such that i < j and ||bi − bj|| ≥ tU .

An example is given in Figure 7.1, where we have a plot of the points, on the left,
with the Uniformity threshold identified with a dotted circumference. The corresponding
graph is also presented on the right, with an arc between two nodes only of their distance
is greater than the threshold.

We now argue that any path from hs to ht on graph GU corresponds to a subset whose
value of Uniformity is at least tU , that is, if there is a path P = (hs, hi1 , . . . , him , ht),
then IU({bi1 , . . . , bim}) ≥ tU . This is true because the elements bi are ordered by the first
coordinate. Therefore, since there is an arc (hij , hij+1

) in the graph, then tU ≤ ||bij−bij+1
||

and by Proposition 6.2.1, tU ≤ ||bij − bij+1
|| ≤ ||bij − b`|| for ` > ij+1. In conclusion, the

distance between the elements of B corresponding to any two nodes of a path is always
at least tU .

Therefore, there is an feasible subset for a given tU if and only if there is a path
with at least k + 2 nodes or k + 1 arcs in the corresponding graph GU (including hs and

7.2. DYNAMIC PROGRAMMING 39

ht). In Figure 7.1, one possible subset is presented, consisting of the blue nodes. The
corresponding path is also marked in blue, which as explained passes through hs, each of
the selected elements, and then ht.

This problem is reduced to finding the maximum path in GU . In order to do this,
the algorithm builds the graph as described, and then visits each node, in the order
hs, h1, . . . , hn, ht, storing the size of the longest path from hs. When a node is visited, all
the outgoing arcs from that node are also visited, and the destination nodes are updated.
After visiting every node, if the longest path from hs to ht goes through at least k + 1
arcs, then there is a feasible solution, since that path represents a subset R, with |R| ≥ k.
Since the Uniformity is calculated as the minimum of all the pairs of distances, we may
remove elements from the subset until we reach the desired cardinality, since removing
points does not decrease the Uniformity value.

Since we need to visit each edge once, to correctly calculate the length of the longest
paths to each node, this procedure has complexity O (n2). Using the notation analogous
to the one defined in Section 4.1, we now have TC(n) = O (n2). Therefore, the complexity
of the Threshold Algorithm for Uniformity is O (n2 log n).

7.2 Dynamic Programming

The Dynamic Programming algorithm for Uniformity is similar to the one described
in Section 5.2, and is similar to the approach described by Wang and Kuo [12]. This
algorithm is based on adding an element to a subset of size i − 1 to obtain a subset of
size i. Let Si−1,` ⊆ {b`, . . . , bn}, with b` ∈ Si−1,` and |Si−1,`| = i− 1 and bj the element to
add to that subset, with j < `. Since the Uniformity indicator calculates the minimum
over all pairs of elements,

IU({bj} ∪ Si−1,`) = min (min({||bj − e|| : e ∈ Si−1,`}), IU(Si−1,`))

Additionally, by Proposition 6.2.1, ||bj − b`|| < ||bj − e||, for e ∈ Si−1,` \ {b`}, so we
can simplify IU as:

IU({bj} ∪ Si−1,`) = min (||bj − b`||, IU(Si−1,`))

This shows that we can calculate the Uniformity indicator incrementally by calculating
the distances between the two first elements of the new set, and consequently we can
calculate T (i, j) using the following expression:

T (i, j) = max
j<`≤n−i+2

min (||bj − b`||, T (i− 1, `))

Unlike Coverage and ε-indicator, for which we need to do a final correction, the
Uniformity indicator does not depend on the unchosen elements, and therefore the results
present in the last row represent feasible solutions. Therefore, the final solution is given
by:

min
1≤j≤n−k+1

T (k, j)

The time complexity for this algorithm is the same as the algorithm described in
Section 5.2, since the algorithms are similar. Additionally, an improvement similar to that

40 CHAPTER 7. REPRESENTATION PROBLEM USING UNIFORMITY

0 500 1,000 1,500 2,000

10−2

10−1

100

n

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 7.2: Running time for the four approaches with 50 ≤ n ≤ 2000, k = 20

of Section 5.2.1 can be applied, as explained by Wang et al. [12], yielding the complexity
of O (k n).

7.3 Complexity and Results

In this chapter, we present two different approaches to solve the discussed problem,
whose complexities are:

• Threshold Algorithm O (n2 log n)

• Dynamic Programming O (k n)

7.3.1 Experimental Results

We run two tests with the two approaches, in order to study the influence of the size
of the set, n, and the subset k, in the performance of the algorithms. The methodology
of the experiments is discussed in detail in Chapter 3.

In Figure 7.2, the results for the first test are presented. As expected, the Threshold
Algorithm implementation grows quadratically with n, and the difference to the Dy-
namic Programming version increases to 10 times more. Considering that the Dynamic
Programming version depends linearly of n, it is not surprising that it has much better
performance than the Threshold Algorithm.

On the second test, we study the influence of k. Since the complexity of the Threshold
Algorithm is not dependent on k, it is expected that the algorithm has constant perfor-
mance. However, the Dynamic Programming approach depends on the size of the subset,
and consequently may take more time to solve instances with a larger value of k.

The results for this test are presented in Figure 7.3, using a logarithmic scale for the
running time. The results indicate that, even though the Threshold Algorithm has a
similar running time for different values of k, and that the performance of the Dynamic
Programming approach decreases as k increases, it is still better by an order of magnitude.

7.3. COMPLEXITY AND RESULTS 41

0 200 400 600 800 1,000

10−2

10−1

100

101

k

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 7.3: Running time for the four approaches with n = 2000, 50 ≤ k ≤ 1000

Additionally, since k is the size of the subset, k is at most n, since it does not
make sense to extract more than n elements. Therefore, the complexity of the Dynamic
Programming approach, O (k n), is in fact at most O (n2), which is still better than
the complexity of the Threshold Algorithm. Therefore, even considering k = n, the
complexity of the Dynamic Programming algorithm would be better, and consequently
it is not surprising that it outperforms the Threshold Algorithm.

42 CHAPTER 7. REPRESENTATION PROBLEM USING UNIFORMITY

Chapter 8

Representation Problem using
ε-indicator and Coverage

We now expand the representation problem to consider more than one indicator. As
before, we want to find a subset with a given cardinality, but this time we want to
optimise two different indicators, specifically Coverage and the ε-indicator. Therefore,
we now have a multiobjective version of the representation problem.

By optimising two indicators, we obtain not only the best solutions for each indica-
tor, but compromise solutions as well. Therefore, considering the multiobjective problem
allows us to obtain different solutions, and these solutions may present a different repre-
sentation of the problem, which may be interesting for the decision maker.

Formally, given a set of vectors B and a cardinality k, we want to find subsets R ⊆ B,
with |R| = k, such that the pair of values of Coverage and ε-indicator are non-dominated.
These subsets R must ε-dominate B and satisfy the condition that for each element of
B there is an element in R for which their distance is less than the value of Coverage.
Using the notation introduced in Chapter 2, we have the goal given by:

arg min
R⊆B
|R|=k

(Iε(R,B), IC(R,B))

Here, the arg min operator returns the non-dominated solutions, that is, given the
pairs of acceptable ε-indicator and Coverage values, it interprets them as 2D vectors, and
extracts the non-dominated set.

In this chapter, we present two algorithms that solve this problem, based on the
Threshold Algorithm presented in Chapters 4 and 5 and the Dynamic Programming
approach presented in Chapter 5. Particularly, we discuss the changes needed to adapt the
algorithms to a multiobjective problem, and also the modifications needed to introduce
the Coverage algorithm.

8.1 Threshold Algorithm

The Threshold Algorithm is used to find the optimal value of ε-indicator, and is,
therefore, designed to search for the best value on a one dimensional space. For this
problem, we need to adapt the algorithm to search in the 2D space, and keep the non-

43

44 CHAPTER 8. REPRESENTATION PROBLEM USING ε-IND. AND COV.

ε1 ε2 ε3 ε4
c1 ←
c2
c3
c4

ε1 ε2 ε3 ε4
c1 ↓ ←
c2
c3
c4

ε1 ε2 ε3 ε4
c1 ↓ ←
c2 ↓
c3 ↓ ←
c4 ← ←

Figure 8.1: Example of different steps of the search method

dominated solutions to the problem. Additionally, the procedure that checks if a feasible
solution exists must be modified to account for Coverage.

8.1.1 Search Method

Regarding the search for the non-dominated solutions of the ε-indicator and Coverage,
we use an approach for search in a 2D space, where each dimension represents an indicator.
As in the ε-indicator problem, we start by generating the indicator values for pairs of
elements, and then merge and sort that matrix into a list of possible values, both for
ε-indicator and Coverage, using the methods explained in Chapter 4.

The search method starts by considering the highest possible value for ε-indicator and
the lowest possible Coverage value and finding new solutions by decreasing the value of
ε-indicator or increasing the Coverage, according to the solution for the indicator values
being considered.

For a given pair of values, the algorithm determines if there is a subset such that its
ε-indicator and Coverage do not exceed the threshold values. Formally, we want to find
a subset R ∈ B, |R| = k, such that Iε(R,B) ≤ tε and IC(R,B) ≤ tC , where tε and tC are
the threshold values for ε-indicator and Coverage, respectively.

Now we have two cases we need to look at. If there is a feasible solution for these
thresholds, then increasing the value of Coverage will only produce dominated pairs of
values (since the ε-indicator value is maintained). Therefore, if there is a feasible solution,
the algorithm decreases the value of ε-indicator. The second case is if there is no feasible
solution for the threshold values. In this case, decreasing the value of ε-indicator further
restricts the set covering procedure, and does not produce feasible solutions. Therefore,
for that value of the Coverage indicator, lower ε-indicator produce solutions that are not
feasible, so the algorithm increases the Coverage value instead.

In Figure 8.1, these two cases are illustrated. The first solution we find is feasible
(green), for tε = ε4 and tC = c1. Therefore, we know that the column will consist of
dominated solutions, and consequently move to the left, that is, we decrease the value
of ε-indicator. For tε = ε3 and tC = c1, our next position, the solution is not feasible
(red). Therefore, we know that the solutions we would find to its left would also not be
feasible, and consequently move down. Repeating the process, we eventually reach one
of the edges of the matrix, and the search ends. At most, we explore n2 non-feasible
solutions and n2 feasible solutions, since each of these makes the position move to the
left or down, and n2 is the maximum number of rows and columns.

In other words, we start with extreme values for both indicators, and at each step
we exclude a value of Coverage or a value of ε-indicator from the search. Since there are
O (n2) values for ε-indicator and Coverage, we need to check O (n2) pairs of values to

8.1. THRESHOLD ALGORITHM 45

obtain all the solutions. Additionally, given that the algorithm visits the pairs of values
in increasing order of Coverage, it is simple to check which solutions are non-dominated.

8.1.2 Set Covering Procedure

The procedure used in the original algorithm checks if there is a feasible solution for
a given value of ε-indicator. In order to be used on this problem, this procedure must
be adapted so that it considers a pair of ε-indicator and Coverage values. Moreover, we
proved in Propositions 4.2.2 and 6.1.1 that the rows of the adjacency matrices for both
ε-indicator and Coverage have the “consecutive ones property”, as is demonstrated in
Proposition 6.1.1.

Therefore, we simply need to adapt the algorithm so that it uses both indicators
instead of just one. It is important to remark that even though the chosen elements must
cover the entire set considering both ε-indicator and Coverage, it is not necessary that
each selected element covers the same elements considering both the indicators.

Using the same notation as in Section 4.1, one simple way to solve this problem is to
double the reference set on the graph Gi so that each node appears twice, one for the
edges of each indicator. This reduces the problem of finding the subset with a pair of
values to finding a subset with k elements given an adjacency matrix with size 2n × n.
Formally, we generate adjacency matrices for the ε-indicator and Coverage, join them
vertically, and solve the subset selection problem on the new matrix. Since each row of
the original matrices has C1P, the rows of the new matrix also have the same properties,
so the algorithm may be applied to this matrix.

Another way to obtain the same results, without doubling the graph, is to slightly alter
the algorithm so it considers both indicators simultaneously, selecting the next element
according to both matrices. This method has the advantage of not needing the operations
for reordering the rows present in the original algorithm by Schöbel [11].

This new algorithm starts by considering the first row, and selecting the rightmost
column that has a one in that row, on both matrices. This column represents one of the
elements of the subset. Then, for each of the two matrices, the rows that have a one
in that column are skipped, since the elements corresponding to those rows are already
covered. At this time, the algorithm may be operating on different rows on the two
matrices. After skipping these rows, the process is repeated to choose the next element,
until all rows are covered or it finds that the set cannot be covered.

In the following, we prove that this algorithm is correct, that is, that picking the
rightmost column that has a one is the best strategy. First of all, we remark that we
need to choose a column that has a one in both columns, since that element must cover
the first element considering both ε-indicator and Coverage. Therefore, we just need to
prove that the rightmost possible column is better than any other, for both ε-indicator
and Coverage. Since this algorithm still finds the solution in linear time, the complexity
for this procedure is still O (n log n), considering the overhead caused by the generation
of the compressed adjacency matrix.

Proposition 8.1.1. Let a, a′, b ∈ B, with a′1 < a1 and such that b is covered by both a
and a′, that is, ε(a, b) ≤ tε, ε(a

′, b) ≤ tε and for Coverage, ||a − b|| ≤ tC, ||a′ − b|| ≤ tC.
Then there is no b′ ∈ B, with b′1 > b1, such that b′ is covered by a′, but not by a, that is,
ε(a′, b′) ≤ tε and ||a′ − b′|| ≤ tC, but ε(a, b′) > tε or ||a− b′|| > tC.

46 CHAPTER 8. REPRESENTATION PROBLEM USING ε-IND. AND COV.

Proof. We proceed by contradiction, thereby assuming that such b′ exists. Given that
ε(a, b) ≤ tε and ε(a, b) = max (b1/a1, b2/a2), we know that b2/a2 ≤ tε, and given that
b′2 < b2, we have that b′2/a2 < b2/a2, which implies that b′2/a2 < tε.

Similarly, since ε(a′, b′) ≤ tε and ε(a′, b′) = max (b′1/a
′
1, b
′
2/a
′
2), then b′1/a

′
1 ≤ tε. We

know that a′1 < a1 ⇒ 1/a′1 > 1/a1 ⇒ b′1/a
′
1 > b′1/a1, which implies that b′1/a1 < tε. Since

b′1/a1 < tε, b
′
2/a2 < tε, we conclude that ε(a, b′) < tε, which is false.

We now look at the second part, that is, ||a − b′|| > tC , for any p-norm. Let us first
consider the case in which a1 > b1 (and, consequently, a2 < b2): Given that b′1 > b1, then
a1−b′1 < a1−b1, and since both terms are positive, this implies that |a1−b′1|p < |a1−b1|p.
We also know that b′2 < b2, so b′2−a2 < b2−a2, and consequently |b′2−a2|p < |b2−a2|p, since
both terms are positive. We conclude that |a1−b′1|p+|b′2−a2|p < |a1−b1|p+|b2−a2|p < tC ,
and consequently ||a − b′|| < tC . For the ∞-norm, ||a − b||∞ = max(|a1 − b1|, |a2 − b2|),
it is enough that |a1 − b′1| < |a1 − b1| and |b′2 − a2| < |b2 − a2|, which is a consequence of
the case p = 1.

In the remaining case, a1 ≤ b1 (and a2 ≥ b2), we apply a similar reasoning. We
know that a′1 < a1 ⇒ b′1 − a′1 > b′1 − a1 ⇒ |b′1 − a′1|p > |b′1 − a1|p, since b′1 ≥ a1 and,
consequently, the terms are non-negative. For the second coordinate, we use the fact that
a′2 > a2 to conclude that a′2− b′2 > a2− b′2, and since the terms are non-negative, we have
|a′2−b′2|p > |a2−b′2|p. We conclude that |a1−b′1|p+ |b′2−a2|p < |a′1−b′1|p+ |b′2−a′2|p < tC ,
and consequently ||a− b′|| < tC . Since |b′1 − a′1| > |b′1 − a1| and |a′2 − b′2| > |a2 − b′2|, as a
consequence of p = 1, then the same reasoning also holds for the ∞-norm.

In either case, we conclude that the statement is false, and since both ε(a, b′) > tε and
||a− b′|| > tC are false, we reach a contradiction.

8.1.3 Time Complexity

As mentioned before in Section 8.1.1, we may need to visit O (n2) pairs of values.
Using the notation analogous to the one defined in Section 4.1, this algorithm has an in-
creased TS(n) = O (n2), while maintaining TP (n) = O (n2 log n), which is the complexity
of sorting the list of values for both indicators; and TC(n) = O (n log n). Therefore, the
final complexity for this algorithm is O (n3 log n).

8.2 Dynamic Programming

Compared to the Threshold Algorithm, the algorithm using Dynamic Programming,
only needs to be changed in one particular place: the storage of solutions. Since there is
no longer a unique solution for each subproblem, each entry of the matrix must keep a
set of non-dominated solutions. Therefore, we use a solution that is similar to that used
by Paquete et al. [8].

The remaining problem is how to combine the algorithms for ε-indicator and Coverage.
However, since the same algorithm can be used for both indicators, we simply need to
change it slightly to calculate both indicators, instead of just one. Additionally, instead
of choosing the best subproblems, we consider every possible sub-problem, and for each
of those, each non-dominated solution.

8.2. DYNAMIC PROGRAMMING 47

Formally, the base case is now T (1, j) = (ε(bj, bn), ||bj − bn||) and we have:

T (i, j) = min
j<`≤n−i+2

({
(max (δε,j,`, e) ,max (δC,j,`, c)) : (e, c) ∈ T (i− 1, `)

})
where min represents the set of non-dominated vectors. Values δε,j,` and δC,j,` represent
the values of δj,` for each of the indicators, as defined in Sections 5.2 and 6.2.

The final correction needs to be applied to every solution, so we get the final solutions
given by:

min
1≤j≤n−k+1

({
(max (ε(b1, bj), e) ,max (||b1 − bj||, c)) : (e, c) ∈ T (k, j)

})
From these recursion equations, it is clear that we cannot simply apply the improve-

ment described in Section 5.2.1. Given that we do not want to find an optimal solution
but a set of non-dominated ones, we cannot simply look at one value of `. Choosing just
one value of ` may yield the optimal solution for one of the indicators, but it may not
give all of the compromise solutions we want the algorithm to find. Therefore, we do not
use this improvement in any multiobjective algorithm.

We remark that we need a data structure to store the set of non-dominated vectors
efficiently. We chose to use an AVL binary balanced tree (see Kung et al. [7]). Since we
need to be able to efficiently iterate over the ordered list of vectors (according to the first
coordinate), a binary tree is a better solution than a hash table.

Now, we need to define an operation to add a 2D vector to the non-dominated set.
This operation first needs to check if the vector is not dominated, and then remove vectors
in the set that are dominated by the new vector. Checking if the vector is dominated is
quite simple: we just need to check if the first vector to its left dominates it. The newly
dominated vectors are also easy to find, since the vectors to the left of the inserted vector
have a smaller first coordinate, and as such cannot be dominated by it. Therefore, we
simply need to check the vectors immediately to its right.

Formally, the vectors in the tree are denoted as p1, p2, p3, . . . , pm, sorted by the first
coordinate and we want to insert vector q, then we find

i = max
({
j : p

(1)
j < q(1) ∨

(
p
(1)
j = q(1) ∧ p(2)j < q(2)

)})
If there is no such i or if pi does not dominate q, then q is non-dominated. Now we

need to find the largest j such that j > i and p
(2)
j > q(2), considering i = 0 if it was not

found in the previous. If such a j exists, the dominated vectors we need to remove from
the set are {pi+1, . . . , pj}.

Regarding the time complexity of this algorithm, we have to consider that there is
a matrix of size O (k n) that needs to be filled. For each of the elements of the matrix,
T (i, j), we check O (n) values of ` in the range j < ` ≤ n− i+ 2, and for each of the
vectors, stored in T (i− 1, `), we must add it to our set. Since each set may have at most
O (n2) vectors, since these are the possible values for each of the indicators, the number
of operations of insertion and lookup, to iterate over the vectors on one set and insert
them in the other is, for each value of `, O (n2 log n). Therefore, the final complexity is
O (k n4 log n). We remark that this is a worst case scenario, and that the algorithm may
have a lower average time complexity.

48 CHAPTER 8. REPRESENTATION PROBLEM USING ε-IND. AND COV.

0 200 400 600 800 1,000

10−2

10−1

100

101

102

n

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 8.2: Running time for the two algorithms with 50 ≤ n ≤ 1000, k = 20

8.3 Complexity and Results

In this chapter we present two different algorithms that solve the problem discussed,
whose complexities are:

• Threshold Algorithm O (n3 log n)

• Dynamic Programming O (k n4 log n)

8.3.1 Experimental Results

Two tests were run, in order to compare the performance of the two algorithms and
the influence of the parameters n and k on the running time. The setup of these tests is
similar to that described in previous chapters, and is discussed in more detail in Chapter
3.

The results for the first test are presented in Figure 8.2. These results clearly indicate
that the Dynamic Programming algorithm performs better than the Threshold Algorithm,
taking approximately 10 times less to solve the instance.

These results are not consistent with the complexities of the presented algorithms.
However, as we said in Section 8.2, the presented complexity is an upper bound consid-
ering the maximum number of non-dominated vectors that can be present in a entry of
the matrix. Therefore, it is possible that the Dynamic Programming approach has better
performance, if there are few non-dominated vectors per entry.

Another important factor is the value of k, since the time complexity of the Dynamic
Programming version depends linearly on this factor. The comparison for the second test,
varying the value of k, is presented in Figure 8.3. First of all, the Threshold Algorithm
takes approximately constant time when varying k, whereas the Dynamic Programming
version seems to increase with k. This is consistent with the complexities of the algo-
rithms, and was expected. This also means that if we consider a large enough value for
k, the Threshold Algorithm takes less time.

This is not visible in the graph because the Dynamic Programming version has no
registered times beyond k = 300, indicating that the algorithm failed to complete. The

8.3. COMPLEXITY AND RESULTS 49

0 100 200 300 400 500

102

103

k

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 8.3: Running time for the two algorithms with n = 1000, 50 ≤ k ≤ 500

reason for this is that, even though memory is freed as soon at is no longer needed, the
implementation uses too much memory, and quickly exhausts the 4GB of RAM that are
available, crashing the executions. Naturally, this makes the Threshold Algorithm more
adequate for high values of k or in cases where a limited amount of memory is available,
since it has O (n2) space complexity.

50 CHAPTER 8. REPRESENTATION PROBLEM USING ε-IND. AND COV.

Chapter 9

Representation Problem using
ε-indicator and Uniformity

In this chapter, we define a new problem, based on Uniformity and ε-indicator. As we
discussed in Chapter 7, this indicator measures the distance between the chosen elements,
unlike the ε-indicator, which compares the chosen elements with the whole set.

The problem we discuss consists in finding the subset with a given cardinality that
minimises the ε-indicator and maximises Uniformity. Uniformity is useful as an indicator
because it tries to maximise the distance between elements, therefore yielding subsets
that are “spread out” over the entire set. Combining this property with the ε-indicator,
results in the algorithm discovering representative subsets, that are close to the original
set, but whose elements are diversified.

Formally, given a set of non-dominated vectors B and an integer k, the objective of
this problem is to find subsets R ⊆ B, with |R| = k that maximise the value of Uniformity
and minimise the value of the ε-indicator. In order to achieve some consistency, we switch
the sign of the Uniformity value and minimise this. Therefore, we have:

arg min
R⊆B
|R|=k

(Iε(R,B),−IU(R))

As in Chapter 8, the arg min operator returns the non-dominated solutions.

In this chapter, we present two alternatives to solve this problem, based on the algo-
rithms previously discussed in Chapter 5. Similarly to Chapter 8, we detail the changes
needed to adapt the algorithms to use the two indicators together.

9.1 Threshold Algorithm

Similarly to the algorithm described in Section 8.1 using the ε-indicator and Coverage,
two main parts of the Threshold Algorithm need to be adapted: the search method; and
the set covering procedure, which finds a subset for a given pair of threshold values.

First of all, the search method needs to be adapted for two objectives. Since knowledge
about the indicators is not necessary, we can, in fact, reuse the same strategy used for
the ε-indicator and Coverage problem. Therefore, we refer to Section 8.1.1 for a detailed
discussion of this search method.

51

52 CHAPTER 9. REPRESENTATION PROBLEM USING ε-IND. AND UNIF.

To account for the fact that we want to maximise Uniformity, we start on the lowest
possible value of both ε-indicator and Uniformity. Additionally, if we find a feasible
solution, we increase the value of Uniformity, and if no feasible solution is found, we
decrease the value of ε-indicator.

9.1.1 Set Covering Procedure

Unlike Coverage and ε-indicator, which share a similar structure, Uniformity is dif-
ferent than these operators, since it measures the distances between chosen elements.
Therefore, we must use an alternative algorithm to solve the individual problems, and
then combine these algorithms to solve the multiobjective version.

The approaches described in Section 7.1, for Uniformity, and 5.1.1, for ε-indicator,
both use the equivalence between paths in a graph and the chosen subsets. We now show
an algorithm that combines these two approaches to solve the multiobjective problem.

Since each subset is represented as a path in each of the graphs, then in order to
solve both problems we must get a path that is valid in both graphs. Therefore, we can
simply intersect the set of arcs, which results in a new graph Gε,U . By finding a path in
this graph, we find a path in both GU , and Gε, therefore finding a subset R such that
Iε(R,B) ≤ tε and IU(R) ≤ tU .

However, Uniformity and ε-indicator are different, in the sense that adding elements
to a subset may decrease the Uniformity, while removing elements may increase the ε-
indicator. Therefore, we must find a path with exactly k + 2 nodes, including hs and
ht. To solve this problem, we build the graph as described, and then visit each node, in
the order hs, h1, . . . , hn, ht, saving the possible lengths of the paths from hs to that node.
When a node is visited, all the outgoing arcs from that node are also visited, and the
destination nodes are updated. Fortunately, we only need to keep the size of the shortest
path and longest path, because there is a path for every size between those two values
(see Proposition A.1.1 in appendix).

After visiting every node, the algorithm is able to check if there is a path with k + 2
nodes, as it is enough to check if k + 2 is between the values stored in ht. As this
corresponds to a subset with cardinality k, the algorithm can then return if an acceptable
subset exists for the given threshold values, as is required for the algorithm to work
correctly.

9.1.2 Time Complexity

This new Threshold Algorithm, for ε-indicator and Uniformity, uses the same search
method we described in Section 8.1.1. Therefore, we also have TS(n) = O (n2), for this
algorithm.

As to the set covering procedure we described, the algorithm has four essential tasks:

• Calculating the adjacency matrix for the ε-indicator, which takes O (n log n);

• Calculating the sj and ej for the matrix, with the positions of the first and last
values of 1, in O (n2);

• Generating the graph, which can be done in O (n2) by checking every pair of ele-
ments;

9.2. DYNAMIC PROGRAMMING 53

• Finding the lengths of the paths in the graph, which can be done in O (n2) since
we visit each node and arc once.

In conclusion, this set covering procedure has a time complexity of TC(n) = O (n2),
Therefore, the final complexity for this algorithm is O (n4).

9.2 Dynamic Programming

If we consider the Dynamic Programming algorithm presented in Section 8.2, there
are only some details that need to be modified, which will allow the algorithm to use Uni-
formity instead of Coverage. The same structure, with a set of non-dominated solutions
in each entry of the matrix, as well as the use of AVL trees, are kept in this algorithm.

In order to reuse the reasoning and implementation of the algorithm with ε-indicator
and Coverage, this version will minimise −IU(R), which is equivalent to maximising
IU(R).

The Dynamic Programming algorithm is based on adding an element to a subset of
size i − 1 to obtain a subset of size i. As we discussed in Section 7.2, this idea can be
applied to the Uniformity indicator.

Therefore, we can use the same approach to solve this problem, by considering
T (1, j) = (ε(bj, bn),−∞) and by calculating T (i, j) using the following expression:

T (i, j) = min
j<`≤n−i+2

({(max (δε,j,`, e) ,−min (||bj − b`||,−u)) : (e, u) ∈ T (i− 1, `)})

where min represents the set of non-dominated vectors and δε,j,` represents the value of
δj,l as defined in Section 5.2.

Similarly, since the Uniformity does not need a final correction, the solutions for the
problem are given by:

min
1≤j≤n−k+1

({(max (ε(b1, bj), e) , u) : (e, u) ∈ T (k, j)})

The time complexity for this algorithm is similar to the algorithm described in Section
8.2, since the algorithm executes similar steps to obtain the solutions. The same array of
size O (k n) needs to be filled, and there are O (n) subproblems to check, represented by
the range j < ` ≤ n− i+ 2. Also similarly, each entry may containO (n2) non-dominated
vectors, which leads to a complexity of O (n2 log n) to iterate over them and add them
to the new set. This results in a final complexity of O (k n4 log n).

9.3 Complexity and Results

In this chapter we presented two different algorithms that solve the problem discussed,
whose complexities are:

• Threshold Algorithm O (n4)

• Dynamic Programming O (k n4 log n)

54 CHAPTER 9. REPRESENTATION PROBLEM USING ε-IND. AND UNIF.

0 200 400 600 800 1,000

10−2

10−1

100

101

102

103

n

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 9.1: Running time for the two algorithms with 50 ≤ n ≤ 1000, k = 20

9.3.1 Experimental Results

In order to compare the performance of the two algorithms, we run two tests, testing
the influence of the parameters n and k on the running time. The experimental setup is
similar to that of previous chapters, and is presented in more detail in Chapter 3.

In Figure 9.1, the results for the first test are presented. Similarly to the results
discussed on Section 9.3.1, the results indicate that the Dynamic Programming version
performs much better than the Threshold Algorithm.

These results are not consistent with the complexities, since we would expect that
the algorithm with lower complexity would perform better. However, the difference in
complexities is simply k log n, and in this test k is constant. Moreover, the complexity for
the Dynamic Programming version represents an upper bound for the worst case scenario,
considering the maximum number of non-dominated vectors stored in each entry. If the
size of the set is lower than the maximum value, then that will reflect on the running
time, explaining the difference in performances of the algorithms.

0 100 200 300 400 500

102

103

k

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 9.2: Running time for the two algorithms with n = 1000, 50 ≤ k ≤ 500

9.3. COMPLEXITY AND RESULTS 55

The second test, on the other hand, does not consider k as a constant value, and may
present different results. The performances for the two algorithms, with a fixed value of
n and varying k, are present in Figure 9.2.

However, even when considering the influence of k, and even though the Dynamic
Programming increases with k, it still has a much greater performance than the Threshold
Algorithm. Also, even though the Dynamic Programming version uses more memory, due
to the fact that it needs to store the non-dominated solutions for every subproblem, that
does not affect its performance. In conclusion, unlike in the results in Section 9.3.1, this
version of the Dynamic Programming algorithm does not crash for large values of k, and
has better performance than the Threshold Algorithm, independently of the value of k.

56 CHAPTER 9. REPRESENTATION PROBLEM USING ε-IND. AND UNIF.

Chapter 10

Triobjective Representation Problem

In this chapter, we introduce a new problem, which results from joining the problems
of Chapters 8 and 9. This is the triobjective version of the representation problem, with
the goal of minimising the ε-indicator and Coverage and maximising the Uniformity.

Formally, given a set of non-dominated vectors B and an integer k, the objective of
this problem is to find:

arg min
R⊆B
|R|=k

(Iε(R,B), IC(R,B),−IU(R))

As in previous chapters, the arg min operator takes a multiobjective meaning and
consequently returns the non-dominated solutions.

We present two alternatives, adapted from the biobjective algorithms presented in
Chapters 8 and 9, based on the Threshold Algorithm and Dynamic Programming. We
present the modifications necessary to use those algorithms to solve this problem, and
then discuss the performance of the two algorithms, with the support of experimental
results.

10.1 Threshold Algorithm

As with the other multiobjective algorithms, described in Chapters 8 and 9, to use
the Threshold Algorithm for the three indicators we need to adapt the search method,
as well as the set covering procedure.

For the search method, we chose to adapt the two dimensional version, by fixing one
of the indicators. In other words, for each value of the ε-indicator, the algorithm executes
the search over the values of Coverage and Uniformity, similarly to the method described
in Section 9.1.

For the set covering procedure, we adapted the version described in Section 9.1.1.
This time, we add Coverage, and therefore add a new graph, GC , which is analogous to
Gε, as described in Section 6.1. The graph used for the algorithm, Gε,C,U is defined as
the graph whose edges are the intersection of the edges of Gε, GC , GU .

The proof of the correctness of the algorithm for ε-indicator and Uniformity is also
valid when adding Coverage, since the proof does not use any specific knowledge about
the ε-indicator other than the adjacency matrix having the “consecutive ones property”.

57

58 CHAPTER 10. TRIOBJECTIVE REPRESENTATION PROBLEM

However, we have already seen that the Coverage indicator has many of the properties
of the ε-indicator, including C1P for the rows and columns of the adjacency matrix, as
stated in Propositions 6.1.1 and 6.1.2, respectively.

Compared to the ε-indicator and Uniformity version, this algorithm has some over-
head because of the extra operations to join GC to the other graphs. Nevertheless, the
complexity for this procedure is the same, O (n2).

Finally, we discuss the method to store and filter the non-dominated solutions. Despite
being relatively simple when the search space is two dimensional, when we add a third
dimension, we cannot simply save the solutions in order, allowing us to quickly check if
a solution is dominated.

A solution is described by Kung et al. [7] to extract non-dominated solutions from a
set, concretely for three dimensions. This solution requires that the solutions are inserted
in lexicographical order in a binary tree of two dimensional vectors. If a 3D vector, with
its first coordinate removed, is dominated by any vector of the tree, then we know that
the 3D vector is also dominated. If it is not dominated by any vector of the tree, then
we insert it in the tree and we know that the 3D vector is also non-dominated. This
algorithm has a O (m log m) complexity, where m is the number of vectors.

Our algorithm naturally iterates over the different indicators in an ordered fashion, so
this algorithm allows us to keep the solutions without changing its structure too much.
Our implementation uses an AVL tree to store the 2D vectors and an ordinary array to
store the 3D vectors. Moreover, the implementation tests each solution as soon as it finds
it, so as to not waste memory with dominated solutions.

Given that we have, at most, n4 solutions (one for each pair of ε-indicator and Uni-
formity), then we must add O (n4 log n4) = O (n4 log n) to the complexity. Given
that the search method has complexity TS(n) = O (n4) and the set covering procedure
TP (n) = O (n2), even after adding the extra complexity of O (n4 log n) for keeping only
the non-dominated solutions, we have a final complexity of O (n6).

10.2 Dynamic Programming

The Dynamic Programming algorithm for this problem is based on the biobjective
versions described in Sections 8.2 and 9.2. In order to work with three objectives, we
must, first of all, modify the algorithm so that is calculates and stores the vectors with
the three objectives. Therefore, we now have T (1, j) = (ε(bj, bn), ||bj − bn||,−∞) and:

T (i, j) = minj<`≤n−i+2

({
(max (δε,j,`, e) ,max (δC,j,`, c) ,−min (||bj − b`||,−u)) :

(e, c, u) ∈ T (i− 1, `)
})

with δε,j,` and δC,j,` as defined in Section 8.2.

Additionally, the final solutions are generated with:

min
1≤j≤n−k+1

({
(max (ε(b1, bj), e) ,max (||b1 − bj||, c) , u) : (e, c, u) ∈ T (k, j)

})
Using these expressions, the algorithm is able to find all the non-dominated solutions.

However, we can no longer use an AVL as we did for the previous chapters, since we
have three dimensional vectors. Kung et al. [7] suggest a solution for extracting the

10.3. COMPLEXITY AND RESULTS 59

0 20 40 60 80 100

10−2

10−1

100

101

102

103

n

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 10.1: Running time for the two algorithms with 10 ≤ n ≤ 100, k = 20

non-dominated solutions, but the list of vectors must be sorted according to the first
coordinate. Therefore, the algorithm sorts the values according to the first coordinate,
and then uses the procedure to extract the non-dominated vectors, similarly to what is
done in Section 10.1.

In practice, this method of removing the dominated vectors is less efficient, since a
vector of solutions must be kept, and only then are the dominated solutions removed.
Nevertheless, the complexity is O (m log m), where m is the number of solutions. Since
we may have O (n4) solutions for each subproblem, sorting and removing the dominated
solutions has O (n4 log n) time complexity. This is repeated for k n entries of the matrix,
and for each of them, at most O (n) problems need to be checked. Therefore, the time
complexity of the algorithm is O (k n6 log n). As we mentioned in previous chapters, this
is the complexity for the worst case, and therefore it may not reflect on the running time.

10.3 Complexity and Results

In this chapter we presented two different algorithms that solve the problem discussed,
whose complexities are:

• Threshold Algorithm O (n6)

• Dynamic Programming O (k n6 log n)

10.3.1 Experimental Results

In order to compare the performance of the two algorithms, we run two tests, testing
the influence of the parameters n and k on the running time. The experimental setup is
similar to that of previous chapters, and is presented in more detail in Chapter 3.

The complexities of these algorithms are at least O (n6), so a small value such as
n = 100 is already a challenge for current computers. In Figure 10.1, the results for the
first test are presented. Since the algorithms have very different running times, we chose
to represent the data using a logarithmic scale. It is clear that the Dynamic Programming

60 CHAPTER 10. TRIOBJECTIVE REPRESENTATION PROBLEM

0 10 20 30 40 50
10−1

100

101

102

103

104

k

T
im

e
(s

)

Threshold
Dyn. Prog.

Figure 10.2: Running time for the two algorithms with n = 100, 10 ≤ k ≤ 50

approach performs much better, reaching a difference of 103 around n = 70.

As we mentioned in previous chapters, the complexity of the Dynamic Programming
version is an estimate for the worst case scenario, whereas the complexity for the Thresh-
old Algorithm is much tighter. This explains why one of the algorithms takes more than
100 seconds to solve an instance, while the other does it in less than 1 second.

The second test, with the goal of studying the influence of k on the running time,
confirms the superiority of the Dynamic Programming version. Although the Dynamic
Programming version shows an increase in running time for larger values of k, it still
outperforms the Threshold Algorithm by a large margin. This increase is consistent with
the complexity of the Dynamic Programming algorithm, as is the absence of influence to
the Threshold Algorithm.

Even though the Dynamic Programming version performs much better, it is not the
perfect solution. As we mentioned before, this approach stores a great number of solu-

0 50 100 150 200 250 300
0

2

4

6

8

10

n

T
im

e
(s

)

Dyn. Prog.

Figure 10.3: Running time for the Dynamic Programming approach with 10 ≤ n ≤ 300,
k = 20

10.3. COMPLEXITY AND RESULTS 61

tions, whereas the Threshold Algorithm does not.

In Figure 10.3, we present a third test, in which we measured the running time for
greater values of n for the Dynamic Programming algorithm. Similarly to what we
described in Section 8.3.1, this algorithm stops working in certain instances, since it
generates too many solutions and takes up all the available memory. Even though the
algorithm solved some instances in reasonable time, any instance with n > 200 causes a
crash in the program.

In conclusion, the Dynamic Programming approach clearly performs better than the
Threshold Algorithm. However, whereas the Threshold Algorithm only uses memory to
store the values of the indicators to test, and the necessary space to keep the final solu-
tions, the Dynamic Programming uses much more memory, which makes it impractical
to use in a modest configuration, for large values of n.

62 CHAPTER 10. TRIOBJECTIVE REPRESENTATION PROBLEM

Chapter 11

Conclusion

In this thesis, we started by presenting an algorithm to solve the subset selection
problem, by Ponte et al. [9], and then presented our contributions: three improvements
to the original algorithm, as well as a proof of correctness. The experimental results we
presented also showed that one of our improved versions performed consistently better
than the original algorithm.

We then introduced the representation problem, which is a more specific version of the
subset selection problem, and proposed two different algorithms to solve that problem,
with regard to the ε-indicator. We denoted these algorithms by Threshold Algorithm,
which was adapted from the best approach for the subset selection problem; and Dynamic
Programming algorithm. In the following chapters, we introduced two more indicators,
Coverage and Uniformity, and described the new versions of the two algorithms for these
indicators.

The three last chapters also concerned the representation problem, but in its multi-
objective version. In these problems, we want to optimise a combination of indicators,
instead of just one. For these problems, which considered the ε-indicator with Unifor-
mity and/or Coverage, we also presented our algorithms, based on the single objective
versions.

All of these algorithms were presented with a combination of theoretical and practical
results, which ensure that we know that the algorithms are correct, and their asymptotic
behaviours, as well as which algorithm performs better in practice.

Throughout this thesis, we found that the Dynamic Programming algorithm per-
formed better, in practice, for the different versions of the representation problem, even
when compared to the better version for the subset selection problem. However, particu-
larly on the multiobjective versions, it sometimes uses too much memory and the running
time depends on the size of the subset to select, both flaws that the Threshold Algorithm
does not have.

11.1 Future Work

Even though we were able to solve all the discussed problems in polynomial time, the
proposed algorithms have complexities with relatively large degrees. It may be possible
to improve the performance and complexity of the algorithms.

Specifically, the experimental results also suggest that the complexity for the Dynamic

63

64 CHAPTER 11. CONCLUSION

Programming approaches can be theoretically improved, providing a tighter bound and
a better understanding of the performance of the algorithm. Another problem with this
approach is that is uses too much memory, for large instances. It may be possible to reduce
the memory footprint, and therefore make the algorithm more useful. Additionally, the
relation between the chosen indicators and the number of non-dominated solutions is not
clear. We remark that the non-dominated solutions influence the running time in some
of the approaches, such as those using dynamic programming.

As for the Threshold Algorithm, specifically the version for three indicators, it may be
possible to reduce the complexity of the search procedure by using the three dimensional
equivalent of a binary search. By dividing the search space into octants correctly, it may
be possible to exclude two of them immediately, which would leave six octants to be
searched in.

One final issue with the presented algorithms is that they are not extendable to
three or more dimensions. We know that the general Uniformity value is NP-Hard for
three or more dimensions, as per Wang and Kuo [12]. The p-center problem, which is
related to the representation problem using Coverage is also NP-Hard for more than two
dimensions, as per Garey and Johnson [6]. We conjecture that the representation problem
for ε-indicator or Coverage is also NP-Hard in general. Even though the approaches we
presented are not applicable for sets of points with three dimensions, it may be possible
to design algorithms that do it.

Appendix A

Proof of Correctness for ε-indicator
and Uniformity

In this appendix, we demonstrate that the algorithm presented in Section 9.1 is cor-
rect. The most important step to do this is the proof that there are paths of any size
between the minimum and the maximum. This is presented in Proposition A.1.1.

A.1 Threshold Algorithm

Proposition A.1.1. Given a graph Gε,U , and two paths, P and Q, represented as se-
quences of nodes, then for each i, |Q| < i < |P |, there is a path P ′, such that |P ′| = i.

Proof. If |P | ≤ |Q|+1, there are no values of i that satisfy the condition, and the theorem
is trivially true.

Let us operate by induction on the difference d = |P | − |Q|. Our base case is d = 1,
a case described above, and our induction hypothesis is that the theorem is true for
|P ′| − |Q| < d.

We then prove, for P and Q such that |P | − |Q| = d, that there is a path P ′ such
that |P ′| − |Q| = d − 1, or equivalently |P ′| = |P | − 1. Therefore, by applying the
induction hypothesis over P ′ and Q, we know that there is a path for each size i, with
|Q| < i < |P | − 1. Adding the fact that there is also a path with size |P ′| = |P | − 1 and
we get that there is a path for each size i, with |Q| < i < |P |, proving the hypothesis.

This proof will focus on the case where the paths have only the first and last node in
common. This is, in fact, sufficient for the general case, since we can partition the paths
using the common nodes between two paths. Since the result applies for each of these
parts, then it will also apply to the concatenation of these parts or, in other words, to
the sums of the lengths of the parts.

For this proof, we need to look at how the nodes of the two paths are ordered, and
therefore we considered the sorted sequence of nodes, according to this order: hs, h1, . . .,
hn, ht. Since the first and last nodes are common, they only need to appear once in this
sorted sequence of nodes.

We now look at a special case: if there are three or more nodes of the path P in a
row (in the sorted list), then we can create a path with size |P | − 1 by simply removing

65

66 APPENDIX A. PROOF OF CORRECTNESS FOR ε-IND. AND UNIF.

Figure A.1: Representation of the case with three consecutive elements in P

the second node. Let us denote the first three nodes by pi, pi+1, pi+2, and the let qj ∈ Q
be the last node before pi+1, with qj+1 ∈ Q being the first note after pi+1. Formally, we
create a new path P ′ = P \ pi+1, with size |P | − 1, and argue that this path is valid.

In Figure A.1, an example of this special case is presented. By removing the second
blue node, we remove the two blue arcs connected to it, and insert the red arc to complete
the path. If this red arc is valid, the new path is also valid. Moreover, since we removed
a node from the path, it has one node less than the original path, as desired.

As we saw before, removing elements from a subset does not degrade Uniformity, and
consequently we may remove nodes from the path and keep it valid, according to GU .
Regarding the ε-indicator, for each element covered by the element of B corresponding to
pi+1, we also know that it must be covered by the elements corresponding to qj or qj+1.
This means that for each such row, there is a value of 1 on columns corresponding to qj
and to pi+1, in which case we know there must be a value of 1 on the column relative
to pi, because the row has the “consecutive ones property”. The same reasoning can be
applied to for qj+1 and pi+2. In conclusion, either the element corresponding to pi or
pi+2 must cover the elements previously covered by pi+1 and therefore the new path and
subset are acceptable.

We now exclude the case above, and therefore consider that there are at most two
nodes of P without a node of Q in between. In order to describe the new path for the
remaining case, we will adopt a new notation. A new list of numbers will be derived
by inserting a 1 for every node that belongs to path P (including common nodes) and
−1 for nodes that belong exclusively to Q, in the same order as the sorted list. As an
example, p1, p2, q1, q2, p3, q3, p4 becomes 1, 1,−1,−1, 1,−1, 1. We can further improve this
representation by summing the adjacent numbers with the same sign. The example would
thus become 2,−2, 1,−1, 1.

This list, which we denote as `, has some important properties:

• There is no positive number greater that 2, since there are no more than two nodes
of P in a row;

• Its sum is at least 4, since the total sum is equivalent to P − Q + 2, with the 2
accounting for the common nodes at the beginning and end of the paths;

• If we consider the pairs of consecutive negative and positive numbers, the partial
sums only increase if this pair is (−1, 2)

To generate the new path, we start by finding the first position such that Li = 2. If a
value of 2 does not exist, then all the positive values are 1. Since every positive number
(except the last) is followed by a negative number, then the sum would be at most 1,
contradicting what we said about the sum being at least 4.

We denote the partial sum up to that point as s, that is, s =
∑i

j=0 Lj. Every value

A.1. THRESHOLD ALGORITHM 67

. . .

Figure A.2: Representation of the case with three consecutive elements in P

of 1 before Li is followed by a negative number, and consequently, s ≤ 2. Since the total
sum is at least 4, the partial sums must increase to the total sum and since the partial
sums only increase by 1 for each pair (−1, 2) of consecutive values, there must be an

Li′ = 2, such that
∑i′

j=0 Lj = s+ 1.

Given these positions i and i′, we define the new path as follows: we start by including
the nodes of path P , until we reach the position corresponding to Li. There, we add the
first node from the pair that originated Li, and then add the next node from Q. Until
we reach the position corresponding to Li′ , we keep adding the nodes from Q. When
we reach the position corresponding to Li′ , we skip the first node from the pair that
originated that value, and then add every node from the path P from there on.

An example of this new path is presented in Figure A.2. In this case, to generate the
path with one less node, we would start by following the arcs and nodes of the blue path
(longer), until we reached two nodes of this path in a row. From the first of these nodes,
we would follow the red arc to the next black node, and follow the black arcs. When two
blue nodes in a row are reached, if they satisfy the condition mentioned above, we then
follow the red arc from the black node to the second blue node, and follow the blue path
until the end. By following this method, we argue that the new path is valid, or, in other
words, that the red arcs exist in the graph. We also show that the path obtained by this
method has one node less than the blue path, that is, has |P | − 1 nodes, as desired.

We recall that
∑i′

j=0 Lj = s+1 and
∑i

j=0 Lj = s, implying that
∑i′

j=i+1 Lj = 1. Since

Li′ = 2, we also know that
∑i′−1

j=i+1 Lj = −1. Consequently, if we replace every node
in the path P for every node in Q, between the positions corresponding to Li and Li′
(excluding these), we get |P | + 1 nodes. However, accounting for the two nodes we skip
on the positions relative to Li and Li′ , we get the desired |P | − 1 nodes.

Formally, we have a path P ′ of the form (p1, . . . , pj, ql, q`+1, . . . , q`′ , pj′ , . . . , p|P |). We
will now demonstrate that this path is valid, by showing that the arcs (pj, ql) and (q`′ , pj′)
exist.

Regarding Uniformity: since there is a node pj+1 between pj and ql on the sorted
sequence, and this sequence is sorted by the first coordinate, then by Proposition 6.2.1,
the distance between the elements corresponding to elements pj and pj+1 is smaller than
between pj and ql. Therefore, since (pj, pj+1) is an arc in GU , (pj, ql) must be too, since it
is also above the threshold. Similarly for q`′ , pj′−1 and pj′ , by Proposition 6.2.2, (q`′ , pj′)
is an arc in GU .

For the ε-indicator, we only need to concern with the elements covered by the ele-
ment corresponding to pj+1, for the subset corresponding to P . These elements must be
covered either by ql or q`−1, since the arc (q`−1, ql) exists in Gε,U . Therefore, for any row
corresponding to an element covered by pj+1, we either have a value of 1 in the column

68 APPENDIX A. PROOF OF CORRECTNESS FOR ε-IND. AND UNIF.

for ql or q`−1. If there is a value of 1 in the column for ql, we are done, since the respective
element is in the new path. Otherwise, the column pj must also have a value of 1, since it
is between the columns for q`−1 and pj+1 and the row has the “consecutive ones property”.
The same reasoning may be applied to q`′ , pj′ and pj′−1, yielding a similar conclusion.
Therefore, the new path we described corresponds to a subset which is acceptable, and
therefore the path is also valid for Gε.

In conclusion, this new path with |P | − 1 nodes is a valid path in both Gε and GU ,
and consequently valid in Gε,U . Therefore, we proved that there always is a path with
|P | − 1 nodes, proving the induction hypothesis.

Bibliography

[1] J. Bader. Hypervolume-Based Search for Multiobjective Optimization: Theory and
Methods. PhD thesis, ETH Zurich, Switzerland, 2010.

[2] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669, 2007.

[3] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1(2):133–162, 1986.

[4] K. Deb and A. Pratap. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[5] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimization:
formulation, discussion and generalization. In Proceedings of the fifth International
Conference on Genetic Algorithms, pages 416–423, 1993.

[6] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman,
1979.

[7] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. Journal of the Association for Computing Machinery, 222(4):469–475, 1975.

[8] L. Paquete, C. M. Fonseca, K. Klamroth, and M. Stiglmayr. Concise representation
of nondominated sets in discrete multicriteria optimization. In Proceedings of the
21st International Symposium on Mathematical Programming, ISMP 2012, page 95,
2012.

[9] A. Ponte, L. Paquete, and J. R. Figueira. On beam search for multicriteria combi-
natorial optimization problems. In N. Beldiceanu, N. Jussien, and E. Pinson, edi-
tors, CPAIOR, volume 7298 of Lecture Notes in Computer Science, pages 307–321.
Springer, 2012.

[10] S. Sayin. Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming. Mathematical Programming, 87(3):543–560,
2000.

[11] A. Schöbel. Set covering problems with consecutive ones property. Technical Report
2005-03, Georg-August Universität Göttingen, Institut für Numerische und Ange-
wandte Mathematik, 2005.

[12] D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. Informa-
tion Processing Letters, 28(6):281–286, Aug 1988.

[13] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In
X. Yao et al., editors, PPSN, volume 3242 of Lecture Notes in Computer Science,
pages 832–842. Springer, 2004.

69

70 BIBLIOGRAPHY

[14] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technology,
2001.

[15] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[16] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca.
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

	Introduction
	State of the Art
	Ranking-based Approaches
	Indicator-based Approaches
	Subset Selection

	Methodology
	Subset Selection using epsilon-indicator
	Threshold Algorithm
	Correctness
	Improvements on the Algorithm
	Complexity and Results
	Extension to 3D

	Representation Problem using epsilon-indicator
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Representation Problem using Coverage
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Representation Problem using Uniformity
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Representation Problem using epsilon-indicator and Coverage
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Representation Problem using epsilon-indicator and Uniformity
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Triobjective Representation Problem
	Threshold Algorithm
	Dynamic Programming
	Complexity and Results

	Conclusion
	Future Work

	Proof of Correctness for epsilon-indicator and Uniformity
	Threshold Algorithm

	Bibliography

