
Masters’ Degree in Informatics Engineering
Dissertation

CloudAid

Aggregation of Linked USDL Cloud Services using Multi-Criteria Methods

July 2, 2013

Jorge Araújo
jaraujo@student.dei.uc.pt

Advisors at DEI:

Jorge Cardoso
Catarina Ferreira da Silva
Paulo Melo

Abstract

In the past few years organizations have been turning to cloud as a way to reduce

costs. Typically by outsourcing their non-core competencies. This brought a huge

development to cloud services, leading to a crescendo amount of new providers,

increasing competition, therefore, also increasing the functionality and capabilities

of these services. This new paradigm poses a big challenge to organizations willing

to adopt such services. Which service to contract? Which are the best options in

the market for my problem? What services can be combined to achieve my goals?

These are some of the questions a decision maker has to answer when searching

for cloud solutions to his organization. Sometimes a single service is not capable

of providing what the organization needs, in these cases a composition of several

services is needed. This adds more complexity to the comparison and decision that

has to be made.

However, this is no longer just a search for services that fulfill the functional re-

quirements (supports JAVA, allows SSL, etc...) for a determined problem, and that

can work together. It has become a matter of distinguish which of those services

provides a better composed solution, having in mind organization goals. There-

fore, having a greater importance given to the non-functional requirements (price,

security, availability, etc...).

Describing a service and its requirements, namely the non-functional ones, is a

challenge. Publishing this description in a way it can be easily discovered is another

challenge. The already existing approaches like WSDL do not suffice since they do

not describe the service business aspects. Service description languages like USDL or

its semantic approach Linked USDL can supress this need for describing the business

aspects. The amount of service features relevant for a decision also makes it very

difficult to manually compare and choose the best composite solution. It has become

much more than the cheaper is the best solution. Some organizations start to pay

more attention to other details, security or portability for example, even if that has

a price cost. This is why we think a decision aid process can help the person in

charge by automatically comparing and presenting a recommendation on what are

the best solutions, based on pre-determined constraints.

What we propose in this thesis is to provide methodology, methods and tools

to help the decision maker during the process of search and choice of services for

aggregating a composite solution.

Keywords: Cloud Service Composition, Cloud Service Aggregation, Linked

USDL Service Description, Decision Aid, Multi-Criteria Decision Making

Acknowledgements

First, I thank the institutions that provided the means to achieve this result,

Instituto Pedro Nunes for the scholarship provided and Faculdade de Ciências e

Tecnologia da Universidade de Coimbra for all the infrastructure made available.

Furthermore, I would like to express my sincere gratitude to my advisors, Prof.

Catarina Ferreria da Silva, Prof. Jorge Cardoso and Prof. Paulo Melo for their

continuos support in this research thesis, for their patience to read all the artifacts,

for the precious insights and discussions we had throughout the project and for

the experience they provided in all scientific, professional and personal aspects of

my final academic year. Certainly without their guidance nothing would have been

accomplished.

I would also like to thank Dr. Carlos Pedrinaci and Dr. Torsten Leidig for their

experience and fruitful discussions about Linked USDL as it was a fundamental part

of the final thesis. But especially for the opportunity of working with them.

To all my fellow researchers and professors involved in the Genssiz: Center for

Service Systems Research I also leave a special thank for the constructive feedback

and ideas.

Also, a much special thank you to my family who always supported and encour-

aged me, specially my mother for her tireless patience. I also want to dedicate a

special thought to my late father who would have loved to read this work.

Last, but not the least, i would like to apologise to my girlfriend and all my

friends that endured my absence and heard so many ”working on thesis” related

excuses. I want to thank them for the heartfelt support in the tough moments and

the motivation to keep going.

Jorge Araújo

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.1.1 Services . 2

1.1.2 Cloud Services . 2

1.1.3 Service Composition . 4

1.1.4 Decision Aid . 6

1.2 Concepts Definitions . 7

1.3 Motivation . 10

1.4 Problem Description . 11

1.5 Objectives and Challenges . 14

1.5.1 Expressing the Composite Service Architecture 14

1.5.2 Uniform Remote Access to Service Description 15

1.5.3 Complex Decision Making . 16

1.6 Approach . 17

1.6.1 Composite Service Architecture Modeling 17

1.6.2 Linked-USDL Service Description 17

1.6.3 Multi-Criteria Decision Making 19

1.7 Scheduling . 21

1.8 Document Structure . 23

2 Related Work 24

2.1 Service Description . 24

2.1.1 Our Scope Regarding Service Description 24

2.1.2 Web Service Description Language 25

2.1.3 Unified Service Description Language 25

2.1.4 Semantic Approaches . 26

2.1.5 Linked Services . 28

2.1.6 Service Description Pricing Component 29

2.2 Service Composition . 29

2.2.1 Our Scope Regarding Service Composition 30

2.2.2 Automatic Composition . 30

2.2.3 Quality of Service and Model Based Composition 31

CONTENTS

2.2.4 Semantic Service Composition 32

2.2.5 Software as a Service Blueprinting Composition 32

2.3 Service Aggregation . 33

2.3.1 Our Scope Regarding Service Aggregation 33

2.3.2 Cloud Service Aggregation 34

2.4 Decision Aid . 34

2.4.1 Our Scope Regarding Decision Aid 35

2.4.2 Portfolio Analysis and Matching 35

2.4.3 Multi-Criteria Decision Making 36

2.4.4 MCDM Approaches . 37

3 Use Case 39

3.1 Problem Description . 39

3.2 System Usage . 40

3.3 Contracting a Composite Service Solution 41

4 Analysis and Specification 43

4.1 Requirements Analysis . 43

4.1.1 Requirements Elicitation . 43

4.1.2 Requirements Prioritization and Categorization 44

4.1.3 Top Level Objectives . 44

4.2 CloudAid Architecture . 45

4.2.1 Diagram Notation . 45

4.2.2 Overall Architecture . 46

4.2.3 Application Use Case . 57

4.2.4 Data Models . 59

4.2.5 Languages, Frameworks and Tools 65

4.3 Test Plan . 66

4.3.1 Testing Environment . 66

4.3.2 Functional Requirements . 67

4.3.3 Usability Requirements . 70

4.3.4 Reliability Requirements . 70

4.3.5 Performance Requirements 71

4.3.6 Supportability Requirements 71

4.3.7 Design, Implementation and Interface Requirements 71

4.3.8 Integration Tests . 72

5 Semantic Models 73

5.1 Cloud Taxonomy . 73

5.1.1 Objective . 73

5.1.2 Methodology . 74

5.1.3 Cloud Ontologies . 75

5.2 Pricing Model . 77

5.2.1 Motivation . 77

v

CONTENTS

5.2.2 Challenges . 78

5.2.3 Methodology . 78

5.2.4 Model . 79

5.2.5 Final Remarks . 84

6 CloudAid Prototype 85

6.1 Methodology . 85

6.2 User Data Capture . 86

6.3 Mappings Between Linked USDL Service Descriptions and the Appli-

cation Prototype . 90

6.4 Controller . 92

6.5 CSA Evaluator . 96

6.5.1 Generalization process . 96

6.6 Search Engine . 97

6.6.1 Service Set . 98

6.6.2 Jena Engine . 99

6.6.3 Resource Converter . 104

6.7 Decision Engine . 105

6.7.1 Normalization Process . 106

6.7.2 XMCDA Standard . 108

6.7.3 External Methods Communication 109

6.7.4 Decision Methods . 110

6.8 Aggregation Engine . 115

6.8.1 Admissible Solutions Algorithms 117

7 Test Results 121

7.1 Functional Tests . 121

7.2 Overall Reliability Tests . 127

7.3 Search Engine Tests . 127

7.4 Decision Methods . 131

7.5 Admissible Solutions Algorithm Tests 132

7.6 Integration Tests . 143

7.7 Final Test Conclusions . 143

8 Conclusions 145

8.1 Summary . 145

8.2 Findings . 146

8.3 Implications for Society . 147

8.4 Future Work . 148

Appendices 150

A Linked-USDL Service Modeling 151

A.1 Technologies Used . 151

vi

CONTENTS

A.2 Why BIME? . 151

A.3 Methodology . 152

A.4 Linked-USDL Service Modeling . 152

A.4.1 Prefixes . 152

A.4.2 Service Instance . 153

A.4.3 Legal . 154

A.4.4 SLA . 155

A.4.5 Pricing . 155

A.5 Service Vocabulary . 161

A.5.1 Product Editions . 162

A.5.2 General Features . 163

A.5.3 Key Features . 164

A.5.4 Security Features . 165

A.5.5 Customer Support . 165

A.5.6 Connector . 166

A.5.7 Dashboard . 166

A.5.8 Extra Considerations . 167

B Use Case (Full) 168

B.1 Problem Description . 168

B.2 System Usage . 169

B.3 Contracting a Composite Service Solution 169

B.4 Requirements . 171

B.4.1 Functional Requirements . 171

B.4.2 Non-Functional Requirements 172

B.5 System Model . 173

B.5.1 Sensor Module . 173

B.5.2 Building Gateway . 173

B.5.3 Presentation Module . 174

C Requirements List 176

C.1 Functional Requirements . 176

C.2 Non-Functional Requirements . 182

C.2.1 Usability Requirements . 182

C.2.2 Reliability Requirements . 183

C.2.3 Performance Requirements 184

C.2.4 Supportability Requirements 185

C.2.5 Design Requirements . 186

C.2.6 Implementation Requirements 187

C.2.7 Interface Requirements . 187

D Model-View-Controller Overview 189

E Simulation Scenarios 191

vii

CONTENTS

F Cloud Taxonomy 196

F.1 Top Level Concepts . 196

F.2 Property . 196

F.2.1 FunctionalProperty . 197

F.2.2 Interface . 202

F.2.3 NonFunctionalProperty . 203

F.2.4 SupportProperties . 204

G Application Example 205

Bibliography 220

List of Tables i

List of Figures ii

List of Acronyms v

List of Code Listings vii

List of Algorithms viii

viii

ix

1
Introduction

This chapter gives an introduction to the topics addressed in this thesis and is

organized in five sections. The first, Section 1.1, gives the reader the background

to the main topics discussed throughout the project, services, cloud services, service

composition and decision aid. Since some of the concepts discussed in this thesis are

of common use there is the need to assign a description regarding the scope of this

thesis. These descriptions are presented in the second section, Section 1.2. The third,

Section 1.3, introduces the motivation for the work done. In the fourth, Section 1.4,

we have the description of the problem at hand where, besides the initial description,

a small example to better understand the reality of the problem is presented. The

fifth, Section 1.5, presents the objectives to achieve as well as the major challenges

associated with the previous described problem. These challenges are linked to the

objectives and are the main concern of our work. The sixth, Section 1.6, explains the

chosen approach to achieve the above described goals and the reasons for choosing

so. The seventh, Section 1.7, gives an overview of the project planning and explains

the changes made during its execution. Finally, Section 1.8 explains the structure

of this document.

1.1 Background

In order to contextualize the reader this section introduces the main topics discussed

in this thesis.

In a community highly oriented to services, being capable of understanding what

are the capabilities of the available services and later choose the best to fit our goals

is of crucial importance. Not only to enrich our solutions, but also to allow more

focus in the core competences by outsourcing non-core services. Therefore, the work

presented in this thesis tries to solve some of the current problems regarding this

matter and explained in this section. How to describe a service? Which service to

choose? Which services can be aggregated to achieve my needs? These will be some

of the questions answered in this thesis.

Section 1.1.1 explains what a service is and why this concept is so important

for society and to our work in particular. Section 1.1.2 focuses on a specific kind

of services, cloud services, and how they are introducing a new paradigm which

1

CHAPTER 1. INTRODUCTION

sees software and hardware as utilities. Section 1.1.3 gets us closer to the problem

addressed by discussing service composition, which in this thesis scope, is the ca-

pability of aggregating several different services in a single solution. The goal is to

create a solution to a particular problem not resolved by a single service. Finally,

Section 1.1.4 addresses the decision aid topic.

1.1.1 Services

Since the beginning of human communities that services are present in everyday

activities, even when goods were the mean for trade instead of money. In fact,

everyone can give a simple example of what can be a service: repairing a car, gar-

dening, cleaning a house, teaching, consulting; these are all services, tasks done by

someone contracted by someone else. In [56] the author divides services in two cat-

egories, services affecting goods and services affecting persons and defines a service

as ”...a change in the condition of a person, or of a good belonging to some economic

unit, which is brought about as the result of the activity of some other economic

unit, with the prior agreement of the former person or economic unit...one economic

unit performs some activity for the benefit of another...”. Many other authors define

service in similar ways (cf. [121],[122], [23]).

With the explosion of web technologies the service concept evolved into the tech-

nological spectrum to the so called web services [18]. The consequent demand for

web services has radically transformed the way we look nowadays at software. The

rise of architectures like SOA (Service Oriented Architecture) [43] or SOC (Service

Oriented Computing) [13] caused services to be in the centre of a technological rev-

olution. From the technological perspective, W3C defines in its glossary 1 a service

”... is an abstract resource that represents a capability of performing tasks that

form a coherent functionality from the point of view of providers entities and re-

quester entities. To be used, a service must be realized by a concrete provider agent”.

The term Internet of Services (IoS) [115] refers to the infrastructure that enables

the provision of universal services to consumers. The IoS describes an infrastructure

that uses the Internet as a means for offering and selling services. This kind of

provisioned services, through the internet, will be the focus of our work.

Note that the scope of this thesis does not only restrict itself to web services,

since web services are only one dimension of the overall service concept.

The importance of the service concept in this thesis is of the upmost importance.

A service will be the single element in our solution. This thesis will discuss how to

describe and compare services, particularly cloud services, in order to attain the

company needs for building its desired composed solution. Therefore understanding

what is a service and what are its properties is very important.

1.1.2 Cloud Services

In Section 1.1.1 the concept of service and web service were introduced. However

this is not the final step in delivering services. In the past few years a new way of

1http://www.w3.org/TR/ws-gloss/#defs

2

http://www.w3.org/TR/ws-gloss/#defs

1.1. BACKGROUND

looking into the web and services emerged: cloud computing.

Some argued that Cloud is not a big change, Oracle CEO, Larry Ellison, referred

to the cloud as ”...we’ve redefined cloud computing to include everything that we

already do.... I don’t understand what we would do differently in the light of cloud

computing other than change the wording of some of our ads”. However, this is no

longer the case, the consciousness change has been deeper, cloud advertises com-

putation as an utility, like electricity or gas, and the cost reduction by using cloud

services is greatly acknowledged, as it will be explained in Section 1.3.

Cloud has been the most recent strategy of all the major companies like Ama-

zon, Oracle and Microsoft. Even smaller players are moving to the cloud. But

what exactly is cloud computing? The National Institute of Standard and Technol-

ogy (NIST) defines cloud computing as being a ”...model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction” [84].

It is now possible to think in computing, storage or software as an utility that is

provided on demand to anyone who wishes to use it. The most visible result is cost

reduction since operational expenses with servers, software licenses or specialized

personnel for maintenance are now migrated to the provider entity side. But cloud

goes even further. By allowing to re-scale resources on demand, the cost reduction

can be huge, once resources are no longer needed they can be released. An interesting

description of cloud computing can be found in [10].

CaaS

SaaS

PaaS

IaaS

Rely O
n

Rely O
n

Rely O
n

Rely O
n

Rely O
n

Figure 1.1: XaaS Service Models Dependencies

With this information in mind, cloud service can be defined as being a service

that provides computing resources and fulfills the five fundamental characteristics

introduced by NIST [84]: on-demand self-service, broad network access, resource

pooling, rapid elasticity and measured service. In fact, from the cloud computing

point of view, everything is considered a service, because every resource or task is

provided by the terms explained in Section 1.1.1. This model known as XaaS (X as

a Service, X meaning any kind of concept). In Figure 1.1 we define the dependencies

3

CHAPTER 1. INTRODUCTION

between cloud service models. All these models are already vastly discussed in the

literature [84], [44], [74].

Since the service concept in general is too broad, we decided to focus on this

particular kind of services: cloud services. The reason was the emerging growth that

cloud services have been experiencing lately, as explained in Section 1.3. Therefore,

from now on, when referring to services, unless otherwise explicitly specified, we

mean cloud services from the XaaS model in Figure 1.1.

1.1.3 Service Composition

With today’s high degree of specialization, companies can no longer be responsible

for the entire supply chain. This is one reason why many companies are turning

to outsourcing or sub-contracting. After the appearance of web services and, later,

cloud services, companies can easily use other companies services to enrich their own

offers and focus on their core competences. Standards like the Web Service Descrip-

tion Language (WSDL) [26] and transport protocols like the Simple Object Access

Protocol (SOAP) [19] have greatly increased the use of web services by facilitating

both their description and consumption.

The service composition concept is strongly connected to SOA and SOC ap-

proaches. As stated in [113] implementing a well-shaped SOA has one main benefit,

”...the ability to compose new functionality out of existing services into so-called

composite services, thus significantly increasing reuseability of existing services”. In

[81] the authors define that ”the underlying principle in service composition is for

a service provider to implement a new service reusing existing services as building

blocks, and to add value to the sum of the parts”. Lets then succinctly define service

composition as an aggregation of services in order to obtain an added value resource

or product.

During the last few years service composition topic as been subject for several

studies and surveys, (e.g. [106], [86], [60], [123]), which explain many different

approaches to this problem (e.g static and dynamic composition, automatic and

manual, etc...). It is also considered by some authors that service composition is

analogous to workflow management [41], [24]. A common concept to all these works

however is: web service. Almost all the previous work has been around web service

composition, and that is why most authors define it as analogous to a workflow. For

example, the execution of one web service will influence the outcome of a second,

a temporal constraint exists, a flow must be created to compose this web services.

However, opposing to the above literature, the service composition concept in the

purpose of our work is linked to different ideas:

• Considering services as single composable elements with their own functional-

ity. This means not only from the technical point of view but also from the

business point of view (service price, or security for example).

• Each composable element being a XaaS.

• In opposition to workflow techniques which specify a flow of execution, our

service composition is based on constraints from these composable elements

4

1.1. BACKGROUND

(price cap or minimum of data storage capability for example), and it is not en-

titled to specify temporal constraints, such as for example, component A must

execute before component B, or component A needs components B outputs to

work.

Thus our final solution will be the aggregation of several composable elements

(cloud services), resulting in a composite service. For that reason note that from

now on, unless explicitly specified, composite service refers to this final composition

solution which results form the aggregation of several composable elements.

Presentation of
Single Service

Translation of the
Languages

Generation of Composition
Process Model

Evaluation of Composite
Services

Execution of
Composite Service

Figure 1.2: Service Composition Life-Cycle: The three stages highlighted are the

focus of this thesis. (Adapted from [106]).

In [106] the authors define a service composition life-cycle in five stages: Presen-

tation of Single Service, Translation of the Languages, Generation of Composition

Process Model, Evaluation of Composite Services and Execution of Composite Ser-

vice. Once again this life-cycle is intended for web services. However in our work

we are attending to cloud services. This brings new requirements to the way we

address the life-cycle. Take the example of service descriptions. Cloud services

cannot be described solely by its technical aspects like a web service with WSDL,

since they are usually not invoked in the same way. A web service is typically used

by developers for integration purposes, under the SOA principles, usually within a

controlled environment (within an organization or between partner organizations).

Cloud services on the other hand, provide a wider service level, potentially usable

by the entire internet community. Thus, the way they are described cannot be the

same. In [48], the authors propose a solution to this particular problem. They try

to extend existing open standards, like the DMTF’s (Distributed Management Task

Force) Open Virtualization Format standard, that addresses the problem of pack-

aging and distributing virtual appliances (e.g. complete software stacks deployed in

5

CHAPTER 1. INTRODUCTION

one or more virtual machines).

Taking into account these five stages of service composition, adapted from [106]

to relate to cloud services, in our work we focus on three: the first stage, Presentation

of Single Services, where the services are described. For this matter, the service

business aspects will have a key role in its description, rather than only focusing in

service technical aspects from WSDL [26]. This makes all the composition process

much more complex than the processes addressed in the literature [106] [41]; the

third stage, where both the requirements and the service attributes are described

in order to compile a viable composite service; and the fourth stage, Evaluation of

Composite Service, where the composition is evaluated and a decision has to be made

on which services to choose for the final solution. Figure 1.2 shows the composition

life-cycle and the three stages addressed by this thesis.

More recently Composition as a Service (CaaS) has been introduced in [16] as

”...a service that mediates communication between multiple clients. It provides

composition recommendations to stakeholders and collects feedback from them”. We

will define CaaS as being a service recommendation system or application, provided

by an agent (provider entity), to clients (requester entity), typically through an

internet connection. As shown in Figure 1.1 CaaS is the top model that references

the models bellow, optimistically a CaaS can reference any kind of service based on

the requester entity preferences, however in a simplest way it can also be viewed as

a SaaS, as it can be distributed as a software, based on SaaS assumptions.

1.1.4 Decision Aid

As any other business and management topic, services and service composition in-

volve risk assessment and decision making. Some decisions have to be made and

usually by a person (manager). Typically the decision is whether or not to use a

specific service from other entity, according to the assumption on which is the best

choice to the problem in hand. It is easy to identify a big decision problem here.

Distinguish the best from all the available options in the market is sometimes very

complicated if not impossible by a single person. The amount of constraints and

characteristics of today’s services is much more than simply the price. A manager

needs to have this information in mind to make an adequate decision. This is the

focus of this. Help this decision process by properly describing services, allowing

them to be computable for comparison, in order to achieve a recommendation on

which are the best services to aggregate and fulfill the identified requirements or

enterprise goals.

While we can simply make a search in the web for a service which can satisfy

our company needs, this is far from an optimal solution. Even if some satisfactory

results are indeed found there is still the need to make an assessment on which is the

best option. Thus, two problems while choosing a suitable service can be identified:

finding all the possible candidates based on our needs and choosing which of the

candidates is the most suitable also based on those needs or even enterprises goals.

With all this in mind it is not difficult to think on the benefits that a decision

aid solution could bring to the manager who has to decide. Several different ap-

6

1.2. CONCEPTS DEFINITIONS

proaches can be used for this particular problem: Portfolio Analysis [118] that in

our case could be used through service grouping and subsequent application of an

evaluation function; the Matching [88] problem defined in economics and applied in

informatics [105], which in our case could be used as a pairing mechanism, allocating

services to required needs or tasks; Multi-Criteria Decision Making (MCDM) [46]

which has a vast number of different methods for decision aiding and is especially

adequate for decisions involving several characteristics or having user preferences in

consideration; or simply Mono-Criteria. However, with Mono-Criteria, it would be

very difficult to capture the decision maker preferences, or a problem where many

different incomparable service characteristics exist, which is often the case in service

elicitation.

From all these options MCDM seems the most suitable solution. It allows us to

define service characteristics as key values for comparison, either if those character-

istics are incomparable or perfectly defined. It also allows an easier mapping of the

problem at hand as we will explain in Section 2.4. However, all the alternatives are

considered and the problem will be further discussed in Section 1.6.3.

1.2 Concepts Definitions

Many of the concepts used in this thesis are of common use and may have different

interpretation depending of the reader’s background. Thus, the current section

outlines key concepts and describes them accordingly to the thesis use. When needed

some examples are also presented to ease their comprehension.

CSA

Composite Service Architecture (CSA) is the conceptual system the user is trying

to build. This system is composed of different composable elements also called

Service Templates, constraints or requirements and preferences. Basically the CSA

is the result of the requirements analysis previously performed by the user about

the desired cloud service aggregation. We define Composite Service Architecture as

the set of Service Templates, Requirements and Criteria used to define the desired

Composite Cloud Service to be built over an aggregation process.

Service Template

In this work we adapt the concept of Service Template introduced in [22]:

”...a Service Template represents a structure or blueprint that the

designer uses to indicate the characteristics of the Web service that is

needed.”

Although with a slight but important modification, in this thesis a Service Template

relates to a blueprint of a cloud service instead of a Web Service. Thus the Service

Template represents the conceptual idea of a cloud service in the CSA with all its

requirements and criteria. For instance: A MySQL database with 1TB storage

capacity is a Service Template example for defining a group of services that have

MySQL and at least 1TB of storage capacity.

7

CHAPTER 1. INTRODUCTION

Requirement

As defined in [117] a software requirement is:

1. A condition or capability needed by a user to solve a problem or achieve an

objective.

2. A condition or capability that should be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally

imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

In this thesis the requirements relate to the CSA, either to the system as a whole

or to a specific Service Template and are the means for a user to specify a resource

or capability need or a certain constraint regarding a certain resource or capability.

Exclusive Requirement

An exclusive requirement is a special type of requirement. These are used to

limit the search spectrum. In other words an exclusive requirement eliminates all

the services that do not fulfill the requirement. For instance: I want services with

a minimum of 500Gb of Storage Capacity. This means that all the services that

provide less that 500Gb of Storage Capacity will be discarded.

Global Requirement

A global requirement is a normal requirement, exclusive or not, with a global

scope. This global scope means that instead of being related to a specific Service

Template it is related to the entire system. All the Service Templates inherit this

requirement. For instance: I want all my services to be hosted in Unix machines.

All the Service Templates will have this requirement.

Alternative

The authors in [127] define alternative as ”...different choices of action available

to the decision maker.” . In our specific case, an alternative is a service offering that

fulfills all the requirements specified for the specific Service Template to which the

alternative relates to. By other words, an alternative is a suitable candidate to fit

the Service Template.

Criterion

A criterion is, as the authors in [127] state, a dimension from which the alternatives

can be viewed. This means that a criterion is specific alternative parameter or

characteristics that will be evaluated in the decision. i.e: When contracting a Cloud

Storage Service a customer can define storage capacity, platform and price as criteria

for his decision. This means that he will evaluate the system based on these three

service features or resources.

8

1.2. CONCEPTS DEFINITIONS

Global Criterion

Global Criterion follows the same principle of global requirement. When a global

criterion is defined all the Service Templates inherited this criterion. i.e: Price will

be a global criterion in my system. This means that all the Service Templates will

have a price criterion.

Attribute

Similar to Criterion, the Attribute concept is used in this thesis as the distin-

guishing point from a conceptual criterion (Price, Storage, CPU, Security,...) and

the actual value of an alternative. An attribute is considered part of an alternative

rather than the conceptual decision criteria. Its value is then considered the At-

tribute value. i.e: A customer defines Price as being a criterion. This means that

all the alternatives will be evaluated by its price attribute. A particular alternative

which costs AC100, will have a price attribute value of AC100.

Decision Weight

Some MCDM methods require that the criteria be assigned importances or weights.

By other words they are the importance assigned to each criterion for the final de-

cision calculation. As the Authors in [127] state, this decision weights are usually

normalized to add up to one. i.e: when contracting a SaaS a customer defines its

price as being the most important criterion, lets say with a importance value of 0.5.

Then, he also defines the availability and the number of allowed users as decision

criteria. However, both have a lower importance than the price, 0.3 and 0.2. These

values are the decision weights of each criterion to evaluate.

Decision Method

A decision method is the process used to achieve a decision. In this thesis however,

when we refer to decision methods we are actually referring to the the group of

MCDM methods.

Service Offering

As stated in the Linked USDL web page [100], a Service Offering is ”...an offering

made by a gr:BusinessEntity of one or more services to the public or specific cus-

tomers. It usually defines a price and terms and conditions including service level

agreements.”. It can be considered an instance of a service or a bundle of services.

This definition is particular important when looking into Cloud Services, since it

often happens that the final offering is composed of several service instances. Each

instance has its resources or features chosen by the user before its contracting, but it

can also happen that these service parameters (Storage, Processing capacity, Data

Transferred,...) are define during the service usage (pay-per-use model).

Aggregated Solution

An aggregated solution is a specific combination of alternatives that fit the CSA

specification for its Service Templates.

9

CHAPTER 1. INTRODUCTION

Typically a Service Template can have multiple alternatives, this means that sev-

eral combinations of alternatives can exist for the same CSA specification. However,

in order for a set of alternatives to be considered an aggregated solution all the Ser-

vice Template must have a fitting alternative. The term ”aggregated” comes from

the principle of aggregating one alternative (which by themselves are already solu-

tions for a specific Service Template) for each Service Template. i.e: In our CSA we

have two Service Templates defined, ST1 and ST2, any combination of alternatives

of the type: [ST1ALTi , ST2ALTi] would be an aggregated solution.

Note that an Aggregated solution is a potential candidate to be the final com-

posite service to reccomend to the user.

Admissible Solution

While an aggregated solution ensures that all the Service Templates have a fit-

ting alternative, the admissible solution ensures that any potential restrictions of

particular alternatives are not violated. It also ensures that global prices are not

violated when the different alternatives are aggregated. i.e: if in an aggregated

solution with two Service Templates, ST1 and ST2 each of them with one alterna-

tive ST1ALT and ST2ALT , it may happen that ST1ALT is not compatible with

ST2ALT because ST1ALT only interacts with Oracle databases and ST2ALT is a

MySQL database. In this case we have an aggregated solution but not an admissible

solution. In another example, we have the global price for the aggregated solution set

to a maximum of AC100, however, ST1ALT costs AC75 and ST2ALT costs AC50, using

this two alternatives would violate the global price, hence, not being an admissible

solution.

Alternative’s Performance

The alternative’s performance is the value calculated by the decision method and

assigned to that specific alternative. This value is calculated based on the alternative

attributes and the Service Template’s criteria to which the alternative relates to.

1.3 Motivation

Companies have always been eager to reduce costs, so everything they can find

to achieve this goal is worth a change. Cloud is precisely this change. Besides

reducing costs and allowing the outsourcing of non-core competences as stated in

Section 1.1.2, it can also improve the companies ”green image” by reducing energy

footprint.

According to a study made by Cisco in 2012 [27], cloud is growing and is here

to stay. The study states that 90% of IT decision makers say that cloud is in their

agenda, and 31% consider it as critical for their business, against 7% in 2011. Also

the former fifth reason for adopting cloud in 2011, cost reduction, is in 2012, the

number one reason elected by decision makers. For those still sceptic about cloud,

70% of the companies say that cloud has met or surpassed their expectations.

Even the European Union is turning to cloud as a way to reduce costs [31], [57]

and ”save” the environment at the same time. According to a survey conducted by

10

1.4. PROBLEM DESCRIPTION

European Commission in 2011 [31], 80% of organizations reduce costs by 10-20%.

Other benefits include enhanced mobile working (46%), productivity (41%), stan-

dardization (35%), as well as new business opportunities (33%) and markets (32%).

As a final remark the study also states that cloud computing has an high growth

expectation. To the environmental impact the study could not be more clear: ”The

unprecedented increase of data flow and processing of information over the Inter-

net has a significant environmental impact through energy and water consumption,

and greenhouse gas emissions. Cloud computing can help mitigate these problems

thanks to more efficient use of hardware as well as, more specifically, by building

data centers to use low-energy servers and green energy.”.

With this data we can see that cloud is without any doubt a big opportunity,

and as more and more companies turn to it, more providers and different services

will appear.

Moreover, the vertical component integration is no longer the same as it was in

the industrial revolution and outsourcing company’s offerings non-core components

is becoming a key factor for achieving specialization and differentiation. Take the

example of producing a car. Nowadays a factory only assembles the components

that arrive from different providers, one could be located in Asia and produces

tyres, another one in Europe produces the electronic components, and so on. Even

this providers can again assemble different components, as for rubber, plastic, etc.

This means an enormous effort to identify and find the right provider for the right

component. Of course this view also applies to services in general and cloud services

in particular.

Therefore, it is important for decision makers to have tools capable of aiding

them to choose which is the best options for their company needs.

Our motivation is to help providing these tools and methods as a mean to out-

source non-core competences and improve business performance. Our hope is to

allow companies to reduce their effort in adopting cloud as a ”partner” in their

business thus benefiting from its advantages.

1.4 Problem Description

Today a company that wishes to adopt cloud services, for whatever reason they see

fit, still has a huge task at hand. Figure 1.3 shows the six steps a manager, or the

person responsible, has to undertake in order to implement a composite solution

in his company. Moreover, all this process, from identifying the company needs

which can be fulfilled by cloud services, to the final integration of all contracted

services into the company environment is typically manual, and could take a long

time and still, not being able to find the best solutions. Figure 1.3 is a domain

specific translation of the rational decision making model discussed in [110].

As stated in Section 1.3, we propose to introduce methods and tools to facilitate

some of the manager decisions. Although not all the steps can be automated, most

can surely be facilitated even if in the end the final decision is taken by the person

in charge.

11

CHAPTER 1. INTRODUCTION

Identifying
Company Needs

Define service
Components/Architecture

Search for Cloud Service
Candidates

Choose Between All the
Candidates for Each Component

Contract the
Chosen Services

Final Composite Service Solution

Integrate All the
Services

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 1.3: Steps for defining a composite service solution. The steps our work

addresses are highlighted.

In Figure 1.3 three steps are highlighted, these are the steps addressed in this

thesis: Step 2), Define service Components/Architecture; Step 3), Search for Cloud

Service Candidates and Step 4), Choose Between All the Candidates for Each Com-

ponent.

The other steps are not the scope of this thesis, since they do not enter in a

service composition as we define it in Section 1.1.3.

Step 1, Identifying Company Needs, is by definition a manual process, although it

can be aided by some tools to calculate metrics, cost or efficiency for example. Step

5, Contract the Chosen Services, in cloud services, it is mostly done by registering

and configuring the service data in a web site or directly contacting the provider for

further information or contract signing. Finally, step 6, Integrate All the Services, is

a task usually done by a development team, sub-contracted or not. This integration

has to do with the specific configuration to the target environment in the company,

and so it is not covered in this thesis objectives as well.

From those covered in this thesis, in step 2, Define service Components/Architec-

ture, the company defines which are the components (also called Service Templates,

later in the process mapped to concrete cloud services) it wishes to implement and

compose as well as its restrictions or special needs. This step is the formalization of

the requirements elicitation phase started in step 1, and will produce an architecture

of the overall system the enterprise wishes to build (CSA). This architecture is more

similar to a requirements list for each composable element (Service Template), than

an UML (Unified Modeling Language) component, class or deployment diagram.

12

1.4. PROBLEM DESCRIPTION

For that reason from now on, unless explicitly specified, we will refer to this elici-

tation of requirements and elements as the CSA (Composite Service Architecture)

definition.

In step 3, Search for Cloud Service Candidates, takes place a manual search for

cloud services capable of fulfilling the requirements stated in step 2. It would be

preferable to automate this search. Sometimes it is very difficult for a single person,

or even a team, to find the right services or even to understand what the services

are capable of doing. For this reason, a clear way of describing services and what

they offer is necessary. Also a mechanism capable of searching these services based

on list of requirements would also be advisable.

Finally, in step 4, Choose Between All the Candidates for Each Component,

a comparison has to be made between all the found candidates (Alternatives) for

each CSA Service Template. This comparison is quite simple if we have one or

two characteristics to evaluate, however, as explained in Section 1.1.4, these kind

of comparisons usually have several attributes which turn the decision into a more

complex problem that must be facilitated by some automated decision aid solution.

Composite Service Contracting Example

In order to better understand the problem above described, we introduce a small

example, with Figure 1.3 in mind and based on a simpler version of the use case

defined in Chapter 3.

In our example a company wishes to start monitoring their headquarters energy

consumption in order to reduce costs and follow the European Union energy effi-

ciency standards [30]. Since the current ”of the shelf” solutions are too expensive,

the manager decides to create their own system with the purpose of cost reduction.

With this in mind, and as explained in Section 1.3, the manager decides to use cloud

services. The system to be implemented has several components each of them can

be a separate cloud service (from the XaaS model), that all together will create the

final composite service, the company energy monitoring system.

The manager identified some components and requirements that the system must

fulfill. However, he does not know if these components can be allocated in the

cloud and so he starts to search options for each one, always with the identified

requirements in mind. He came to the conclusion that there are several options

in the market, unfortunately, these services have too many variables for him alone

to consider in order to find a viable solution for the final composite service. He is

afraid to choose the wrong options leading to a bad business decision. With this in

mind, a team is assembled with the sole purpose of analysing the market options

and compile a final solution.

This team has the difficult job to find single services or other composite services

in the web able to fulfill the requirements defined by the company. Along with this

search task it is also required to do an analysis of pros and cons of each alternative

for later comparison. After a few days, the services have all been found and can

now be compared to achieve a final composite solution. A few more weeks later,

after each of the composite solution elements has been decided, the contracting of

13

CHAPTER 1. INTRODUCTION

each service can begin for later integration and configuration within the company

environment.

This is the normal process of today’s cloud composition, what we propose are

methods and tools to facilitate this process, hence helping the cloud adoption by

smaller companies or startups as well as helping to reduce bad decision from the

business point of view.

1.5 Objectives and Challenges

In Section 1.3 we presented the motivation and in Section 1.4 the problem at hand,

with a small practical example. In this section we will discuss the top objectives for

this thesis.

As mentioned before, our work will focus on three of the six steps for defining a

composite service, presented in Section 1.4. In fact the objectives and challenges are

a direct mapping of these steps. Bellow in Sections 1.5.1, 1.5.2 and 1.5.3 we discuss

the objectives and challenges of the three steps: Define service Components/Archi-

tecture, Search for Cloud Service Candidates and Choose Between all the Candidates

for Each Component.

1.5.1 Expressing the Composite Service Architecture

Objective 1: Capture all the Composite Service Architecture elements:

Service Templates, Requirements, and Criteria. These three elements are

fundamental to achieve a CSA definition capable of coping with both the search

and decision processes. Service Templates represent the different services necessary

for the composite solution. Requirements state the system constraints and needs.

Criteria specify alternative parameters of characteristics and are a way to evaluate

alternatives.

Challenge A: From Figure 1.3 we see that the second step, after identifying

the company needs, is to define the required components to achieve the desired

composite service, this process as previously stated is called CSA definition. This

CSA is the combination of two or more Service Templates, each of them being a

cloud service blueprint (see Section 1.2). As any architecture there are constraints

and requirements that have to be fulfilled. These specifications should be provided

by the company in order to advance to the next step (finding candidates for each

component).

The challenge is therefore to create a data structure capable of storing all this

information in both organized and machine readable way. The way this data is asked

to the user must also be understood by him for sake of correct data insertion.

To describe the CSA, we should consider not only functional but also non-

functional requirements. In fact, in [128] the authors say ”non-functional require-

ments play a crucial part in decision making process for service composition. Con-

sideration should be given on how to represent these non-functional requirements...”.

14

1.5. OBJECTIVES AND CHALLENGES

1.5.2 Uniform Remote Access to Service Description

Objective 2: Achieve a uniform publishing and description of the service,

capable of enhancing service discovery and comparability. Using semantic

web and linked-data principles (see [15] for linked-data reference), it is intended to

achieve a richer service description, by including non-functional aspects, as well as

making all the underlying information available through remote access (Web), for

both humans and software applications. These descriptions must allow the easy

extraction of all the service properties (functional and non-functional) facilitating

their property based discovery and comparison.

Objective 3: Allow a pricing description that can cope with cloud ser-

vices pricing plans. This third objective has to do with the cloud service pricing

challenge. The service description language, should have or be added a proper price

model description, that match the new models introduced by cloud services. Again

semantic web approaches can be of great value to address this objective, as it will

be explained in Section 1.6.2.

Challenge B: In step 3 of Figure 1.3 a search has to be perform, however in

order to search something we need to not only find information but also understand

what is being searched. Searching cloud services is no different, we need to have

a description of the service in order to know if that particular service fulfills the

requirements or not. In our particular case, if the service is an alternative to be

compiled in the final composite solution. A description language capable to describe

several different service aspects (technical and business) and at the same time be

understandable to both human and machine is a big challenge and a crucial point

in this thesis.

Languages like WSDL focus on technical interfaces such as operations and data

types, and do not give enough information about services, specially non-functional

requirements. For a system to be able to aid a decision maker to choose between

two services it must look into all service aspects, and for that, legal, pricing models,

marketing strategies, and service quality levels need to be included in the descrip-

tions.

Accessibility is another challenge. If a recommendation system wants to be

reliable it needs both quality and reliable information. The cloud service industry

is a vast territory and many providers exist, however it is not easy to access service

descriptions in order to know exactly what they offer, at least not in an automatic

way. By using languages built on top of linked-data principles, which can provide

easy ways to manage data and publishing it by terms of RDF (Resource Description

Framework), one can improve the service discovery, allowing an automated system

to retrieve a much larger set of services in a machine understandable language.

As stated in Section 1.1.2, an important advantage of cloud, is the cost benefit,

generally guaranteed through a pay-per-use model. This means that most cloud

services have a much more complex price plan than, for example, a simple monthly

subscription. Almost every factor influences the service final price, and these values

15

CHAPTER 1. INTRODUCTION

easily fluctuate with time. This requires a much more sophisticated price model

description.

1.5.3 Complex Decision Making

Objective 4: Provide a mechanism able to compare and recommend the

best services based on a list of Criteria. The aim is to provide a decision aid

based on the input given in step 2, and extracted from the CSA. The final decision

would always be taken by the manager. However, by providing a recommendation

we would be improving the chance of success of the final decision. A decision could

be made solely by excluding the services which do not fulfill the requirements, how-

ever this could not be the best solution specially when we look to the non-functional

requirements, the user preferences, or other kinds of input that might prove prepon-

derant. This information should be taken into account.

Challenge C: In Section 1.1.4 it was explained why a decision aid system would

be a great advantage to companies willing to adopt cloud services. The amount and

variety of offers is growing at a fast pace, and so are the service functionality, but

not only. The clients demands are getting higher, today the differentiation is of the

up most importance and companies that want to succeed have to carefully decide

what they want and what they need from the cloud. All these aspects are difficult

to achieve by manually searching cloud services in the hope of finding what we are

looking for. Even if we could have all the services in one marketplace we would still

need to search them all and decide which to use, the big challenge is how to do it.

Unlike the previous two challenges, the decision challenge is transversal to steps 2,

3 and 4 from Figure 1.3. It is also related to the two previously described objectives.

This is because the decision should be based on the CSA defined in step 2 and the

challenge in Section 1.5.1, and the service description challenges in Section 1.5.2.

The former has all the requirements and criteria while the latter has all the service

relevant information to be analysed an evaluated.

In step 2, while defining the CSA, one has to have in mind that the requirements

being defined have to be later, in step 3, compared with the service descriptions in

order to understand which of the services fulfill those requirements. This could be a

trivial comparison, for example, if a service supports SSL2 communication (binary

comparison (y/n)), or it could be a more complex one, for example, the service price,

that involves a variety of other factors (see Section 1.5.2). For this to happen, the

service description should be understandable by a machine.

Finally in step 4, the recommendation is made based on the collected information

of the previous two steps. This step must be performed by some established decision

method. The reason for using decision methods is simple, while a company gives

primacy to low cost solutions, another would not mind to pay for a costly solution

if high security is provided. Thus, not all the requirements defined in the CSA have

the same importance and they will surely influence the decision. Therefore, the

2http://tools.ietf.org/html/rfc6101

16

http://tools.ietf.org/html/rfc6101

1.6. APPROACH

Criteria is an important tool to capture these user preferences and to reach a better

solution based on the user needs.

1.6 Approach

This section will be dedicated to the approach taken to achieve the objectives pro-

posed in Section 1.5.

The service aggregation topic we are addressing, as already explained, is different

from what has been done in the past. Our approach to this particular service com-

position is based on cloud services (Service Templates), requirements and decision

criteria, and not on web services and workflows.

The process is divided in three major parts: first, the definition of the CSA

with all its elements; second, the property-based service discovery, based is service

description with not only technical aspects addressed by WSDL, but also in business

aspects addressed by USDL (Unified Service Description Language) [20]; finally, the

decision aid process for comparing and recommending the best alternatives for each

Service Template in the CSA, based on MCDM methods. Needless to say that all

these three parts are linked together through the data they use and produce. Note

also that these three parts are mapped directly from the objectives and challenges

in Section 1.5.

These three parts are described in Sections 1.6.1, 1.6.2 and 1.6.3.

1.6.1 Composite Service Architecture Modeling

As explained in Section 1.5.1 the definition of the CSA is an important task. All

the relevant information about the system to be built is contained within the CSA,

thus all the process herein described depends on how this data is structured. Our

approach does not propose to be state of the art, it rather aims to fulfill the objective

stated in Section 1.5.1.

Many different approaches could have been used, patterns [128] or blueprints

[93] [92] are only two options. Many others exist based on representation models

like UML (Unified Modeling Language) or FMC (Fundamental Modeling Language)

[61]. In our work, we will not restrict ourselves to any of these approaches as we will

use concepts and methodologies from more than one.

The final approach although not graphical, thus not using most of the represen-

tation models theories, is a data structure specially built to hold all this information.

However, this structure no only stores data but also its relationships and affectation.

A detailed description of this data structure is presented in Section 4.2.4.1.

1.6.2 Linked-USDL Service Description

Linked-USDL as described in [21] is a version of USDL [20], based on semantic

web and linked data principles developed to achieve a wider global acceptance than

his predecessor (USDL). The authors define the goal of Linked-USDL to ”develop

an ontology to represent services by establishing explicit ontological links to other

17

CHAPTER 1. INTRODUCTION

existing ontologies emerging from Linked Data initiatives”, and also defines three

reasons for this initiative:

• Retain the necessary simplicity for computation as well as for modeling pur-

poses.

• Reuse existing vocabularies to maximize the compatibility of related systems,

reusability of previously modeled data, and reduce engineering efforts to build

complex models.

• Provide a simple, yet effective, means for publishing and interlinking dis-

tributed data for an automatic computer processing.

This language is being developed to describe services according to the USDL

specification, however one of the goals is to keep it simple in order to achiever a

wider acceptance. It’s ability to be extended, since it is based on ontologies, can

later be used to cope with different domains if that is the wish. To the moment

a few modules have been developed: Core, which has main properties, like service

name and provider; SLA, for describing service level agreements of the service; Pric-

ing, which describes the pricing information of the service; Security, for describing

security features of the service.

If we go back to Section 1.5.2, we can see the link between the challenges and

the Linked USDL goals listed above. With the use of this service description it is

intended to achieve a easier remote access to a more complete and sophisticated

service description with more than just operational and technical interfaces. In fact,

it is intended to focus in the business aspect of the service, where the non-functional

requirements are fundamental to distinguish two similar services.

The approach will be to use this service description language to model several

cloud services and assert if it can be used to define all the criteria needed for both,

the decision aid process and the CSA requirements definition. This language will be

the bridge between the raw service information and the truly important information

in cloud service composition.

As mentioned in 1.5.2, the price models are an important feature of cloud ser-

vices and so, some extensions to the already existing Linked-USDL modules should

be made in order to cope with this requirements. With this in mind this thesis will

collaborate with Linked USDL initiative in the development of the pricing descrip-

tion, enhancing the overall service description.

As an example of the capabilities of this service description specification, in

Appendix A, a tutorial on how to model a service with Linked-USDL is presented.

Based on a business intelligence cloud service, called BIME [29], this example was the

first step taken in our work towards Linked-USDL service description. Its purpose

was to introduce and experiment with this service description language to gauge its

capabilities for later describing other services. This way we also encourage other

researchers to use it as a service description language.

18

1.6. APPROACH

1.6.3 Multi-Criteria Decision Making

In Section 1.1.4, some potential approaches were introduced, now it will be explained

which one was selected and why.

Multi-Criteria Decision Making (MCDM) is the approach chosen, mainly be-

cause it offers a number of different methods to address the multiple criteria kind of

decisions. As said before, choosing a cloud service has several decisive factors and

not only the price, so we have multiple criteria to analyse and weight before reach-

ing a decision. This makes the mono-criteria approach less useful. The other two

approaches, Portfolio Analysis and Matching were both valid, and can be used. The

difference would have been in the problem modeling. The easiest and more direct

way to model the problem is achieved with MCDM, since the criteria are mapped

from the service requirements stated in the CSA almost directly. After defining this

criteria, we can apply any kind of MCDM method, allowing for different experi-

ments with different decision methods. We can state that MCDM provides more

freedom of choice in controlling the way we want to conduct the decision aid pro-

cess, allowing us to test different methods and constraints, such has user preferences.

The initial plan is to incrementally increase the method complexity and the

different levels of input given by the user to reach a decision. The plan was devised

to contain three phases:

1. a simple method will be used to assert the quality of the criteria and how

to model the decision problem. The method used is the Simple Additive

Weighting (SAW) [46];

2. experiments with a more complex version, allowing us to compare and check if

more or different decision criteria are needed. The method used is the Analytic

Hierarchy Process (AHP) [114];

3. a more complex approach like the outranking or fuzzy methods, this last phase

would allow us to deal with incomplete information and incomparability.

Note that all these methods will be further discussed in Section 2.4.

Figure 1.4 shows a summary of what have been discussed so far, and maps

the six step model for defining a composite Service solution to this thesis proposed

approach. As shown in the figure the challenges are a direct match of the three steps

highlighted, and the solutions correspond to the tools an methods used to address

these challenges.

19

C
H

A
P

T
E

R
1

.
IN

T
R

O
D

U
C

T
IO

N

Identifying
Company Needs

Define service
Components/Architecture

Search for Cloud Service
Candidates

Choose Between All the
Candidates for Each Component

Contract the
Chosen Services

Final Composite Service Solution

Integrate All the
Services

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Service
Composition

Solutions

CSA - Composite Service Architecture

Linked-USDL

MCDM Methods

MCDM Methods

Challenge

A

B
C

C

Manual Work
(Not in our Scope)

Development Team
(Sub-contracted or not; not in our scope)

Manual Work
(Not in our Scope)

Figure 1.4: Summary of the topics addressed in this thesis mapped to the six steps for defining a composite Service solution.

2
0

1.7. SCHEDULING

1.7 Scheduling

In this Section the project planning is discussed. Also some major changes and

decisions are pointed out as being crucial to the overall result of the project.

As any project, planning is of crucial importance and for that reason an ini-

tial plan was designed taking into account four major steps: Research/Literature,

Prototype/Development, Testing/Evaluating and Report/Final Thesis. Figure 1.5

shows exactly these four steps. For obvious reasons, like the lack of knowledge about

the study field and being a research/investigation project, this first plan was not en-

tirely accurate. However, it was important to understand where the effort should

be focused as well as to measure progress.

As time went by also our view of the problem and the possible solutions changed.

This was the reason for the majority of the changes throughout the project.

The first step was research, both of the technologies available and the possible

paths to be taken for prototyping. With this in mind it is not difficult to understand

that this first process brought some changes to the initial plan. One of them was

the choice for focusing in a specific scenario, cloud services, instead of the initial

broader vision. This decision was made based on the use case developed, also an-

other task included in the intermediate plan in Figure 1.6, as it was believed that

this new approach could bring more value to the final result since cloud services are

an emerging concept.

Later on with the research about service descriptions we also came to the con-

clusion that pricing in cloud services was a big issue and decided to address this

matter by improving the linked-USDL description for pricing. Again changes to the

initial plan had to be made.

Obviously during the research period many more challenges were found, some

of them had to be resolved with a time cost (postponing tasks), others were simply

abandoned. The point is that research is a iterative process which leads to more tasks

appearing ahead. As shown in Figure 1.6, many new tasks have been introduced,

and some deadlines have been postponed. Some of the new tasks are specializations

of the initial plan, which was a generic plan with a broader view of what should be

happening.

Moreover, after analysing some of the possible problems that could arise, espe-

cially in concern of MCDM, it was decided that the overall project would benefit

from a simple implementation of an example, using some of the work done until

then and applying a simple MCDM method. Also, the change of the initial plan for

drafting a price model had to be postponed for time reasons concerning the report

writing. This new group of changes and decisions are also reflected on Figure 1.6.

Finally, Figure 1.7 shows the last planning reorganization. This time the restruc-

turing was due to implementation paths taken, as the Cloud Ontology research or

the Service Set Generator implementation had to be implicated in the process. It

was also postponed the initial plan of writing a paper, this one for time constraints.

21

CHAPTER 1. INTRODUCTION

Figure 1.5: Project Initial Planning (September 24th)

Figure 1.6: Project Intermediate Planning (December 20th)

Figure 1.7: Project Final Planning (March 15th)

22

1.8. DOCUMENT STRUCTURE

1.8 Document Structure

This document is organized in the following manner: Chapter 2 makes an overview

of the related literature, comparing and contrasting it to our work. It also clearly

states our scope regarding the three main topics discussed in this thesis, Service

Composition, Service Description and Decision Aid ; Chapter 3 presents the use

case that will work as both, guidance and example of the work done in this the-

sis; Chapter 4 all the CloudAid prototype analysis and specifications is discussed,

including requirement elicitation, prototype architecture and test plan; Chapter 5,

presents the two semantic models produced in this work: the CloudTaxonomy, an

ontology for cloud concepts; and the Linked USDL Pricing Module, an extension

to the Linked USDL service description to cope with modern service price models;

Chapter 6 presents all the CloudAid prototype related topics focusing in an high

level description of its modules and describing the main decision taken during the

development phase; Chapter 7 presents and discusses the results collected in the

prototype test and evaluation phase drawing some conclusions; finally, Chapter 8

makes a summary of the thesis work and discusses the overall findings and its main

contributions as well as the future developments and research potential.

Note that some chapters come from the intermediate thesis report. Among these

Chapters are the Related Work, Chapter 2 and the Use Case, Chapter 3. Although

they could have been removed from the main document, they are kept for coherence

reasons and for those that did not had access to the previous document. However,

a new section was introduced in the Related Work chapter. This new section, copes

with the new project scope of Service Aggregation and was necessary to make the

bridge between the Service Composition and the Service Aggregation concepts. The

latter is now the focus of these thesis as a means to achieve Service Composition.

Nevertheless, the former keeps most of its importance and for that reason there is

no point in removing its documented research.

23

2
Related Work

This chapter reviews the literature, comparing and contrasting different approaches

to the problems of service description, composition, aggregation and decision aid

identified in Chapter 1. The objective is to identify the similar works and how our

work can distinguish itself. Three main topics will be addressed in this chapter,

each one represents a concrete challenge defined in Section 1.5. In Section 2.1, we

analyse the work that has been done at describing a service. In Section 2.2, service

composition is addressed and in Section 2.3 the Service Aggregation as a means to

achieve the composition is discussed. Finally, Section 2.4 discusses decision aid.

2.1 Service Description

In this section the service description topic is addressed and some of the current

solutions and their problems to describe services. We start by presenting the scope

of service description to our work and then discuss languages and frameworks used

to describe services. Finally, we present our perspective on what has been done

concerning a particular important problematic challenge for this thesis: price de-

scription.

2.1.1 Our Scope Regarding Service Description

A service description can be explained as a mean to capture service semantics, i.e,

all the relevant information about a service. We can argue if it is possible or not to

achieve a complete service description. However, that is not the scope of this thesis.

Instead, we will focus on what has been done to achieve a service description capable

of compiling a broader vision of services than simply its technical specification and

extend it with the necessary information about business and other aspects, to achieve

our objectives.

In [20] and [23], the authors define three service perspectives:

1. Technical - Allows specifying technical information of services exposed by an

organization. This perspective is divided into two main sections: invocation

and execution.

2.1. SERVICE DESCRIPTION

2. Business - Usually describes non-functional properties that are fundamental

for the characterization of a service, for example, price and security.

3. Operational - Describes the operations executed by services. It provides an

understanding of what a service is providing from an operational perspective

and, thus, what a consumer can expect from a service.

Of these three perspectives, the technical is the one who has known more devel-

opments. Languages like WSDL [26] and SOAP [19] aim at describing and invoking

these technical aspects and are seen as technological entities or interfaces. However,

we still miss the business perspective and its aspects: service quality, service level,

economic and legal aspects, among others that will be needed in order to distinguish

two similar services. This information is crucial when deciding which services to use

to construct a CSA. For example, should the cheaper service or the one who provides

more data security be selected.

2.1.2 Web Service Description Language

The Web Service Description Language (WSDL) was developed with the purpose

to describe the technical details of accessing a Web service. Mainly it provides in-

formation about the technical requirements to invoke a service from the developers

point of view (data types, method names, etc,...). It is therefore easy to understand

the limitations of this description for the IoS and cloud services in particular. No

information about pricing or other non-functional requirements is included. There-

fore, we have a limited, yet powerful tool for describing a particular perspective of

a particular kind of services, web services.

IoS has a list of requirements much broader than the ones described by WSDL.

The business and operational perspectives have a key role in a service description,

aspects like price or security have to be described.

2.1.3 Unified Service Description Language

The Unified Service Description Language (USDL) [20] initial version was ready in

2009 and it was later renamed to α-USDL. A second version was added to a W3C

incubator group and was finalized at the end of 2011.

As stated in Section 2.1.2, the IoS has a broader description requirements list,

for that reason USDL bridges three service perspectives, business, operational and

technical. The language aims to model service concepts and properties such as

service level, pricing, legal aspects, participants, marketing material, distribution

channels, bundling, operations, interfaces, resources, etc, with the ultimate purpose

of providing a comprehensive view on services.

This integrated service description view calls for a paradigm shift from the Web

Services and SOA service descriptions which only focus on development and technical

aspects.

The technical perspective was influenced by WSDL, the Web Service Modeling

Ontology (WSMO) and Semantic Markup for Web Services (OWL-S) [79].

25

CHAPTER 2. RELATED WORK

2.1.4 Semantic Approaches

As the author states in [71], ”Web services extend the Web from a distributed source

of information to a distributed source of services. Semantic Web has added machine-

interpretable information to Web content in order to provide intelligent access to

heterogeneous and distributed information. In a similar way, Semantic Web concepts

are used to define intelligent web services, i.e., services supporting automatic discov-

ery, composition, invocation and interoperation. This joint application of Semantic

Web concepts and web services in order to realize intelligent web services is usually

referred as Semantic Web Services”. The overall goal is to allow a better capacity

for reasoning with services capabilities. This reasoning and easiness of publishing

and discovery of services is supported by linked-data principles [15].

Some frameworks for semantic web services exist, and some work has been done

to describe services with the aid of semantics like the Semantic Annotation for WSDL

(SAWSDL) or Semantic Markup for Web Services (OWL-S).

SAWSDL

The Semantic Annotation for WSDL (SAWSDL) [69], tries to introduce semantic

annotation into the WSDL specification. As already explained WSDL is a mere

syntactic description of the service technical perspective. This approach tries to

address the lack of reasoning capacity using logical inference. The specification

became a W3C recommendation in 2007, however the authors in [64] state some

limitations, among them the limited software support compared to other specifi-

cations like OWL-S and WSMO and as the author says, being ”a mere syntactic

extension of WSDL, without any formal semantics”.

OWL-S

The Semantic Markup for Web Services (OWL-S)[79] is based on the W3C stan-

dard ontology OWL [82].

This ontology which imports WSDL concepts, goes a little further as it describes

more than simply the technical aspects from the WSDL in a semantic point of view.

In fact, only one of the three parts of the specification focus on WSDL concepts.

These three parts as shown in Figure 2.1 are:

• the Service Profile is meant for describing what the service does, with the

purpose for advertising and discovering services. It includes service functional

parameters like, inputs, outputs, preconditions and effects, as well as non-

functional requirements, for example, service name, quality rating and infor-

mation about the provider. However with the release of OWL-S 1.1 the func-

tional parameters started to be defined in the Process Model and referenced

through the Service Profile. This allowed the Service Profile to focus almost

exclusively in the non-functional requirements, therefore more related to the

business perspective;

• the Process Model that gives a detailed description of a service’s operation and

how to orchestrate one or more services;

26

2.1. SERVICE DESCRIPTION

• the Grounding that provides the logic and XML-based service definitions in

order to execute the service. This particular part is where WSDL was an

inspiration, in fact it is used as an example in order to connect OWL-S to an

existing standard.

Figure 2.1: OWL-S service description elements. From [64]

Being an ontology it allows the specification to be extendable. Some work as

been done in this matter, for example in [131], the author proposes a process model

supporting Artificial Intelligence Planning techniques for automatic web service com-

position called SHOP2. The author in [83] uses GOLOG language to improve the

service composition aspect. In [91], the author gives an extensive usage of the

DAML-S (former version of the OWL-S specification) in the literature, and points

some of the topics extended.

However, the OWL-S has some limitations. As the author states in [64], the

limited expressiveness of the service description that is based in OWL-DL logic [82],

since it does not cover the notion of time and change it allows only to describe

static and deterministic aspects of the world. Also, being built around web services

narrows the possibility of application to the IoS broader scope of the service without

extra extension to the specification. In spite these limitations, OWL-S is a well

founded base for a more complete service description capable of attaining the three

perspectives for IoS.

WSMO

The Web Service Modeling Ontology (WSMO) [111] is a conceptual model that of-

fers a Web Service Modeling Language (WSML) for describing semantic web services.

This specification evolved from the Web Service Modeling Framework (WSMF) [45]

after several European funded research projects in the semantic web services domain.

This conceptual model offers four components, all of them described in WSML,

as stated in [32]:

• Ontologies - provide formal and explicit specification of the vocabularies used

by the other modeling elements. Such a formal specification enables the auto-

mated processing of WSMO descriptions and provides background knowledge

for Goals and Web Service descriptions;

27

CHAPTER 2. RELATED WORK

• Goals - describe the functionality and interaction style from the requester

perspective;

• Web Services - specify the functionality and the means of interaction provided

by the Web Service;

• Mediators - connect different WSMO elements and resolve heterogeneity in

data representations, interaction styles and business processes.

WSML was designed for describing the service capabilities as in pre-conditions,

post-conditions, effects, assumptions (what has to be the world state before service

execution) that consist of logical expressions.

Once again, this specification has some problems, one is the lack of use for OWL

standards such as RDF in ontology specification as stated in [64]. Another problem

is the lack of connection to other web service standard, WSDL. However, an attempt

to resolve this issue has been developed more recently with WSMO-lite that proposes

extensions to the SAWSDL specification [129]. Finally, the scope for IoS is still not

achieved as of the WSMO focus is, once again, intended to web service.

SWSF

Other initiatives have been followed Semantic Web Service Framework (SWSF)

[11], for example, defines another semantic web service language (SWSL) and an

ontology (SWSO) [12]. It uses FLOWS, a first-order logic ontology, to describe web

services, and ROWS, an ontology of rules. The advantage of SWSF is the use of

a first-order ontology which allows more expressiveness in the service description

compared to OWL-DL, used by OWL-S for example. However, the problem of first-

order logic is that is not decidable thus it is difficult to use with a current inference

engine. Therefore, this approach is not yet sufficient for the general IoS use.

2.1.5 Linked Services

As we saw the semantic web services approach has some limitations and was not able

to properly disseminate the use of services in the web as expected. Recent research

as pointed to a new approach in service descriptions, the author in [98] presents it as

”Linked-Services”. According to the author ”Linked Services are services described

as Linked Data. Therefore, these are service descriptions whereby their inputs and

outputs, their functionality, and their non-functional properties are described in

terms of (reused) light weight RDFS vocabularies and exposed following Linked

Data principles.”. This is a different approach on how to describe services which

could not only allow a more complete service description by using domain specific

vocabularies, but also facilitate their publishing and discovery process making use

of the Linked Open Dada.

Based in these principles the author in [21] presents a service description language

focused in attaining the above characteristics, Linked-USDL.

The term Linked-USDL presents exactly the connection it has to the linked data

and linked services, and is a direct evolution of the USDL, despite of being a simpler

and less complex version. In fact it is an attempt to overcome some of the original

28

2.2. SERVICE COMPOSITION

USDL problems as well as to achieve a wider use than its predecessor. Extending

it to accept linked data concepts the Linked-USDL tries to resolve the extensibil-

ity problem of the original model. Although there is not much literature about

Linked-USDL, since it is still under development, the overall idea as the author say

is ”to develop an ontology to represent services by establishing explicit ontological

links to other existing ontologies emerging from Linked Data initiatives”. Using this

methodology virtually any service perspective could be described. As the author

uses it to model service networks, in our work we intend to use it for cloud service

business descriptions.

As an effort to show the potential and the advantages of linked data for publish-

ing service descriptions and potentiate its discovery and use, in [103] the authors

proposes a platform to achieve this goals, called iServe. As the authors define, iS-

erve ”is a novel and open platform for publishing semantic annotations of services

based on a direct application of linked data principles to publish service annota-

tions expressed in terms of a simple vocabulary for describing services...”. Other

works follow the same line and try to apply Linked Data principles to the service

annotation, discovery, search and invocation, [99], [40] and [135].

2.1.6 Service Description Pricing Component

As presented in 1.5.2, one of the objectives is to capture the pricing model of cloud

services, which is one of its big advantages. According to the author in [96] the price

gets into the non-functional property models, and not many work has been done

to capture it in the service descriptions mentioned above. The exception is USDL

who in fact has this property in mind while describing the business perspective.

Being built on USDL concepts, Linked-USDL also has the price in consideration,

however this description language as one more advantage, since it is based on linked

data principles it can easily adopt other ontologies in its specification and some

price ontologies already exist. GoodRelations [55] is an example of an e-commerce

ontology for describing service offerings that among other properties already defines

some price components.

Therefore in this thesis will be presented a extension to linked-USDL in order

to contemplate the service price for the IoS as stated in the Objective 3 in Section

1.5.2.

2.2 Service Composition

In this section we analyse some of the work done in the past concerning Service

Composition. However, since the area is vast we start by introducing the scope for

our work. Then some of the most complete surveys about the topic are presented

and discussed.

29

CHAPTER 2. RELATED WORK

2.2.1 Our Scope Regarding Service Composition

First of all, it is important to outline the difference between two related yet differ-

ent concepts: Mashup and Service Composition. As the authors in [76] mention,

”Service composition is usually performed on the business logic layer, and results in

executable workflows or plans that fulfill certain requirements of the new Web ap-

plication. Mashup is an innovative way to develop Web applications by syndicating

contents, data and functionalities from distributed sources on the Web. Different

from service composition, mashup can be carried out on layers ranging from data

to presentation. Rather than enacting a predefined workflow,...”. In fact, several

other authors describe Service Composition as very similar to a workflow [106] [41].

However, we are not interested in this view of service composition but rather in the

composability of cloud services. The actual execution flow, or workflow is not as

much important as the added value extracted from the composition of several ser-

vice. Meaning that we are not interesting in how will the services actually interact

but rather in finding suitable candidates for the building blocks of the composed

service.

The other important remark is that, as already stated in Chapter 1, we focus in

attaining a composite service solution based on a recommendation of services for each

of the CSA Service Template. Then, through an aggregation process we check the

feasibility of the final composite solution. The actual composition in not executed

but rather described as a conceptual solution. Therefore, the tools and methods

proposed in our work do not aim at composing services beyond a recommendation

of a possible composition able to fulfill the decision maker requirements. Later on,

this proposed solution could be invoked and executed, or not, by the decision maker.

2.2.2 Automatic Composition

The Service Composition topic has been subject of several surveys explaining method-

ologies, approaches and composition languages. Although almost all are about web

service composition [86], [123], some information can still be relevant to IoS or cloud

services. In [41] a detailed view on the subject is given. The authors divide com-

position in Static that takes place at design time when the system is planned and

is used when services or partners rarely change; and Dynamic, allowing dynamic

change of services in the composition, usually at runtime. The authors compare

several models against different criteria as we can see in Figure 2.2.

A good example of a dynamic composition platform is eFlow [24] which models

composite services by a graph of service invocation. It is similar to UML activity

diagrams, and is translated to XML. The system allows the user to select services

at runtime if new services are also discovered at runtime. Another example is the

Star Web Services Composition Platform (StarWSCoP) [124]. However these two

approaches focus on web services, which, as we already discussed in Section 2.1, do

not fulfill our work requirements.

In Figure 2.2 we can see the comparison of some composition models analysed

on the survey in [41].

30

2.2. SERVICE COMPOSITION

Figure 2.2: Web services composition models [41].

In [106] the authors make a survey on the automatic service composition, where

two different approaches are defined: WorkFlow Composition and Artificial Intelli-

gence Planning. As the author explains: ”The workflow methods are mostly used in

the situation where the request has already defined the process model, but automatic

program is required to find the atomic services to fulfill the requirement. The AI

planning methods are used when the requester has no process model but has a set

of constraints and preferences. Hence the process model can be generated automat-

ically by the program”. As mentioned before, in our work the workflow techniques

do not apply. We are not interested in temporal constrains, like execution flows. On

opposition our CSA will work as a list of requirements and constraints based on the

services features and defined by the company.

2.2.3 Quality of Service and Model Based Composition

Many other approaches relate to Quality of Service (QoS), as in [113], [112] and

[51]. These approaches try to capture the QoS aspects of a service and propose a

composition based on some constraints. This could relate to the our work in the

constraint based composition concept, where the single services are proposed for

each CSA component based on requirements that must be fulfilled. However, in our

case, these requirements might not be only QoS aspects.

In [95] the authors propose a new approach, Model Driven Composition and ac-

cording to [41] this approach is classified as a Dynamic composition. They propose

a series of business rules where the composition will be based. It defines an infor-

mation model to describe the service inter-relationships as well as the components

for the composition. Although an interesting approach is yet another web service

composition approach, though having its limitations for IoS.

In [128] yet another approach is proposed this time based on patterns. The au-

thors propose the use of patterns in the design of the service composition. It is also

discussed their uses in non-functional requirements, however as the author say: ”A

31

CHAPTER 2. RELATED WORK

lot of work still needs to be done on bridging the gap between user requirements

and patterns as well as the gap between patterns and service descriptions”. This

approach although interesting has some limitation. These patterns are used as de-

velopment tools for achieving some predefined compositions. For example, payment

patterns, which will create a composition based on the stored pattern. However, our

work tries to create a composition based on an architecture, the CSA, specified by

the user, which might not be extracted from a pre-determined pattern.

2.2.4 Semantic Service Composition

Semantic service composition as the name suggests is the use of semantic technology,

like Linked Data or the Web Ontology Language (OWL) [82] for example, to achieve

a service composition. This concept is of course tightly linked to Semantic Service

Descriptions and Linked Services (see Sections 2.1.4 and 2.1.5). In [120] the authors

propose a system for matching services in every step of the composition process.

This is achieved by using semantic descriptions (Section 2.1.4) in this case OWL-S.

Although this approach is not yet based on Linked Services, and therefore, has none

of its capacities for discovering and publishing services (Section 2.1.5).

The work done in [76], although related to mashup of services, already includes

Linked Data principles applied to services and is based on a platform called iServe

[103].

Being a semantic description and following Linked Data principles, Linked USDL

can be a perfect addition to Linked Services in order to facilitate service discovery

and matching. Therefore, in this thesis we apply this service description specification

as a mean to achieve the composition solution to our particular problem.

2.2.5 Software as a Service Blueprinting Composition

An interesting approach is presented in [93] where the authors developed a blueprint

approach to automatically combine cloud service offerings. This blueprint is based

on the work done in [92], where a blueprint template of a cloud service offering is

presented. This blueprint in [92] works as a description of the service offering and can

define some QoS constrains for later processing in the composition. This template

can be an interesting step in defining a cloud offering and since it is described in XML

it can easily be extended. However, it lacks the linked data approaches publishing

capability.

In [93] the previous work is extended and a composition mechanism is built on

top of this blueprint specification. As the authors outline the advantages of the

blueprint approach are: ”blueprints can be flexibly (re-)assembled in different con-

figurations to form a complete SBCA (Service-Based Cloud Applications). This

facilitates the composition of offerings across blueprints to express end-to-end offer-

ings from various providers”. The author defines offerings and requirements as the

two core concepts in this approach. An offering is the service itself with its blueprint

template; the requirements are the constraints that a certain offering needs to be

executed. For example, if a database offering needs a linux server to run, this linux

server will be the requirement for this particular offering. The presented mechanism

32

2.3. SERVICE AGGREGATION

then searches this offering and creates a tree of execution, every time an offering

with a requirement is found the search continues until all offerings have resolved its

requirement issues. The authors call this process Resolving a Target Offering.

Another interesting part of this mechanism is that it uses RDF instead the

original XML in the blueprint specification. According to the author ”Using RDF

to formally describe blueprints provides a powerful and flexible way to manipulate,

aggregate and normalize data and metadata about cloud delivery models”, this will

also facilitate the querying process since SPARQL [104] can be used to query on the

offerings.

With this being said this approach is the closest to our work, however, several

differences arise: First, the service description itself is a limitation, since it only

describes basic information of the service and its requirements to work. Despite

these requirements could be used, in our case, as simple constraints or user prefer-

ences, the overall blueprint contains less information about the service than other

semantic based approaches. The use of RDF already a good effort for facilitating the

publishing and querying of specific cloud services, however the querying mechanism

developed is based on service name rather than in its specification or characteristics,

this greatly interferes with the whole purpose of the problem addressed in our work.

If the decision maker already knows the name of the service he is going to contract,

the use for a decision aid mechanism is limited since he already reached a decision.

Therefore, we will propose a different approach, merging some of the concepts of

the blueprinting presented in [93] and the semantic approaches for service description

and composition.

2.3 Service Aggregation

This section presents some of the work and definitions of service aggregation in the

literature as well as what is the interest for the work proposed in this thesis.

2.3.1 Our Scope Regarding Service Aggregation

According to Gartner 1 in a 2009 press release [49] ”An aggregation brokerage service

combines multiple services into one or more new services. It will ensure that data is

modelled across all component services and integrated as well as ensuring the move-

ment and security of data between the service consumer and multiple providers.”, In

most of the literature as in [75], [72] and [108] to service aggregation as a component

of a wider concept, Cloud Service Broker. As the authors state in [90] ”...a Cloud

service broker creates a governed and secure cloud management platform to simplify

the delivery of complex cloud services to cloud service customers.”.

As defined by [108] ”The Service Aggregation role supports domain specialists

and third-parties in aggregating services for new and unforeseen opportunities and

needs. Services may be integrated into corporate solutions, creating greater value for

its users not otherwise available in their applications, or they could be aggregated

1http://www.gartner.com/technology/home.jsp

33

http://www.gartner.com/technology/home.jsp

CHAPTER 2. RELATED WORK

as value-added, reusable services made available for wider use by business network

users.”

In this thesis however, it is not our intention to propose a full aggregation bro-

ker. It is of this thesis interest the aggregation of services as a recommendation

basis and not in the service delivery and management itself. Thus, the focus is on

the service discovery based on customer requirements and the recommendation of

possible aggregation scenarios.

The service aggregation concept is related to the service compositionone . Both

try to create added value from smaller parts (services). However, we present them

in different contexts. We try to aggregate several cloud services into a feasible

aggregation. This aggregation can then be converted into a composed service or

as we call a Composite Service Solution. Therefore, we use aggregation to achieve

a composed service. Although it is not this thesis intent to materialize the actual

service composition.

2.3.2 Cloud Service Aggregation

Not many work as been done regarding cloud service aggregation in the terms pro-

posed in this thesis. However, the authors in [130] present an interesting mechanism

based on constraints to discover and aggregate cloud resources from multi-providers.

They use a similar approach to the one in this thesis, using user constraints, similar

to requirements, to discover the most suitable candidates to the user, and also follow

the same provider agnostic approach. However, they use a two-phase discovery sys-

tem: alternatives pruning with hard constraints and soft constraints optimization

techniques. In this thesis we present a semantic search engine that queries a service

set for services that fulfill a determined set of user requirements (exclusive require-

ments, similar to hard constraints as defined in [130]) and finally the alternatives

are ranked according to their decision value. This decision value is controlled by the

user by means of criteria and preferences. Therefore, in our approach we introduce

the user preferences into the equation and not only constraints optimization like the

work in [130]. It may happen that a user prefers a system that performs a little worst

in some requirement but delivers as desired in another. This type of aggregation

would never be possible by just optimizing constraints.

Other less related works have been developed as in [73] where an IaaS service

aggregation tool is proposed. This tool however, is focused in allowing IT managers

to manage their contracted cloud services in a common interface.

2.4 Decision Aid

In this section we start by introducing the scope of decision aid in our problem and

then explaining in more detail the other two analysed approaches besides Multi-

Criteria Decision Making: Portfolio Analysis and Matching Theory. Then, we

present some of the work done in the literature to address the problem at hand

with MCDM techniques.

34

2.4. DECISION AID

2.4.1 Our Scope Regarding Decision Aid

The decision aid problem has been vastly discussed in the past, and many different

approaches exist. However, this section is not intended to give a literature review

on decision mechanisms but rather present what have been done in order to help

our concrete decision problem. This translates in multi-criteria mechanisms used for

service selection and ranking. In Section 1.6.3 we introduced our approach to the

service decision problem, which has several specific constraints, among others, the

amount of criteria to be taken into account, the complex preferences of the decision

maker, some possible incomparability of criteria and how these problems could be

resolved using a Multi-Criteria Decision Making mechanism. This is the scope of

our work concerning decision aid, the need for analysing various constraints in order

to achieve a desired decision recommendation. This thesis will not develop its own

decision aid techniques but rather build on and apply already existing methods to

achieve its goals.

2.4.2 Portfolio Analysis and Matching

Besides Multi-Criteria Decision Making other two approaches were considered both

from the economics field, Portfolio Analysis and Matching Theory. Although the

MCDM approach was already a certainty due to its capabilities and the almost

perfect match to our problem, we wanted to keep every possibility in mind and so

these two approaches were analysed as potential candidates.

Portfolio Analysis

Coming from the finance field, Portfolio Analysis was initially presented in 1952

[78] and it attempts to maximize portfolio expected return for a given amount of

portfolio risk. It has been widely used in financial industry. In our particular case

a possible use would be to have portfolios of services, each portfolio containing a

category of services with a specific set of characteristics or compatible with each

other. Then the concept of value dispersion from the theory would have to be

mapped in some of the service characteristics allowing to choose the best service

based on a specific characteristic.

The problem here is evident, the amount of relevant service characteristics to

analyse would make this approach way to complex. This does not mean this ap-

proach is invalid. However, given the constraints, MCDM was a more straightfor-

ward solution.

Matching Theory

This theory, presented in [88], attempts to describe the formation of mutually

beneficial relationships over time. Probably more related to our problem the prede-

cessor of this theory, Search Theory, also applied in economics for finding partners

in a transaction. The idea is to create stable pairings, in our case services and

consumers, in order for both to have benefits. The Search Theory could help in

situations when a change in the service provider is needed or a new provider gets

35

CHAPTER 2. RELATED WORK

in the market, and an analysis of the best action to take is needed, if change to the

new provider or stay with the old one.

Although our problem could benefit from such a solution it is not our primary

target because of the difficulty to model our problem to fit the Search Theory.

2.4.3 Multi-Criteria Decision Making

With the advent of information and business intelligence today’s decision makers

have at their reach huge amount of information. In spite of being able to make

better decisions, at least more informed ones, it is sometimes very complex to make

a decision based in so many variables. This is where MCDM can be of crucial

importance. MCDM consists generally on the application of mathematical models

to decision making using explicitly several criteria. In recent years many approaches

and algorithms have been developed, which can be used as a framework to aid the

decision. Another name to MCDM can be Multi-Criteria Decision Aiding, MCDA,

which better transpires the aiding component of this mechanism. An extensive

review of MCDM and its methods can be found in [46].

Analytic Hierarchy Process

Another approach for decision aid, also included in MCDM is the Analytic Hier-

archy Process [114] which has been developed in 1970s and widely used in different

domains such as government, business, industry, healthcare, and education. This

model gives an overview of the decision process, weighting the criteria and alternative

solutions it does not give an automatic solution to a particular decision problem.

The AHP, as the name suggests, is an hierarchic process where the decision

maker is invited to decompose his problem in an hierarchy of independent smaller

problems. After the hierarchy has been set an evaluation of each element is made,

by means of comparison with each other, usually by questioning the decision maker

what he prefers, A over B, or B over A, A or B being decision criteria. The method

then converts this information to numerical values, computable by a machine, in

order to give its assessment. An interesting point of the AHP is the capability of

gauge the coherence level of the decision maker preferences.

Decision Deck

The Decision Deck appeared as an European effort to collaboratively develop

Open Source software tools for MCDM techniques [36]. As a result this project

generated two main contributions: the Diviz, a software for designing, executing

and sharing MCDA methods, algorithms and experiments [85] and a standardized

XML recommendation to represent objects and data from the MCDA field, called

XMCDA [14].

With regard to XMCDA, in our work we expect to make use of this XML-based

standard for manipulating MCDM related data, such as criteria, methods and alter-

natives in order to maintain interoperability with the Diviz project. The expectation

is that later research can be conducted based on our work bridging it to other MCDM

methods.

36

2.4. DECISION AID

2.4.4 MCDM Approaches

For the purpose of this thesis, we will analyse two service related decision problems

which MCDM can resolve: Service Selection and Service Ranking. Service Selection

allows us to decide from the entire service set the ones which can fulfill the decision

maker requirements. This problem is intimately linked to the service description

problem. Depending on the level of service description a different degree of criteria

has to be considered. Service Ranking is the process of comparing the selected

services in order to gauge which one is the best solution taking into account the

decision maker preferences.

In the past few years several MCDM methods have been used for service rank-

ing, for example, the authors in [125] propose a multi-criteria mechanism based on

non-functional requirements described using the WSMO specification. This multi-

criteria approach is a simple weighting mechanism, the simplest of the MCDM meth-

ods, where an importance value is assigned to each criteria and then computing the

highest results (Simple Additive Weighting) [46]. Despite simple and easily manip-

ulated, since is it quite easy to tamper results by changing weighting parameters,

this approach is a good example of how MCDM methods can be used to address the

service ranking problem. However this approach allows us no tolerance to imperfect

knowledge, or user preferences besides manually altering the method parameters.

In [126] we find a survey on a different kind of MCDM methods used for service

ranking with regard to Quality of Service, Fuzzy Methods. As the author says ”Dif-

ferent Quality of Service properties may have different important levels to specific

service consumers. In many cases, the values and the important weights of Quality

of Service criteria are not easy to be precisely defined”, for this reason research has

been conducted to apply fuzzy theory to this problematic, allowing the definition

of vague concepts. This kind of approach despite being complex allows us to deal

with this imprecise knowledge in some domains, which is often the case for decision

makers preferences.

The work done in [137] is quite similar to our work and so a good starting point,

in a way that the author tries to compose web services ranking them based on

Quality of Service aspects. However once again the ranking method used is a simple

additive weighting (SAW) [46], which, as already explained, has several limitations.

This thesis distinguishes himself from the work done in [137] in three different ways:

first the generalization to Internet of Services instead of web services; second, the

criteria for ranking services focus in more than just quality of service aspects; finally

the methods used for ranking these services.

In [133] the author proposes the AHP as a method to evaluate the service com-

position. The difference to the work we propose is that in [133], the AHP is used to

evaluate the composition as a whole and not to evaluate to what extent a determined

service can fulfill a requirement or a specific user preference. It is nevertheless one

more good example on how different MCDM methods can be used to address the

composition problem encompassing service selection and ranking.

37

CHAPTER 2. RELATED WORK

The work done in [136] is another application of the SAW method to solve

the service selection problem. As the author says ”The goal of service selection

algorithms is to select individual services that meet QoS constraints and also provide

the best value for the user-defined utility function”. In fact this gives us a perspective

on what has to be done on service selection level, first the matching of services that

fulfill the user defined constraints and then the calculus of the best solution, where

the service ranking as particular critical role. Other example is proposed in [25],

where a fuzzy approach is used for selecting a service provider.

38

3
Use Case

With the arrival of SOA [43], and all the service oriented products, such as IaaS,

Paas, SaaS, etc (see Section 1.1.2, more and more enterprises tend to outsource

some of their competences or business processes by contracting other enterprises

specialized in those services.

Alongside with this increasing demand for service oriented products, there has

been obviously an increase of service providers, where the cloud based services play

a major role. For a view on Cloud refer to Section 1.1.2. Section 1.3 shown the

problem that current companies face when trying to adopt cloud services and that

the Cloud is growing and a vast field of new opportunities is waiting for those willing

to take the next step.

In this section we present an extended version of the summary given in Section

1.4, with a use case of a problem that a company could face. We start by describing

the problem in more detail in Section 3.1. In Section 3.2 we present how the use case

would be used and by whom. Finally in Section 3.3 we map this concrete problem

to the diagram presented in Figure 1.3 with the required steps for contracting a

composite service solution. A full version of this Use Case, with requirements and

architecture specification can be found in Appendix B.

3.1 Problem Description

We start by introducing our IT company, with 200 employees, most of them working

in the only building the company owns. Taking into account the number of elec-

tronic devices constantly running in the building, the company knows the energy

consumption is high, and is concerned about reducing it to a minimum, reducing

their operational costs. In addition to the above concerns, the European Union di-

rectives point to a 20% cut on the energy consumption as well as encourage the use

of energy meters to monitor consumption and efficiency 1.

Moreover, the constant increase in social awareness for green energy and environ-

mental concerns, press the company to adopt these measures in order to maintain a

”green image” and transparency standards to their consumers.

1http://ec.europa.eu/energy/efficiency/index_en.htm

39

http://ec.europa.eu/energy/efficiency/index_en.htm

CHAPTER 3. USE CASE

Since the building is full of electronic components there will be a huge amount

of sensors to retrieve the data for energy consumption and management. There are

many different approaches stated in [63], [50], [1], [119], [62]. With this many devices

the amount of data to collect, process and predict is huge, which leads to a fair

capability of storage and data processing. The company currently has none of this

capabilities to dedicate to their Energy Monitoring and Efficiency System (EMES),

and so it is willing to outsource these capabilities. Using the same arguments from

Section 1.3, choosing the cloud seems a good option.

The cloud will allow the company to surpass the storage and processing of all the

data, without building their own infrastructure. However, they also want to make

this data public through a website, that can be accessed by anyone. Also, due to the

European Union above mentioned concerns, a monthly report should be delivered,

for this matter the EMES needs to automatically create and send reports.

To facilitate the usability and ease of use, an app that allows employees and

managers to monitor and control the system should be developed. For eliminating

the ”in loco” controlling approach the company wishes to adopt an SMS system

to control the EMES, as well as to alert the right person if something of relevance

happens. The goal is to make the system as controllable as possible without the

need of a permanent manager in the building.

3.2 System Usage

In this section we present the actors and their interactions with the EMES, The

purpose is to better understand the system concept and the reason for some of the

choices for potential cloud services solutions.

Interacting with the EMES we can define 4 major actors, each of them with

their own functionality, and different access to information generated by the EMES.

The first identified actor is the sensor that will collect data from the correspondent

device and transmit it to a wireless receiver. Note that hundreds of sensors will be

collecting data at the same time and transmitting it to the main receiver.

The second actor is the building manager, or the person in charge of maintenance

or controlling the energy system. The three main interactions with the system are:

• View data (readings, predictions, reports, efficiency,...)

• Create patterns (prediction patterns, SMS alerts, report patterns,...)

• Control the system (SMS commands, App Control, resolve issues,...)

The third actor is the common employee, that only has access to some of the

features available to the building manager. They can view most of the information

available (average comsumption, ratios, etc), and can even be allowed to make some

extra simple interactions through the mobile app or website, such has turn on or off

their equipment, or communicate a malfunction to the building manager.

At last the general population. This actor has access to public information,

allowed by the company, such as overall readings, efficiency, public reports, overall

statistics, etc. This information will be available through the website.

40

3.3. CONTRACTING A COMPOSITE SERVICE SOLUTION

Note that multiple levels of interaction can be specified for each of this actors.

For example, in the website, while the general public can only view public informa-

tion, an employee can see other kinds of information, alerts for example, or energy

consumption by department.

3.3 Contracting a Composite Service Solution

For convenience reasons we bring back the image from Section 1.4. Our company

wishes to contract several cloud services that can be integrated to fulfill their EMES

requirements. To achieve such a system several steps have to be preform as shown

in Figure 3.1.

Identifying
Company Needs

Define service
Components/Architecture

Search for Cloud Service
Candidates

Choose Between All the
Candidates for Each Component

Contract the
Chosen Services

Final Composite Service Solution

Integrate All the
Services

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3.1: Steps for contracting a composite service solution.

The first step corresponds to the identification of the company needs. Those

needs are the requirements for the system captured by analysing the company needs

as we did in Section 3.1 and 3.2. Other specification could have been collected

such as non-functional requirements, dependencies between components or metrics.

However, they are not important for the scope of this use case.

The second step, is to compile all the information collected in the previous step

and create an architecture view. It could be for example an UML component dia-

gram or any other tool the company wishes. Something that formalizes the require-

ments information. In this step everything that could influence a decision towards

a specific service must be included. The purpose of this process is to gather and

41

CHAPTER 3. USE CASE

maintain the important information for later steps, this way the company never

looses track of what they need, however the architecture can change with time, if no

good solutions are found. This process is no different than the one used in software

development.

In the third step the search for potential cloud services to fulfill the documented

requirements starts. The company knows the importance of the EMES they want to

implement and so it decides to allocate a team solely dedicated to this task. They

search for all potential candidates without excluding any, except for those who do

not fulfill the basic functional requirements. All those services who comply with

these basic requirements are cataloged and all the relevant service information is

collected and stored for later use in the decision process. This information is mainly

extracted manually from the service provider website, making this entire task long

and painful.

After collecting the information from enough sources, the fourth step begins. It is

now time to reach a decision on which cloud service to use for each EMES component

specified in step 2. Several meetings are scheduled with the team responsible for

finding the services and the team responsible for implementing the EMES, even

members of the administration are present for approval. All the cloud services are

discussed and pros and cons are debated. Due to the complexity of the system to

be implemented one meeting is not enough, several factors are critical, besides the

price, availability and security are of the up most importance. The system must also

comply with the amount of data collected from the sensors, which is not an easy

task.

After reaching a decision on which services to use, the board starts the contacts

to contract the chosen services, this is the step 5.

Once the cloud services are contracted and running the final step belongs to the

development team who has to integrate all the contracted services, and implement

some parts of the system such has the website, or the mobile app. This step can be

outsourced, however since the company is an IT specialized company they decide to

do it themselves.

After a few months the EMES is finally up and running and the first report

with the energy consumption and efficiency is sent to both the administration and

the EU. The next months the company starts to reduce energy usage, and begins a

marketing campaign in their new website for customers to prove their ”green image”.

42

4
Analysis and Specification

This Chapter presents all the CloudAid Prototype analysis and specification phase.

Three elements are presented: Section 4.1 presents the requirement analysis and

its elicitation process; Section 4.2 presents the prototype architecture and all its

relevant components; finally, Section 4.3 presents the test plan for the prototype

testing phase.

4.1 Requirements Analysis

This section outlines the analysis process followed regarding the CloudAid Proto-

type requirements. It also points out the main objectives that drive all the other

requirements listed in Appendix C.

4.1.1 Requirements Elicitation

The purpose of requirement elicitation is to discuss with customers and end-users

what are their needs and which the required application functionalities. However,

our application is a research prototype. The main goal is to prove and validate

the research proposal of providing a decision based aggregation of cloud services

mechanism. Nevertheless, there is the compromise to simulate as much as possible

what would an end-user be interested in.

This way, the main stakeholder interested is the Decision Maker, who is charged

with the task of finding cloud solutions for a specific problem. Since, as already

explained, we had no contact with a real customer, the stakeholder requirements

were discussed within the research group in order to simulate what would be the

key points for the application.

Every time a new path of research was followed or another was abandoned the

requirements also changed. This made some of the requirements to change their

priority or to disappear from the list since they were no longer suitable for our

purpose.

43

CHAPTER 4. ANALYSIS AND SPECIFICATION

4.1.2 Requirements Prioritization and Categorization

All the requirements listed in Appendix C are prioritized using the MoSCoW method

[28] which has four levels of priority:

• MUST have the requirement

• SHOULD have the requirement if at all possible

• COULD have the requirement if there are enough resources or if it does not

affect higher priority requirements

• WON’T have the requirement in this version or WOULD like to have in future

developments

Also the requirements were divided according to the FURPS+ Methodology

Document [42] which is a methodology to group requirements in categories. FURPS

means Functionality, Usability, Reliability, Performance and Suportability. However,

the FURPS+ add a few more categories to describe system constraints: Design,

Implementation, Interface and Physical.

We make use of all but the physical category. The reason for not using it is

because our prototype simply does not have any physical constraints. There are

no especial needs for physical resources, a simple personal computer suffices for the

prototype needs. Further explanation of the FURPS+ categories is given in each

category section in Appendix C.

4.1.3 Top Level Objectives

The top level objectives were defined as directives for the requirements definition

and had the thesis objectives in mind at all times.

The most important objective is the ”proof of concept”. This is the true purpose

of this prototype application hence, all the requirements must comply to this purpose

and help to validate or prove the concepts discussed in this thesis. With this in mind

several other objectives arise:

• Usability Concerns - the application does not need to follow usability stan-

dards or guidelines. Nevertheless, we wanted that both the requested and the

presented information to be understandable by the user.

• Performance Concerns - questions such has scalability, throughput, re-

sponse time among others were not a concern. It was not the purpose of this

prototype to show high performance capabilities. However, it should be noted

that some performance requirements are used to serve as metrics for system

testing purposes. The rational for this decision was that a real decision maker

would not mind to wait for the computation of the aggregated solution. How-

ever, it would matter if the user has to wait before interacting with the system,

this is, wait to insert data. Therefore the final decision computation is not a

performance concern, but the search mechanism should perform in reasonable

time since extra information is asked to the user afterwords.

44

4.2. CLOUDAID ARCHITECTURE

• Development Freedom - Although there are a few standards we decided to

follow (MVC model, or the XMCDA standard), there are no other development

constraints such as programming language or frameworks.

• Modular architecture to facilitate extensibility - the current prototype

should permit extensibility and modularity, hence to allow further develop-

ments. As so, the prototype capability to be extended and modified is a

requirement. It is our purpose to compose the building blocks for an environ-

ment that can be used by other researchers to test their own methods, not

only decision methods but also search capabilities or other new functionalities.

This lead to some architecture decisions such as the MVC model [70].

The full list of requirements identified in the elicitation process can be consulted

in Appendix C.

4.2 CloudAid Architecture

This section explains in some detail the prototype architecture with all of its compo-

nents, the execution flow and discusses some decisions made in the design process.

In Section 4.2.1 is discussed the notation used for the diagrams produced during the

design phase. In Section 4.2.2 the actual architecture is presented and a description

of its modules and components is given. An use case to show the stakeholders inter-

action with the system is presented in Section 4.2.3. In Section 4.2.4 are presented

the two data models used for the prototypes required data. Finally, the languages,

frameworks, tools and standards used are listed and their rational explained in Sec-

tion 4.2.5.

4.2.1 Diagram Notation

The first problem that emerged when trying to describe the system architecture was

to use a notation that could easily be understandable by all interested parties.

Although UML (Unified Modeling Language) [17] is the most well spread and

widely used tool in software projects the scope of its use is too software-based for

our primary objective. We wanted to easily describe and explain how the proto-

type works in a way that even non-software oriented people could understand the

meaning.

To achieve the above objective we chose the Fundamental Modeling Concepts

(FMC) [132] [65]. The goal is to provide the concepts to create and visualize models

enabling the different stakeholders to share a common understanding of a system’s

structure and its purpose. “FMC is based on strong theoretical foundations, it has

successfully been applied to real-life systems in practice (at SAP, Siemens, Alcatel

etc.) and is also being taught in software engineering courses at the Hasso Plattner

Institute for Software Systems Engineering.”. [132]

It should be stressed that FMC and UML are not different tools for the same

problem, they are rather complementary tools for different phases in the software

development lifecycle as shown in Figure 4.1.

45

CHAPTER 4. ANALYSIS AND SPECIFICATION

Figure 4.1: Software Lifecycle [3]

While UML is software-related and allows a complete description of the software

system with diagrams such as Class, Sequence, Use Case, Component Diagrams,

it fails at providing a standard description for system architectures. FMC on the

other side is system-related and fills in the void left by UML. ”FMC and UML are

not mutually exclusive since they are applicable in different phases in the software

development lifecycle” [3].

For the prototype application architecture we followed this approach and used

FMC for the general system architecture and UML for the software related specifi-

cations (Data Models, Sequence and Use Case diagrams).

Note that a more informal representation was also used for several diagrams.

These diagrams, however, are only used to facilitate the system comprehension and

are variations of the FMC notation with extra information. They should be viewed

as an intermediate step between the system architecture (FMC) and the software

specification (UML).

4.2.2 Overall Architecture

As stated in Appendix D the system application was entirely build with the MVC

(Model-View-Controller) Model in mind. From Figure 4.2 we can see the overall sys-

tem architecture described with the FMC notation. Two ideas are easily extracted

from the diagram: first, that the MVC Model was indeed implemented as speci-

fied by IMPR1 requirement. The second is the modular approach, as requested by

IMPR2 requirement and needed for the correct implementation of SR3 Requirement.

All these requirements can be consulted in Appendix C.

The system is composed of five modules decoupled from each other. These five

modules are coordinated by a sixth module (Controller) which only purpose is to

keep the system flow of execution and drive the data to the correct destination. The

six modules are:

• UI - the View in the MVC Model, is responsible for the user interaction, it

holds all the user interface for both the information retrieval and presentation.

• Controller - the Controller in the MVC Model, mediates the information

transactions between the View and the Models. It is responsible for the system

boot and consequent execution.

46

4.2. CLOUDAID ARCHITECTURE

• CSAEvaluator - the Model in the MVC Model. Is responsible for evaluating

and preparing the CSA data. This operations consist in data validation or

verification for example (i.e: there is no point in aggregate solutions composed

of only one service.)

• SearchEngine - the Model in the MVC Model, is responsible for service search

mechanism.

• DecisionEngine - the Model in MVC Model, is responsible for the decision

process for a determined ServiceTemplate.

• AggregationEngine - the Model in MVC Model, is responsible for the ag-

gregation process to find the final aggregated service solution.

Note that the Controller, SearchEngine, DecisionEngine and AggregationEngine

will be further discussed in Sections 4.2.2.2, 4.2.2.3 and 4.2.2.4.

47

C
H

A
P

T
E

R
4

.
A

N
A

LY
S

IS
A

N
D

S
P

E
C

IF
IC

A
T

IO
N

CloudAid

Controller

UI

Service Set
(TripleStore)

Linked USDL
Service

Descriptions

Cloud Taxonomy

Search Engine

JENA Engine

Search Core

Resource
Converter

REQ RES

Aggregation Engine

Decision Engine

Decision Core Normalizer

XMCDA
Converter

● ● ●JSAW

Decision Methods

JAHP

FileSystem

Combinations Aggregation Checker

Aggregation Core

CSA Evaluator

XMCDA
Converter

Decision Maker

User Data

CSA Data

CSA DataCSA Data

CSA Data

XMCDA

XMCDA

SPARQL

RDF

Figure 4.2: CloudAid High Level Architecture

4
8

4.2. CLOUDAID ARCHITECTURE

From Figure 4.2 is also possible to see the use of three external components:

• Decision Methods are used by the system to decide upon the alternatives

found for a particular ServiceTemplate. These methods can be simple or more

complex applications, each of them with their own logic. The important thing

to retains is the external component, this means that these methods can be

developed by third parties and used by the CloudAid Application. The link-

ing point is the Filesystem, that works as communication bridge between the

two entities: CloudAid Application and the Decision Method. It should be

stressed out that all the methods should comply with the XMCDA standard

for describing and publishing decision problems and results.

• Service Set is the service description repository. This repository holds all the

Linked USDL service descriptions and is where the service search is going to be

performed. Ultimately, this would be a triple store, as requirement SR2 states,

that would be populated from services crawled from the IoS, as requirements

FR4 indicates.

• Cloud Taxonomy has it has all the relevant cloud characteristics supported

by the CloudAid application. As requirement DR3 states, the use of an exter-

nal ontology to describe cloud concepts would benefit the search mechanism.

These concepts are therefore used in the SearchEngine module.

All the external communication to and from the CloudAid application can be

seen in Figure 4.3. This informal diagram tries to add some extra information to the

FMC notation by clearly stating which type of information is being communicated

and the frameworks and tools used.

An important remark is that besides the previous described external compo-

nents, a new one is introduced in Figure 4.3, the CloudGen. This component is a

cloud service description generator created with the sole purpose of testing the pro-

totype application. The rational behind the decision to include this new component

is simple, there are still not enough Linked USDL service description in order to

properly test the system. The fact that Linked USDL is still under development

explains the lack of service descriptions.

Since this new component is not a key element for the CloudAid Application

functioning but rather for its testing, we only briefly explain how it works and the

advantages of such an approach.

CloudGen

In order to test the prototype a huge amount of service descriptions is needed.

Although some manual descriptions were done, specially during the Linked USDL

initiative collaboration for the Pricing Model, they are far from enough for the need

of a suitable Service Set.

49

CHAPTER 4. ANALYSIS AND SPECIFICATION

Decision AlgorithmSet
JAHP JSAW

Decision Maker

User Data
Decision Results

ServiceSet

CloudGen

CloudAid

Cloud ConceptsCloud Concepts

Search Query

Services

Li
nk

ed
 U

SD
L

Se
rv

ic
es Decision Data

XMCDA

Decision Result

XMCDA

FileSystem

Po
st

G
et

ServiceSet
Manager

Pa
ra

m
et

er
s

Cloud Taxonomy

Web Scrapper
Se

rv
ic

e
D

at
a

Figure 4.3: CloudAid Project Architecture

Hence, the need for a generator capable of creating fair amounts of Linked USDL

service descriptions was evident. However, the generated services should be as simi-

lar as possible to real world services and not merely random generated services that

makes no sense for a potential buyer. With this constraint in mind the first concern

was to allow the generator to receive a series of characteristics extracted from real

service providers websites. These characteristics would be relevant for the generation

process by giving some ”real world” values for common service characteristics.

The second mechanism is the inclusion of a Service Set manager in the generation

process. This manager is responsible for providing service parameters to the genera-

tor. Then all this information is joined together and all possible service descriptions

are generated based on this input data.

Going back to Figure 4.3 we see the two sources of information: the Web Scrap-

pers, that extract information about real service characteristics and the Service Set

Manager that provides the desired service parameters. The result of the generation

is then populated into the Service Set Triple Store.

Note also the link between the CloudGen Application and the Cloud Taxonomy.

This has to do with the usage of the cloud concepts described in the CloudTaxonomy

ontology. This way we ensure that the newly generated service descriptions are

50

4.2. CLOUDAID ARCHITECTURE

already annotated with these concepts, thereby facilitating the search mechanism.

4.2.2.1 Controller

The controller is the most important component of the CloudAid Application. It is

responsible to boot the required resources and to start the application execution.

CloudAid

Decision
Engine

CSA
Evaluator

UI

Service Template,
Alternatives

Decision AlgorithmSet
JAHP JSAW

Decision Maker

User Input

User Output

CSA Data
(Service
Templates,
Requirements,
Criteria)

XM
CD

A

Search
Engine

Se
rv

ice
 T

em
pl

at
e

Al
te

rn
at

ive
s

Q
ue

ry

Re
su

lts

Cloud Concepts

Cloud Taxonomy

ServiceSet

Controller

Aggregation
Engine

Us
er

 D
at

a

De
cis

io
n

Re
su

lts

O
rd

er
ed

 A
lte

rn
at

ive
s

CSA Data.
User Preferences

Aggregation Results

1

2

3

4

7

5

6

8

10

11

13

9

15

14

Internet of Services

Service Descriptions

XM
CD

A
12

Figure 4.4: CloudAid Architecture

The concern about modularity and extensibility lead to this module that can

easily be modified if any major change to the normal functioning of the application

is to be performed. Figure 4.4 helps us to follow what exactly is the goal of this

component. It works as a dispatcher of data to the module responsible for the next

step in execution. If we take a deeper look into the flow we see the similarities with

the Figure 4.5 with the steps for defining an aggregated service solution.

First, in Step 2 we have the definition of the CSA components, which is also

the first step in the application, where the decision maker inserts the required data

51

CHAPTER 4. ANALYSIS AND SPECIFICATION

Identifying
Company Needs

Define service
Components/Architecture

Search for Cloud Service
Candidates

Choose Between All the
Candidates for Each Component

Contract the
Chosen Services

Final Composite Service Solution

Integrate All the
Services

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 4.5: Steps for defining a composite service solution

into the UI module (Step 1 and 2 in Figure 4.4). Then this input is evaluated and

analysed for incorrect data in step 3 of Figure 4.4.

After the input data, starts step 3 (Figure 4.5), the search for suitable alterna-

tives. This step corresponds to steps 4 to 7 in Figure 4.4, where the search engine

is called and executed.

Finally, we have step 4 (Figure 4.5), where a decision is made on which alterna-

tives to contract. This step corresponds to the execution of two modules, first the

DecisionEngine and then the AggregationEngine which correspond to steps 8 to 13

in Figure 4.4.

In all this process the Controller work is to call the responsible module, send the

required data, and then receive the results.

Since the FMC overall architecture diagram we have been going down in the

specification level, first in Figure 4.2 an high level system-related description was

presented using FMC notation, then in Figure 4.4 an informal notation was used to

serve as intermediate step, with extra information about data types and flow of ex-

ecution. In the CloudAid Public Repository all the Architecture Documents [6] can

be found, including code-related sequence diagram using UML notation for all the

modules herein presented. This exercise also demonstrates the process used during

the design phase of the CloudAid prototype application (from high abstraction to

52

4.2. CLOUDAID ARCHITECTURE

software-related).

4.2.2.2 Search Engine

This module has the purpose to wrap all the necessary search related mechanisms

in the application. Once again from SR3 and IMPR2 requirements (Appendix C),

we extract the need for modularity and extensibility, this way we ensure that any

extensions or modifications to the search mechanisms will only affect this module.

We also facilitate its comprehension since no knowledge of the remaining modules

is needed.

Although it is the second module to be invoked by the Controller, the Search

Engine is also responsible for an important task during the application boot process:

Initialize the Service Set. This way the application deals with this long task only

once.

After the initialization of the Service Set, as we saw in Figure 4.4, the Search

Engine is invoked after the CSA data has been collected, by the UI module, and

analysed by the CSAEvaluator module. The Search process is invoked for each

ServiceTemplate in the CSA. In other words, we want to search for alternatives

suitable for each ServiceTemplate based on their requirements.

SearchEngine

ServiceSet

SearchCore

Requirements Jena Engine

SP
AR

Q
L

Q
ue

ry

Q
ue

ry
 R

es
ul

ts

Search Results

ResourceConverter

Cloud Taxonomy

Cloud Concepts

Controller

Internet of Services

Service Descriptions

Se
rv

ic
e

Te
m

pl
at

e

Al
te

rn
at

iv
es

 w
ith

 C
rit

er
io

n
da

ta

Alternatives

52

6

1 8

3 4

Alternatives7

Figure 4.6: CloudAid Architecture: Search Engine Module

From Figure 4.6 we can see the entire search process and what kind of information

passes from one component to the other. The main steps are:

53

CHAPTER 4. ANALYSIS AND SPECIFICATION

1. Extract exclusive requirements: (Step 2 in Figure 4.6) The first step,

after receiving the ServiceTemplate data is to extract the exclusive require-

ments (see Section 4.2.4.2). These exclusive requirements are then sent to the

Jena Engine. The Jena Engine is the component responsible for creating and

executing queries based on the needed requirements. Please refer to Section

4.2.5 for an explanation of the frameworks and tools used in the Jena Engine

component. This is the key component in the search mechanism because it is

where the actual search happens.

2. Query the Service Set: (Steps 3 and 4 in Figure 4.6) The Jena Engine job,

after receiving the exclusive requirements, is to build upon these the specific

query. This query is then submitted to the triple store and the search results

are retrieved. These results are the suitable alternatives for the particular

Service Template being analysed.

3. Query the Service Set: (Steps 5 to 7 in Figure 4.6) After building the

query and get the search results, the Jena Engine must pass these results to

the ResourceConverter component. As previously stated our Service Set is

composed of Linked USDL Service Descriptions which are RDF triples. These

triples must be analysed and the relevant information extracted and converted

to a suitable data model that can be easily accessed and processed. Therefore,

the purpose of the ResourceConverter component is to receive a set of RDF

search results and convert them into the Service Data Model (see Section

4.2.4.2). Only then we can call the search results as alternatives.

4. Extract the Criteria values for each alternative: (Step 8 in Figure 4.6)

The final step is to take the newly converted alternatives and extract the

relevant feature values. These relevant features are those which are linked to

cloud characteristics that were defined by the decision maker as Criteria.

It should be stressed that the cloud concepts defined in the CloudTaxonomy are

used by the Jena Engine, as shown in Figure 4.6.

4.2.2.3 Decision Engine

The decision core responsibility is to receive a group of alternatives for a specific Ser-

vice Template and process those alternatives data in order to rank them accordingly

to their decision value.

Although it seems a simple process it is quite complex and involves several dif-

ferent components to achieve its final goal: return a ranked list of alternatives based

on the decision maker preferences. Again requirements SR3 and IMPR2 were the

focus in order to achieve the desired modularity and extensibility in this module.

The decision process depicted in Figure 4.7 has the following steps:

1. Receive a ServiceTemplate and their alternatives and criteria: (Step

1 in Figure 4.7) From the Controller module the Decision Engine receives the

ServiceTemplate data and the set of alternatives found by the Search Engine.

Note that as the Search Engine, also the Decision Engine is invoked once for

54

4.2. CLOUDAID ARCHITECTURE

DecisionEngine

XMCDA
Converter

Decision
Core

Normalized Alternatives,
Service Template

Normalizer

Alternatives,
Criteria

Normalized Alternatives

Controller

User Preferences

Ranked Alternatives

Data to Decide XMCDA

Po
st

 X
M

C
D

A
D

at
a

Decision ResultsXMCDA

G
et

 X
M

C
D

A
D

at
a

Decision AlgorithmSet

JAHP JSAW

G
et

 X
M

C
D

A
D

at
a

Po
st

 X
M

C
D

A
D

at
a

Alternatives,
Criteria,
Service Template

7

1

2

4

3

5

8

9
10

XMCDA Results11

Decision Results 12

13XMCDA file6

Figure 4.7: CloudAid Architecture: Decision Engine Module

each ServiceTemplate. We are deciding which of the found alternatives are the

best having in mind the user defined preferences.

2. Normalize its alternatives data: (Steps 2 to 4 in Figure 4.7) The first thing

to do with the alternatives data is to normalize their values. We want to com-

pare multiple different criteria, this means that the data must be uniformed.

This normalization process is performed by the Normalizer component and

may require extra user information, as for example the preferable value for a

specific criterion (e.g.: the user says: ”The best Storage capacity value for me

is 4Gb”, this means that the closer to 4Gb the Storage Capacity character-

istic value of the alternative is, the better). Step 3 in Figure 4.7 shows this

information required from the decision maker.

3. Convert the decision problem into XMCDA: (Steps 5 and 6 in Figure

4.7) After the normalization of the alternatives data, the decision problem is

ready. However, in order to cope with requirement SR2 it was decided to use

a standard language for describing decision problems to be used with MCDM

methods, XMCDA (see Section 4.2.5). A conversion has to be performed,

from the alternatives normalized data to the XMCDA format. This is were

the XMCDA Converter component is important, it receives data and returns

a XMCDA file with the decision problem.

55

CHAPTER 4. ANALYSIS AND SPECIFICATION

4. Publish the decision problem: (Steps 7 and 8 in Figure 4.7) Once the

XMCDA file is created it is published in the FileSystem for the MCDM method

to analyse and decide. The method to use, as explained in Section 4.2.3, is

chosen by the system based on a series of question asked to the decision maker.

By using the XMCDA standard we ensure that, if needed, the decision method

can be changed in different executions. It is also ensured the extension to other

decision method in future developments. After publishing the decision problem

the decision process is halted until the external Decision Method reaches a

result and publishes it.

5. Extract the decision results from XMCDA: (Steps 10 to 12 in Figure

4.7) When the external Decision Method publishes the result it also come in

the XMCDA format, therefore, a new conversion is needed. However, this time

we need to convert from XMCDA to a list of alternatives with their decision

results. The results are stored as alternative performances and must be stored

in the CSA Data Model as Results (see Section 4.10).

6. Rank the alternatives according to their decision value: (Step 13 in

Figure 4.7) The final step is to sort the list of alternatives according to their

decision value (performance) and return them back to the Controller.

4.2.2.4 Aggregation Engine

The Aggregation Engine is the final step in the execution flow of the CloudAid

application and unlike the Search and Decision Engines is only invoked once. The

reason is simple, this module is responsible to group together all the information

produced so far and compute it to find a final aggregated solution composed of one

alternative for each ServiceTemplate. Hence, it works with all the information from

the CSA and the Service Data Models.

From Figure 4.8 we can see the following steps:

1. Get ServiceTemplates weights: (Step 2 to 7 from Figure 4.8) The first

task, after receiving the data from the Controller, is to get the weight values

for each ServiceTemplate. These weights will be key values to compare ag-

gregated solutions. However, there are as many different ways to collect them

as Decision Methods. They can either be defined directly by the user when

inserting the CSA Data in the UI module or inside a Decision Method. For the

latter case we need to, once again, convert to XMCDA, publish the results for

the Decision Method to use, retrieve the results from the method and finally

convert them again to the CSA Data Model. This process is the same used in

the Decision Engine for evaluating the alternatives. In this case, however, we

are evaluating Service Templates according to their importance for the final

aggregated solution. For instance: A user can decide that a better database

(a database alternative with highest performance) is more important for his

goals than the other Service Templates in the CSA. In this case he gives an

higer weight to the database Service Template.

56

4.2. CLOUDAID ARCHITECTURE

AggregationEngine

XMCDA
Converter

Aggregation
Core

Service Templates

Combinations

CSA Data

Admissable Solutions

Controller
Best Aggregated Solution

Data to Decide XMCDA

Po
st

 X
M

C
D

A
D

at
a

Decision ResultsXMCDA
G

et
 X

M
C

D
A

D
at

a

Decision AlgorithmSet

JAHP JSAW

G
et

 X
M

C
D

A
D

at
a

Po
st

 X
M

C
D

A
D

at
a

CSA Data,
User Preferences

4

1

8

11

2

8

9
5

XMCDA Results6

ServiceTemplate
User Weights7

12
XMCDA file3

AggChecker

Ag
gr

eg
at

ed
 S

ol
ut

io
n

Bo
ol

ea
n

R
es

ul
t

10

9

Figure 4.8: CloudAid Architecture: Aggregation Engine Module

2. Compute the admissible aggregated solutions: (Step 8 to 11 from Fig-

ure 4.8) This is the Key step in this module. The Combinations component

is where the CSA Data is computed and aggregated combinations are gener-

ated. Each aggregated combination is composed of one alternative for each

ServiceTemplate. Everytime a new aggregated combination is generated the

system must check if it is admissible or not. This check mechanism is performed

by the AggChecker component (Steps 9 and 10 in Figure 4.8). An aggregated

solution is considered admissible if it meets all the CSA requirements and

if there are no restrictions of a particular ServiceTemplate alternative which

makes impossible to combine it with other ServiceTemplate alternatives.

3. Find the best admissible solution: (Step 12 from Figure 4.8) After all

the admissible aggregated solutions have been found they must be compared

to find the best solution based on the decision maker preferences. This is

where the ServiceTemplates weights extracted in step 1 come in. The final

aggregated solution is then returned to the Controller.

4.2.3 Application Use Case

The Use Case Diagram in Figure 4.9 tries to describe the possible interactions be-

tween the decision maker (stakeholder) and the system. The idea is to show which

are the system functions used by the decision maker and what are the interaction

57

CHAPTER 4. ANALYSIS AND SPECIFICATION

CloudAid Application

Decision Maker

Add
ServiceTemplate

Add Requirement

Add Criterion

«uses»

«uses»

«uses»

Insert Weight

Insert Preference

«uses»

Choose Decision
Method

Figure 4.9: CloudAid Architecture: Use Case Diagram

points. As we can see from Figure 4.9 there are five possible interactions for the

only existent stakeholder, the decision maker:

1. Choose Decision Method - The user interacts with the system in order to

choose the decision method he feels comfortable using. The system may ask a

series of questions to know what is the best option.

2. Add Requirement - The user interacts with the system in order to insert

data about a new requirement. The data includes: name, cloud concept,

minimum, maximum limit or specific value, if the alternatives must have or

must not have the chosen cloud concept and if the requirement is also going

to be a criterion or not.

3. Add Criterion - The user interacts with the system in order to insert data

about a new criterion. These data includes: name, weight for the decision pro-

cess, the preference direction (maximizing or minimizing) and the preference

value if it exists (uses Interactions 5 and 6).

4. Add Service Template - The user interacts with the system to insert data

about a new Service Template. The data includes: Service Template type and

description. Then it is possible to add both requirements and criteria to the

newly created Service Template (uses Interaction 2 and 3).

5. Insert Weight - The user interacts with the system to insert data about the

decision weight for a specific criterion. This weight can also be asked by the

system if needed depending on the decision method to be used.

58

4.2. CLOUDAID ARCHITECTURE

6. Insert Preference - The user interacts with the system to insert data about

the preference value for a specific criterion. This preference will be later used

in the decision process. The system may also ask for a preference if needed.

4.2.4 Data Models

The problem this thesis proposes to solve relates to two different levels of data. One

is clearly defined by the decision maker and groups the information about what the

decision maker wants to find (service templates, requirements and criteria). The

other is the service set where the search for alternatives that meet the first group of

information is going to be performed.

With this in mind our architecture has also divided these two types of information

into two data models:

• Composite Service Architecture (CSA) Data Model - Groups all the

decision maker input information related to his needs. This information is the

one gathered from the use case interactions depicted in Section 4.2.3.

• Service Data Model - Is a representation of the service description imported

from the service set (Linked USDL triples) and is intended to represent avail-

able cloud services. This representation holds the service related data such as

service features, price and service name.

4.2.4.1 CSA Data Model

As stated before the CSA Data Model hold all the decision maker input data. This

means that this data model is a representation of the services and their character-

istics that the user is looking for. It can also be seen as the overall template for the

search engine where the alternatives (candidate services) must fit.

From Figure 4.10 we can see five entities:

• CSAData - is the wrapper entity that hold all the CSA entities listed bellow.

Everytime a decision maker starts the application one CSAData will be created

to hold his input data.

• ServiceTemplate - is the equivalent to a service in the aggregated solution.

In other words, when creating a new ServiceTemplate the decision maker is

telling the system that he wants to have a new group of functionalities in its

final solution. Each ServiceTemplate will correspond to a search and decision

process to first find the suitable alternatives an then decide which are the best.

• Requirement - is a special need specified by the decision maker for one of the

two possible scopes: the CSA or a particular ServiceTemplate. A requirement

can be exclusive or not. If a requirement is exclusive it means that all the

candidates that do not comply will be ignored. However, if the requirement is

not exclusive the candidates that do not comply will still be suitable candidates

(alternatives) for the decision process. For a requirement to be exclusive it

must meet at least one of the following constraints:

59

CHAPTER 4. ANALYSIS AND SPECIFICATION

– have a maximum value defined

– have a minimum value defined

– it is not a criterion

Note that a requirement can be at the same time a criterion if the decision

maker wishes so. In this case a Criterion is created and added to the same

scope as the requirement.

• Criterion - is a service characteristic to have in consideration during the

decision process. Holds the information needed for the decision to take place.

This information is for example the weight, a preference value if it exist and

a preference direction, either maximize, if we want the highest value possible

for the criterion or minimize, if we want the lowest possible value.

• Result - is a wrapper entity used for storing the results of the decision process.

It holds the alternative data plus the performance value calculated in the

decision process.

60

4
.2

.
C

L
O

U
D

A
ID

A
R

C
H

IT
E

C
T

U
R

E

Figure 4.10: CloudAid Architecture: CSA Data Model

6
1

CHAPTER 4. ANALYSIS AND SPECIFICATION

From Figure 4.10 we can see the relationships between entities:

• A CSAData entity can have a list of Requirements, Criteria and ServiceTem-

plates

• A ServiceTemplate can have a list of Requirements, Criteria and Results

4.2.4.2 Service Data Model

The Service Data Model is responsible for storing the service related data. Everytime

a suitable candidate for a particular Service Template is found its data is converted

from Linked USDL and stored in the Service Data Model.

From requirement INTR3 in Appendix C Table C.8 we take the need for this

data model to be as similar as possible to the Linked USDL service description.

Therefore, with this requirement in mind the following entities were created and can

be seen in Figure 4.11:

• Offering - is the representation of the ServiceOffering class from Linked USDL

Core module [100]. However, it holds more information than the original class

for example it has all the service features. Since what the decision maker is

looking for is a concrete offering of a specific service that meets his require-

ments, it was decided to make the Offering the main entity and store all the

service data in it. It was considered redundant to have the Linked USDL

model 100% replicated into the Service Data Model so, hereby relaxing the

INTR3 requirement. Therefore, the Offering entity groups all the relevant

Linked USDL classes and properties in one place.

Besides the service features the Offering also holds the values for each of the

criteria defined by the decision maker, also called attributes, as well as the

calculation values for each of these attributes.

• QualitativeFeature - is a quality of the service which has a name, a descrip-

tion and a type. The type is related to one element of the QUAL FEATURE

list.

• QuantitativeFeature - is a quantitative property of the service, which has

a name, a description, a numerical value, a type and a unit of measure-

ment (Gb, Mb, GHz,...). The type is related to one of the element of the

QUANT FEATURE list.

Both QualitativeFeature and QuantitativeFeature entities were created having

in mind the Linked USDL usage of the GoodRelations ontology [55], which divides

concepts in two groups: the concepts that can be quantified (Eg: storage capacity or

number of CPU cores,...) and the concepts that are not possible to quantify referred

to as qualities (Eg: storage type, backup policies,...).

Another important need for this particular data model comes from requirement

DR3 in Appendix C Table C.6, the use of an external ontology for cloud concepts.

This lead to the creation of two lists of concepts to wrap the CloudTaxonomy (see

Section 5.1) list of concepts:

62

4.2. CLOUDAID ARCHITECTURE

• QUAL FEATURE - holds all the qualitative characteristics of cloud services

defined in the CloudTaxonomy.

• QUANT FEATURE - holds all the quantitative characteristics of cloud

services defined in the CloudTaxonomy.

63

C
H

A
P

T
E

R
4

.
A

N
A

LY
S

IS
A

N
D

S
P

E
C

IF
IC

A
T

IO
N

Figure 4.11: CloudAid Architecture: Service Data Model

6
4

4.2. CLOUDAID ARCHITECTURE

Note that the GoodRelations approach for the two groups of concepts (Qualita-

tive and Quantitative) was also applied in the distinction of the cloud concepts. The

attributes are the values that the candidate (Offering) has for the criteria defined

by the decision maker.

Although they are used for different purposes in the application, the CSA Data

Model and the Service Data Model can be linked together at least at a conceptual

level. An Offering is an alternative (suitable candidate) found by the search process

that meets all the requirements of a particular ServiceTemplate. The attributes are

the values of the found alternative for the defined criteria. So, if the decision maker

defines a ServiceTemplate, T, with a list of Requirements, R, and a Criterion, C,

after the search process the Offering will hold the data about a service offering, O,

that meets the list of Requirements R and will have an attribute with the Service

offering O value for the Criterion C.

4.2.5 Languages, Frameworks and Tools

An important phase in the design of any software system is to choose what languages,

tools and frameworks should be used in the development. As we can see from the

requirements list in Appendix C there are no constraints about the languages or

special frameworks to use. Therefore, most of the choices had to do with personal

preferences and knowledge of its use. Nevertheless, there were still some mandatory

standards followed in order to cope with some requirements.

JAVA

The use of JAVA language was a personal choice, since the experience with this

programming language was far greater than any other option. However, its versatil-

ity, community support and amount of different libraries is seen as advantages over

other possibilities. Therefore, it was chosen as the development language for the

CloudAid prototype application.

RDF Framework

As some requirements denote, the need for the interaction with RDF files is a key

element. The Service Set is described with Linked USDL, a RDF model. Hence,

the need for a framework to work with semantic concepts was a concern. Moreover,

this framework had to be JAVA compliant since JAVA was the chosen language.

The work in [53] presents a good analysis report of RDF tools and stores. However,

since CloudAid has no major concerns about performance, the only real need is

the compliance with both JAVA and the semantic web standards, RDF/XML, N3,

SPARQL, OWL, etc.

The final decision was the use of the Apache JENA framework [2]. The main

reason was the previous experience with this framework which could facilitate the

development time, reducing the learning time that would come from the use of a

new framework. Moreover, being one of the most widely-used frameworks allows a

fair amount of confidence in its capabilities as well as its community for support.

The search engine is the module that will wrap this framework, particularly, the

65

CHAPTER 4. ANALYSIS AND SPECIFICATION

Jena Engine component will be responsible to hold all the API calls to build and

execute the SPARQL queries.

XMCDA JAVA Library

As already stated in Section 4.1 one of the key requirements is the system capability

to use multiple decision methods and allow the later extension to other methods.

This need lead to the use of a standard introduced by the Decision Deck group,

XMCDA [34]. This standard is a XML schema specially conceived for describing

MCDM concepts and data structures and its documentation can be consulted in [34].

This standard allows to model the decision problem in an uniform way, capable of

being used by any method that also implements the XMCDA schema.

As the Decision Deck [34] states, the goals of XMCDA are:

• the interaction of different MCDA algorithms;

• the execution of various algorithms on the same problem instance;

• the visual representation of MCDA concepts and data structures via standard

tools like web browsers.

In order to use this standard with the JAVA language the Decision Deck provides

a JAVA API implementation that wraps all the methods to read and write XMCDA

files. The CloudAid application uses this API in all the XMCDA import/export

operations.

4.3 Test Plan

As part of the analysis and specification phase a test plan is presented as well as the

overall considerations necessary in order to execute it. Thus Section 4.3.1 presents

the testing environment where the tests are to be executed. Then from Sections

4.3.2 to 4.3.8 each presents the test plan for the categories of requirements listed

in Appendix C: Funtional, Usability, Reliability, Performance, Supportability, the

threee system constraints (Design, Implementation and Interface) and finally in 4.3.8

the integration tests are presented. Note that all the requirements mentioned in this

section are presented in Appendix C.

4.3.1 Testing Environment

Before presenting the test plan it should be stressed the environment to be used

during the entire testing phase. Since this prototype is a standalone version no

connection to the internet is required. During the testing it was used the JDK 1.6

version however the application should be compliant with previous JDK versions.

The machine specifications used for the entire testing phase are:

• MacBook Pro 15-inches, mid 2010

• Processor: 2.4 GHz Intel Core i5 with two cores

66

4.3. TEST PLAN

• L2 Cache (per Core): 256 KB

• L3 Cache: 3 MB

• Memory: 8 GB 1067 MHz DDR3

• Graphics: NVIDIA GeForce GT 330M 256 MB

• Operating System: OS X 10.8.3

4.3.2 Functional Requirements

TFR1 Tests for functional requirement FR1 ”Add a ServiceTemplate to the CSA”:

• Verify if the system successfully adds a new ServiceTemplate with correct to

the CSA Data.

• Verify if the system correctly adds ServiceTemplate weight in CSA Data.

• Verify if using non-numerical values as a ServiceTemplate weight is not allowed.

TFR1.1 Tests for functional requirement FR1.1 ”Add a Requirement to a Ser-

viceTemplate”:

• Verify if the system successfully adds a new requirement with correct data to

the ServiceTemplate.

• Verify if the system does not allow to add a new Requirement with wrong

Requirement type.

• Verify if the system does not allow to add a new Requirement with bad field

types.

• Verify if the system also adds a new Criterion if the added Requirement is

defined as being also a Criterion.

TFR1.2 Tests for functional requirement FR1.2 ”Add a Criterion to a ServiceTem-

plate”:

• Verify if the system successful adds a new Criterion with correct data to the

ServiceTemplate.

• Verify if the system does not allow to add a new Requirement with wrong

Requirement type.

• Verify if the system correctly adds Criterion weight to the ServiceTemplate.

• Verify if using non-numerical values as a Criterion weight is not allowed.

67

CHAPTER 4. ANALYSIS AND SPECIFICATION

TFR2 Tests for functional requirement FR2 ”Add a Requirement to the CSA”:

• Verify if the new CSA Requirement is correctly generalized to all Service Tem-

plates in the CSA.

Besides the above test list, all the tests performed in TFR1.1 are also used in TFR2,

however the test scope is no longer the ServiceTemplate but rather the CSA.

TFR3 Tests for functional requirement FR3 ”Add a Criterion to the CSA”:

• Verify if the new CSA Criterion is correctly generalized to all Service Templates

in the CSA.

Besides the above test list, all the tests performed in TFR1.2 are also used in TFR3,

however the test scope is no longer the ServiceTemplate but rather the CSA.

TFR5 Tests for functional requirement FR5 ”Search for services that fulfill the

ServiceTemplate Requirement list”:

• Verify if the System successfully returns all the available service offerings that

fulfill multiple requirements at the same time.

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”Services without feature X”

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”minimum value for feature X”

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”maximum value for feature X”

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”specific value for feature X”

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”minimum price value”

• Verify if the System successfully returns all the available service offerings that

fulfill a requirement of the type: ”maximum price value”

Functional requirements FR5, FR5.1, FR5.2, FR5.3, FR5.4 and FR6 can and

will all be tested in the same test cases as FR5. This has to do with the need

to test the system capability of searching for multiple requirements (FR5), this

means that the test case can be built in a way that is possible to test all the above

functional requirements at the same time. Each test case will directly deal with each

independent functional requirement.

TFR7 Tests for functional requirement FR7 ”Get the service values for the defined

Criteria”:

• Verify if the system collects the right features values for the defined Criteria.

68

4.3. TEST PLAN

TFR9 Tests for functional requirement FR9 ”Read Linked USDL service descrip-

tions”:

• Verify if the system extracts all the ServiceOffering Qualitative and Quantita-

tive Properties.

• Verify if the system correctly extracts the PriceComponents prices defined with

the hasPrice property.

Since requirements FR9.1 and FR9.2 are children of requirement FR9 they are both

tested in TFR9.

TFR11 Tests for functional requirement FR11 ”Import/Export XMCDA decision

data”:

• Verify if the system exports the data from the decision problem to a XMCDA

file.

• Verify if the system imports a XMCDA file and can read the results.

TFR12 Tests for functional requirement FR12 ”Rank the services according to

their decision value”:

• Verify is the system can sort (from the highest to the lowest) the results re-

trieved from the XMCDA file.

Requirements FR13 to FR13.4 will be tested during the reliability tests in TRR8

since there was no point of testing the capability of the system of performing such

tasks without the reliability of the resultant data.

TFR14 Tests for functional requirement FR14 ”Generate Aggregated alterna-

tives”:

• Verify if the system generates valid aggregated solutions for the Admissible

solution algorithm.

TFR15 Tests for functional requirement FR15.1 ”Calculate the admissible aggre-

gated solutions based on price requirements”:

• Verify if the system can distinguish the admissible aggregated solutions based

on price requirements.

TFR16 Tests for functional requirement FR16 ”Decide which is the best admis-

sible solution from the admissible solutions list”:

• Verify if the system can compare and evaluate admissible aggregated solutions.

69

CHAPTER 4. ANALYSIS AND SPECIFICATION

4.3.3 Usability Requirements

The usability tests are mainly concerned with user acceptance and user comprehen-

sion of the prototype interface. These tests would be performed using questionnaires

to be filled by end-users. Some possible questions would be:

• Did you understand the questions asked by the application?

• Did you understand what information was being asked?

• Did you follow all the steps in the execution process from the Data Input to

the Final solution?

• Did you have difficulties in proceeding to the next step because you did not

understand what to do next?

• Did the application show the desired information at the right time?

Note that these questions are highly related to the usability requirements stated

in the requirements list, as they try to answer to what extent are these requirement

fulfilled.

4.3.4 Reliability Requirements

TRR1 Tests for reliability requirement RR1 ”Correct normalization of ServiceTem-

plate Weights”:

• Validate the result values for the normalization of ServiceTemplate weights.

TRR2 Tests for reliability requirement RR2 ”Correct normalization of Criteria

weights”:

• Validate the result values for the normalization of Criteria weights.

TRR3 Tests for reliability requirement RR3 ”Correct Decision Data Export/Im-

port to XMCDA”:

• Validate the resultant XMCDA file with the decision problem data.

• Validate the data extracted from the XMCDA file with the decision results.

TRR4 Tests for reliability requirement RR4 ”Correct service price calculation”:

• Validate the calculation result for the price of a ServiceOffering.

TRR5 Tests for reliability requirement RR5 ”Correct decision on the Admissible

Solutions Algorithm”:

• Validate the list of admissible solutions returned by the Admissible Solutions

Algorithm.

70

4.3. TEST PLAN

TRR6 Tests for reliability requirement RR6 ”Correct calculation of the overall

admissible solution decision value”:

• Validate the final decision value assigned to each of the admissible solutions.

TRR8 Tests for reliability requirement RR8 ”Correct normalization of Decision

characteristics”:

• Validate the result values for the normalization of Numerical Decision charac-

teristics.

• Validate the result values for the normalization of Binary Decision character-

istics.

• Validate the result values for the normalization of Non-Numerical Decision

characteristics.

4.3.5 Performance Requirements

TPR1 Tests for performance requirement PR1 ”Admissible Algorithm perfor-

mance with high amount of alternatives”:

• Check response time of the admissible algorithm with different amounts of

alternatives combinations.

TPR2 Tests for performance requirement PR2 ”Allow the search of a high number

of service descriptions”:

• Check the difference in response time for searching a ServiceSet with increasing

number of triples.

4.3.6 Supportability Requirements

The tests for supportability requirements are highly conceptual and difficult to test.

However, by designing and executing the Test Plan we can ensure the system testa-

bility, hence ensuring requirement SR1,”Testable System”.

The SR2, ”Allow the use of different Decision Methods”, and SR3, ”Allow the

ease of functionality extension”, are also justified by the prototype implementation

itself. By using the MVC model and increasing the modularity the ease of function-

ality extension should be ensured by itself. SR2 Requirement should also be justified

by the usage of two different MCDM methods.

4.3.7 Design, Implementation and Interface Requirements

These three categories introduced by FURPS+ in addition to FURPS were consid-

ered, as the specification itself states, system constraints. Thereby, the testing of

these requirements is not possible beyond the usage verification of the standards and

procedures listed.

Some requirements such as DR1, IMPR1 or IMPR2 are highly conceptual and

can only be attested by analysing the system architectural design. Others, such as

DR3 or INTR2 were already validated through the functional requirements testing.

71

CHAPTER 4. ANALYSIS AND SPECIFICATION

4.3.8 Integration Tests

While in the previous sections the tests were oriented to each module in the system,

this phase aims at grouping all the modules and test its interaction.

These tests will validate if the system is working as it should as a whole and if

the results are reliable.

SIT System integration tests:

• Validate the results passed from each module to the next.

• Verify if the execution flow follows the right steps.

72

5
Semantic Models

The objective of this chapter is to present the two semantic models developed herein

in this thesis. This models are part of the research effort and are important elements

to consider during the development of the CloudAid Prototype. Thus, Section 5.1

discusses the CloudTaxonomy, an ontology of cloud concepts. Section 5.2 presents

and discusses the Linked USDL Pricing module developed in collaboration with KMI
1 and SAP Research 2.

5.1 Cloud Taxonomy

As part of the CloudAid project the CloudTaxonomy was a key step to achieve

the desired results for the application prototype. In this chapter are explained

all the CloudTaxonomy related topics. Section 5.1.1 presents the overall objective

of the Cloud Taxonomy and why the need for such artifact. The methodology

followed in both the research and development are described in Section 5.1.2. Section

5.1.3 presents the related work in Cloud Ontologies and their use in recent research

projects as well as some rational on some of the decisions that lead us to the final

result. The full description of all the modules can be found in Appendix F.

5.1.1 Objective

While tring to describe cloud services we found ourselves with the difficulty to dis-

tinguish service features and characteristics. However, at the same time, it was

clear that most of the services use a common set of characteristics to describe their

services and its features. Amazon EC2 3 for instance describes their computing

instances regarding CPU, memory, storage, number of cores and so on. The same

happens with GoGrid 4 that uses CPU cores, RAM and Storage. Although these

characteristics might have different names they relate to exactly the same thing.

The Amazon EC2 Memory is the same concept as the GoGrid RAM.

1http://kmi.open.ac.uk/
2http://www.sap.com/index.epx
3http://aws.amazon.com/ec2/instance-types/
4http://www.gogrid.com/products/pricing

73

http://kmi.open.ac.uk/
http://www.sap.com/index.epx
http://aws.amazon.com/ec2/instance-types/
http://www.gogrid.com/products/pricing

CHAPTER 5. SEMANTIC MODELS

This different way of describing the same concept perpetrated by service providers

highly increases the complexity of any search engine willing to find services with a

defined set of characteristics. While a user may be asking for a service with 2Gb

of Memory the service may have RAM in its description. This is exactly where the

semantic web can be of crucial importance. By attaching semantic knowledge to a

specific concept we can ease description comparability.

By using an ontology that groups these concepts, any service provider can enrich

their service description by annotating its features with extra semantic information,

allowing not only search engines to find their services more efficiently but also con-

sumers to better understand what the features are all about. As the authors state

in [89] ”the main problem in Cloud Computing is the lack of unified standards.”.

Also by the Open Cloud Manifesto [77] one of the key challenges for increasing cloud

adoption is interoperability. Therefore, with all these concerns in mind and from

[89] we identify the key objectives for using a Cloud Ontology:

• Enable standardization of cloud service descriptions

• Enable interoperability between different service providers

• Enable intelligent discovery of services

• Enable service composition/aggregation

5.1.2 Methodology

With the objective clearly defined, a several steps process was devised in order to

achieve it and asses possible development paths. With this in mind we followed

these 5 steps:

1. Identify key service characteristics

This was mainly a search task, where a group of major cloud services was

analysed and their characteristics were extracted. This first step gave us the

insight needed for understanding which are the common service characteris-

tics described by the service providers for their services and that we want to

described in an Ontology. All kinds of XaaS were analysed and their character-

istics grouped into categories (e.g.: Storage as a Service, IaaS, PaaS, SaaS,...).

2. Search for suitable alternatives to describe these characteristics

After obtaining a list of cloud services characteristics we searched for work

already done to group these concepts in an ontology (see Section 5.1.3).

3. Compare and contrast ontologies alternatives

From the different cloud ontologies available the advantages and disadvantages

of each had to be considered. Some had not enough info, or were used for

completely different scenarios or had different objectives as it will be explained

in Section 5.1.3. A good example of the results produced in this step is Figure

5.1, also explained in Section 5.1.3.

74

5.1. CLOUD TAXONOMY

4. Develop our own Cloud Taxonomy

Having reached a decision that none of the alternatives is suitable for our

purpose, the next step was to start the development of our own ontology to

describe all the concepts extracted from step 1 (see Appendix F).

5. Apply the taxonomy in real services and refine it

In order to test and validate the final result an iterative process started. Every

time a new service was described with Linked USDL the Cloud taxonomy was

used to annotate the service features. If the service needed extra information,

or if with the current state of the taxonomy it was not possible to properly

describe the service feature, the taxonomy was revised and updated. This step

was concurrent with the Linked USDL Pricing model development (see Section

5.2) as all the services used as Pricing examples were also used for the Cloud

Taxonomy validation.

5.1.3 Cloud Ontologies

In [134] the authors present a first approach to a Cloud Computing ontology out-

lining its components and their relationships. However, there is a clear service

orientation as the different cloud layers [84] are distinguished from one another.

This service oriented approach is also followed by several other authors as in [109],

where a taxonomy is developed in order to describe the cloud architecture and then

map the various cloud providers. Although these are interesting steps towards the

standardization of the cloud, they fail at describing the actual resources provided in

a cloud service. Our goal is not to describe the service itself but rather capture its

features and provided resources.

The work presented in [47] and [89] by the mOSAIC project takes us a step closer

towards our goal. It clearly defines a list of cloud concepts to be described by the

ontology. Furthermore, the mOSAIC shares some of the same objectives, ”Very few

efforts have been done in order to propose a unified standard for Cloud Computing.

This is a problem, since different Cloud systems and vendors have different ways

to describe and invoke their services, to specify requirements and to communicate.

mOSAIC project addresses these problems by defining a common ontology and it

aims at developing an open-source platform that enables applications to negotiate

Cloud services as requested by users.” From [47] we extract a list of cloud services

concepts captured by the mOSAIC ontology:

• Service Models

• Service Deployment Models

• Service Capabilities and/or Functional Properties

• Service Availability

• Service Non-Functional Properties

• Service Level Agreements

75

CHAPTER 5. SEMANTIC MODELS

• Security and Quality of Service

• Service Characterization

• Service Classification

• Service Resources

Since our cloud services are fully described with Linked USDL some of the above

topics, such as, Service Level Agreements and Service Models are already covered.

This shifts our interest to other topics such has Service Resources, Service Capabili-

ties and/or Functional Properties and Service Non-Function Properties. Once again

the aim is not to describe the service itself but provide the means to ease the search

process for cloud resources and capabilities provided by a cloud service.

Notes:

label: ✓
Partial mOSAIC	
 may	
 have	
 a	
 top	
 Class	
 but	
 it	
 is	
 not	
 enough
✗

Data IaaS PaaS
mOSAIC mOSAIC mOSAIC

Storage ✓ Operating	
 System ✓ Laguange Partial
GET	
 Request ✗ CPU	
 Architecture ✓ Users ✗
Delete	
 Request ✗ CPU	
 Flops ✓ API	
 Calls ✗
PUT	
 Request ✗ CPU	
 Cores ✓ Websites ✗
Copy	
 Request ✗ CPU	
 Speed ✓ Traffic ✗
Post	
 Request ✗ CPU	
 Type ✓ Applications ✗

LIST	
 Request ✗ Memory	
 Allocation ✓ Support
Redundancy ✗ Memory	
 Size ✓ mOSAIC
Transfer	
 IN ✗ I/O	
 operations ✗ Videos ✗
Transfer	
 OUT ✗ HTTP	
 Requests ✗ LiveChat ✗
Transfer	
 Rate ✓ HTTPS	
 Requests ✗ SupportTeam ✗
Bandwith ✓ DiskSize ✓ "24/7" ✗
File	
 Size ✗ Load	
 Balancing ✗ Forum ✗
Data	
 Processed ✗ Network	
 Public	
 Bandwith ✓ Developer	
 Center ✗

Cache	
 Size ✓ Network	
 Internal	
 Bandwith ✓ Security
Queries ✗ Network	
 latency ✓ mOSAIC
Writes ✗ Network	
 Delay ✓ SSL ✗
Reads ✗ Public	
 IP ✗ SSH ✗
Type Partial Elastic	
 IP ✗ Firewall ✗
Transactions ✗ IPv4 ✗ VPN ✗
Records ✗ IPv6 ✗ Anti-­‐virus ✗

Authentication Others Deployment
mOSAIC mOSAIC mOSAIC

OATH ✓ Availability Partial Combined	
 Cloud ✓
Users ✓ Durability Partial Private	
 Cloud ✓
Token	
 Authentication ✗ Consistency Partial Hybrid	
 Cloud ✓
OpenID ✗ Reliability Partial Private	
 Cloud ✓

Interface Scalability Partial Public	
 Cloud ✓
mOSAIC Location Partial Community	
 Cloud ✓

API ✓ Backup/recovery Partial Model
Command	
 Line ✗ License ✗ mOSAIC
Console ✗ Monitoring Partial IaaS ✓

Encryption Partial PaaS ✓
Platform ✓ SaaS ✓
Consistency ✓ BPaaS ✓
Replication ✓

Services	
 from	
 http://cloudtaxonomy.opencrowd.com/taxonomy/

Described	
 by	
 mOSAIC

Not	
 described	
 by	
 mOSAIC

Figure 5.1: Cloud Service Characteristics mOSAIC Comparison

76

5.2. PRICING MODEL

Several other papers point to the use of a cloud ontology to enhance search

capabilities. The work in [52] develops a cloud service discovery system and makes

use of a cloud ontology to reason about the similarities of different cloud services.

This is an interesting approach, however, our problem in not to discover the services,

since we already have a full service set of service descriptions based on Linked USDL,

but rather decide which of them fulfill the user set of requirements.

Nevertheless, the work developed in [52] and later in [59] and [58] named as

Cloudle project, is significant to prove the enhancement capabilities of a cloud on-

tology in a cloud service search mechanism. However, at the time it was not possible

to access the full description of the ontology, hence, hampering the assessment of

possible application to our problem.

Since we could not analyse what seemed to be the most promising option, the

ontology used in Cloudle project, the other alternative was the mOSAIC 5. There-

fore, a deeper analysis was performed to the mOSAIC ontology in order to assess

the degree of completeness for describing cloud resources. Figure 5.1 shows these

comparative analysis.

The comparison was made with regard to the list of cloud service characteristics

extracted from an analysis of all the providers listed in the Cloud Taxonomy by

the OpenCrowd [94]. From Figure 5.1 we can see that mOSAIC fails at describing

most of the cloud service characteristics. This lead to the creation of our own Cloud

Taxonomy. This Cloud Taxonomy, however, tries to build upon the previous work

and uses some of their concepts.

5.2 Pricing Model

Besides the Cloud Taxonomy the other semantic model used was Linked USDL.

This time the objective is to describe the Cloud Services themselfs instead of the

cloud concepts used by them. Linked USDL is still under development and some

of its modules were still very primitive. Therefore, we saw a good collaboration

opportunity to leverage the work already done as well as to improve a key element for

this thesis main purpose: providing a mechanism to help decision makers to decide

which cloud services to aggregate based on the their requirements and criteria.

5.2.1 Motivation

It is hard to dissociate Cloud Computing from the cost reduction aspect since it

has been pointed out as one of its biggest advantages. This topic as already been

greatly discusses in the literature [10]. In fact, the consensus about the cost reduction

importance comes not only from the academic world but also from the actual market.

According to the CloudWatch study of 2012 [27] from Cisco ”In 2011, reducing cost

was the #5 benefit of cloud. In 2012, this is the #1 benefit (57%)...Cost savings are

widely known to be the primary driver for adopting cloud services, with promises

5The relevant documents about the mOSAIC project were kindly provided by ing. phd Pasquale

Cantiello to whom we thank

77

CHAPTER 5. SEMANTIC MODELS

of reduced capital outlay.”. Thus, we can conclude that one of the most important

non-technical aspect evaluated when enterprises think in migrating to the cloud is

the price.

In this thesis we propose a mechanism to help decision makers to decide which

cloud services to use and aggregate for their specific requirements and criteria. With

this in mind an aspect such as price cannot be ignored, it should instead be treated

with special interest. Consequently, the service description language must have the

means to describe the relevant information about services pricing models.

However, it seems that nothing substantial has been done lately to formalize the

pricing aspect. As the USDL authors state in [20], ”...there seems to be a lack in

formalizing non-technical aspects of a service, such as pricing, benefits, quality of

service or legal requirements. USDL is an attempt to include such information in

a structured way.”. In fact, USDL through its business component tried to capture

the pricing models and formalize them.

In the semantic field we find ontologies such as GoodRelations [55] that capture

pricing components such as values, currencies, payment methods and so on, which

by themselves are important. However, they fail at providing a suitable structure

to describe pricing models and pricing plans.

Thus, we wanted to endow the Linked USDL with its predecessor capability to

describe pricing. However, keeping Linked USDL main objective simplicity.

5.2.2 Challenges

Cloud Services are widely known by their ”pay-per-use” model or as the author

defines in [10], ”Pay-as-you-go”. This means a dynamic pricing model adapted to

change based on the customer usage of the service (Gbs, Hours, etc). This was in

fact the biggest challenge faced when tackling cloud pricing models. Rather than

simple price tags, characteristic from products or even most of common services,

with Cloud Services we were looking at highly dynamic models where not only the

base price is calculated based on the usage but also discounts or freebies are given

based on it. This dynamic price models are usually defined with formulas, thus a

mechanism to describe this formulas and if possible calculate the final price within

our model would be the best option.

Another challenge was to capture the correct affectation of the price to the

Service Offering properties. It usually happens that a Service Offering is composed

of different services (bundles) and depending on those services and their properties

the overall price varies.

Nevertheless, we still wanted the final model to be comprehensible and applicable

by those who could really use it to describes their services.

5.2.3 Methodology

In collaboration with the KMI 6 and SAP Research 7, we decided to meet weekly,

for discussing the model and the progresses being made. This lead approximately

6http://kmi.open.ac.uk/
7http://www.sap.com/index.epx

78

http://kmi.open.ac.uk/
http://www.sap.com/index.epx

5.2. PRICING MODEL

to four months of development.

One of the proposed objectives was the simplicity of the pricing model, allowing

for an easy understanding of the model by anyone willing to use it. Therefore, our

goal was not to be able to describe 100% of the services pricing models, but it would

suffice with 80%, or at least the most common pricing models used in Cloud Services

as is pay-per-use or table based pricing.

This lead to an use case driven approach. A first step of identifying critical ser-

vices was fundamental in targeting a few cloud services that could be representative

of most of the Cloud Services pricing characteristics and at the same time serve as

example for future service modelings. Three were identified:

• Amazon EC2 8 - probably the most complex Cloud Service in the market with

many different pricing models and services included. An excellent example of

top complexity to achieve.

• Heroku 9 - simpler than amazon but interesting due to its almost pure pay-

per-use model.

• SugarCRM 10 - a simple table based pricing model. It was used in later steps

for ensuring the model simplicity when describing simple pricing model.

Based on these three cases the model was iteratively discussed and improved in

order to cope with the challenges raised by each of them. By using a ticket system

to manage issues we were able to tackle problems as they were emerging as well as

documenting decisions.

All these use cases descriptions and examples can be consulted in the Linked

USDL Pricing repository [97].

5.2.4 Model

The final model is not a standalone version to describe service pricing, instead

it integrates with the Linked USDL Core module in order to enhance the overall

service description with the pricing capability. Thus, the classes and properties

defined under the Linked USDL Pricing module are strongly linked to the Linked

USDL Core module. Moreover, using the reusability concept characteristic from the

semantic web, the Pricing module uses some concepts defined in GoodRelations [55]

(an overall requirement for Linked USDL) and in SPIN [67] [68]. Among the most

important are:

• PriceSpecification (GoodRelations)

• QuantitativeValue (GoodRelations)

• QualitativeValue (GoodRelations)

• Funtion (SPIN)

8http://aws.amazon.com/ec2/pricing/
9https://www.heroku.com/pricing

10http://www.sugarcrm.com/page/editions-pricing/en

79

http://aws.amazon.com/ec2/pricing/
https://www.heroku.com/pricing
http://www.sugarcrm.com/page/editions-pricing/en

CHAPTER 5. SEMANTIC MODELS

5.2.4.1 Dynamic Pricing

SPIN as the authors define it in [67] ”is a W3C Member Submission that has be-

come the de-facto industry standard to represent SPARQL rules and constraints on

Semantic Web models.” and it is part of the solution to solve the dynamic pricing

challenge. By allowing SPAQRL rules within the semantic model SPIN allows to do

things such as calculate the value of a property based on other properties. This is

exactly what we need in order to model dynamic pricing.

A dynamic pricing is usually composed of several variables that influence the

price (also called metrics) and some constants usually defined by the provider him-

self. These constants commonly relate to the actual value to pay for each unit

evaluated by the metrics. The metrics are the units of measurement for these con-

stants. In other words a provider says that a customer has to pay AC0.05 per Gb used.

The value AC0.05 is the constant defined by the provider and the Gb the metric used

to measure usage. However, the price cannot be calculated prior to the user usage.

Lets say that a user has indeed used 10Gb this month this would mean a final price

of AC0.5. What SPIN allows us to do is to extract the values stored somewhere else

in the model and compute them, achieve a result. Thus, by defining these constant

values and the usage variables we can create a formula to calculate the final price.

Although the example is a simple linear function where the number of Gb used is

multiplied by the price per unit. There are cases were complex functions are need,

for discount when a certain amount is used for example. All this can be achieved

using SPIN.

The use of SPIN functions is quite similar to the Object-Oriented approach in

programming [66]. By defining these functions each of them with a formula for

calculating its price we are even allowing for the creation of templates reusable for

various price calculations.

The final step was to model the variables to be referenced in this functions. The

approach was simple, two types of variables may exist: usage and constants. The

usage variables are those which value is not known by the model prior to the service

execution and as the name suggest they refer to usage or consumption of resources

or service features. Constants, despite its name are also variables, but this name

they are known beforehand. In the example above they would represent the unit

price, AC0.05 per Gb. This two types proved to be sufficient in all the Use Case

examples.

5.2.4.2 Model Specification

The Linked USDL Pricing module has a total of six classes, however they are strongly

linked to external ontologies, as already stated: GoodRelations (gr prefix) and SPIN

(spin prefix). Figure 5.2 shows the relationships between all the classes involved.

Note that the ServiceOffering is of the upmost importance since it is the link to the

service itself (refer to [100] for the specification of Linked USDL Core Module).

PricePlan

A PricePlan is a set of charges associated with a network-provisioned entity. Al-

80

5.2. PRICING MODEL

Figure 5.2: Linked USDL Pricing Module

ternative sets of fees (i.e. alternative PricePlans) choose from, for example to offer

the consumer the choice between a flat price scheme and a usage-based scheme (a

common practice in the telecommunication industry). Each PricePlan has is own

price scheme, composed of one or more PriceComponents. A PricePlan belongs to

the ServiceOffering which might only have one PricePlan. If a service has differ-

ent price schemas to define different price strategies these correspond to different

PricePlans that should be defined under different ServiceOffering as they in fact

correspond to different service offerings as well. For instance: a service provides

10Gb of storage for AC1 per month in its basic plan, but in its premium plan it pro-

vides 50Gb of storage for AC2 per month including extra support. These although

related to the same service are indeed two distinct service offering each with his own

PricePlan. The model reflects this concept.

Properties with PricePlan as Domain:

• hasPriceComponent - A price plan consists of a number of price components

that are added to the total price.

• hasPriceCap - A upper limit for the price. Providing this maximum Price-

Component value prevents the component final price from exceeding a certain

amount, regardless of its levels and the parameters they are indexed to. For

instance: A cap may be used to set an upper limit for a component whose

levels vary with usage.

81

CHAPTER 5. SEMANTIC MODELS

• hasPriceFloor - Lower limit of the price. Providing this minimum PriceCom-

ponent value prevents the component final price from falling below a certain

amount, regardless of its levels and the parameters they are indexed to. For

instance: A floor may be used to set a lower limit for a component whose levels

vary with usage.

PriceComponent

PriceComponents are fees included in a PricePlan, which subject to conditions

(expressed as PriceFunctions) may contribute to the total amount charged. Com-

ponents within the same plan are added together in order to get the total amount

(price of the service offering). Common examples of PriceComponents that may

coexist in the same PricePlan are: startup or membership charges (to access the

service), periodic subscription fees (with a certain recurrence - e.g. monthly - as

long as committed to by the contract), pay-per-unit charges (whose total will be

proportional to the metered usage), options or feature dependent charges. The final

value of the component will depend on the PriceFunctions calculation or a tagged

price if defined.

Properties with PriceComponent as Domain:

• hasPriceFunction - The SPIN price function to calculate the PriceComponent

price.

• hasPrice - The pricing specification for a price component if the price is a fixed

value.

• hasComponentFloor - Similar to the hasPriceFloor property but related to the

PriceComponent.

• hasComponentCap - Similar to the hasPriceCap property but related to the

PriceComponent.

• hasMetrics - By which metrics is the price calculated. Usually the price is

multiplied by a factor per period or per amount of use.

Deduction

Deduction is a special case of PriceComponent it correspond to a negative price-

Component. The total price will be reduced by a certain amount. Thus, when

adding all the price components is the price plan one should have in mind that

Deductions should be subtracted.

PriceVariable

A price variable can be used for price function expressions of dynamic price models.

It has a name (rdfs:label) and a quantitative or qualitative value. Variables can be

referred from different price functions.

Properties with PriceVariable as Domain:

• hasValue - It hold the gr:QuantitativeValue or gr:QualitativeValue of the Price-

Variable. The reason for using both types it that we may have qualitative

82

5.2. PRICING MODEL

variables such has the type of the operating system being used or a partic-

ular feature of the service and not only quantitative values such has number

of hours or number of instances. Note that the range of this property is

gr:QualitativeValue and gr:QuantitativeValue.

Constant

The Constant price variables are provider specific variables known prior to the

service execution. They are usually fixed values. For instance: AC0.05 is the provider

price per hour of an instance.

Usage

Usage price variables represent unknown values prior to the service execution.

Specially used for usage purposes and dynamic pricing (e.g. pay-per-use models).

Its value might come from user input or from provider monitoring (i.e. GB of data

transferred last month).

5.2.4.3 Final Model Considerations

As already explained the ServiceOffering is the link between the Pricing Module

and the Core Module. Only one PricePlan may exist per ServiceOffering. Not also

that the final price is a sum of all the PriceComponents and the subtraction of all

the Deductions. However, each PriceComponent may have its price defined in three

different ways:

• Using the hasPrice property directly providing an instance of gr:PriceSpecification.

This is the common use for products or services that ha a fixes price value.

Eg: The premium subscription of a website costs AC10 per month.

• Using the SPIN functionality through the hasPriceFunction property. Com-

mon in dynamic pricing when the final price must be calculated based on

usage. These usage values must be collected through the Usage variables and

then applied to the function together with Constant price Variables to achieve

the final value. Eg: A customer pays AC0.05 (Constant price variable) for each

running instance per hour used calculated in the end of the month. the number

of hours and the number of instances are Usage price variables.

• Using the hasPriceFunction although not specifying any SPIN Function but

rather the formula in textual form (rdf:comment). This is the option for those

who are not familiar with SPARQL or SPIN but still want to use a formula for

calculating the price. Note however, that this is merely a textual description

that has no price computing power.

The reason for such an approach was to keep the simplicity of the model. By

using the SPIN functionality we were aware of the complexity increase inherited by

the SPIN model itself. However, by allowing users to not use this capability we are

ensuring the previously achieved simplicity while at the same time supporting the re-

quired functionality for dynamic pricing. Note that despite the that in this thesis we

83

CHAPTER 5. SEMANTIC MODELS

were looking for a solution to describe the complex pricing models present in Cloud

Services, the Linked USDL Pricing Module is intended to be used independently of

the domain.

The reutilization of the GoodRealations should provide a fair amount of market

acceptance since this is already an established ontology. Moreover, its definition of

some pricing concepts is also important for keeping our module as simple as possible.

5.2.5 Final Remarks

By following a use case driven approach we intended to focus on the key aspects and

challenges that the current market raises regarding pricing models. This approach

was highly beneficial since despite the small duration given to the project we were

able not only to develop but to test the model at the same time. Moreover, the use of

real services in the use cases allows to proof that the model can in fact be successfully

applied to describe Cloud Services as well as making these ”living” examples of how

to do it.

Ensuring the model simplicity even when using complex models such as SPIN

is indeed difficult to achieve, however, due to its optionality we intend to reduce

the rejection of using such approach and at the same time allowing the modelling

of complex pricing schemas such as pay-per-use. This is indeed achieved since only

three concepts must be defined in order for a simple service to have its price defined:

PricePlan with a link to a PriceComponent and gr:PriceSpecification through the

hasPrice property.

Full examples and the model itself can be found in the Linked USDL Repository

[97].

84

6
CloudAid Prototype

This chapter provides a detailed view on the CloudAid prototype development pro-

cess and its components. The objective is to share the rational behind some of the

decisions and paths of development chosen. However, it will be adopted a higher

level perspective over the prototype, rather than a code oriented perspective. There

are more advantages in this approach since there are no major difficulties in the

code itself but rather in the prototype logic. Thus, Section 6.1 starts by introducing

the methodology used during the development of the project. Section 6.2 begins

the CloudAid Prototype explanation by introducing the methods for data capture

and some related topics. Continuing to Section 6.3 we present the links between the

Linked USDL and the application itself. Then from Section 6.4 to 6.8 each module

is presented in some detail, explaining its purpose in the overall prototype and the

rational for its implementation decisions.

6.1 Methodology

Being this a research work, the prototype application development is highly con-

ceptual, meaning that its purpose is to prove the concepts being addressed by the

research effort. Nevertheless, it must be planned and developed as any other software

application, however, with some special constraints.

There was the need for quick development of key requirements, those that were

fundamental for a proof of concept, both for testing and assessment of the problems

found during the development in order to discuss the best possible courses of action.

These would suggest an agile methodology [116].

Although the key requirements were previously identified, most were only possi-

ble to see when some ”digging around” has been done. Therefore, most requirements

were gathered iteratively at the same time as the implementation.

With this being said, the methodology chosen was the Rapid Application Devel-

opment (RAD) [80] which allowed a less planning concerned approach in order to

produce faster results and at the same time allowing the needed flexibility with re-

quirements. The RAD approach also foresees the high interaction and participation

of the users in the development process. The fact is that there were no real users

interacting with the development but the continuous discussion and improvemen-

85

CHAPTER 6. CLOUDAID PROTOTYPE

t/alteration of requirements was a fundamental characteristic to extract from this

methodology.

The development of the prototype application was divided in a series of smaller

problems, or smaller prototypes. Each passed by a series of iterative steps, from

analysis to development and preliminary testing/validation. The final result was a

prototype of a particular component of the final application. These prototypes were

the different modules of the application and their development will be explained in

more detail in Sections 6.5 to 6.4. This approach resulted from the RAD method-

ology and helped to understand the key problems to solve as well as keeping the

results flowing. Since every module was being developed separately one at a time,

without the need for the others, two key aspects were also favoured: extensibility

and modularity.

6.2 User Data Capture

Having a component of decision aid rather large, this prototype is highly data ori-

ented. The whole purpose is to provide a decision aid mechanism able to take

advantage of the user data about the needed cloud services and his preferences.

Therefore, there is the need for the user to insert data about four major topics:

• Service Templates

• Requirements

• Criteria

• User Preferences.

While the first two topics are directly related to the system that the user is

trying to build, the bottom two are metrics and preferences to help the CloudAid

prototype to find the best options to fulfill the first two topics.

With the exception of the User Preferences, which may be collected throughout

the prototype execution when needed, the information about the other topics is

collected prior to any computation. The user is prompted for Service Templates,

Requirements and Criteria data before anything else. In other words, the Service

Templates, Requirements and most of the Criteria information work as the input

data for the CloudAid Prototype.

From Section 4.2.4.1 we can see the data structure used two store all this infor-

mation. However, this information must be somehow collected. The chosen process

was to create a simple ”shell based” user interface to allow the user to specify all the

relevant information. This way the user should be able to build any type of complex

CSA according with his needs.

Figure 6.1 shows the simple menu with which the user interacts to insert CSA

Data. By choosing one option the user is allowed to insert data about a new Service

Template, a new global requirement or a new global criterion.

Figure 6.2 shows the second menu, invoked when the user chooses to insert a new

Service Template. Once again by choosing one option the user is allowed to insert

86

6.2. USER DATA CAPTURE

Figure 6.1: CloudAid Prototype: CSA Menu

Figure 6.2: CloudAid Prototype: Service Template Menu

data about a newly created Service Template, a new requirement or a new criterion

for the newly created Service Template. Figure 6.3 shows the normal interaction

when adding a new Service Template, while Figure 6.4 shows Requirement and

Criterion data being inserted for the previously created Service Template.

Through this simple ”shell based” interaction the user is able to build the CSA

data for representing the system he wants to build. This CSA Data is then stored

and used by the CloudAid Prototype in its processes.

Requirement

A requirement is a specific resource or capability need that the user has for a

certain Cloud Service. Although they are transparent to the user, they control

much of the operations performed by the Prototype, specially the Search Engine

(Section 6.6).

As we can see from Figure 6.4 the first piece of information the user has to insert

is the requirement type. This type is a resource or service capability/functionality

to which the requirement is linked to. From the example in Fugure 6.4, by specifying

the type as StorageCapacity, the user is saying that this particular requirement is

related to a specific resource to be provided by the potential cloud service: Storage

Capacity.

Note that all these requirement types come from the CloudTaxonomy which is

fully described in Appendix F. The reason from adopting such an approach was

simple and is linked to the objective of the Cloud Taxonomy itself. The increasing

amount of Cloud providers, each with his own taxonomy of cloud concepts, makes

almost impossible to match the set of requirements of a customer to the providers

service description. For instance: If the provider A says his service has a ”Disk

Space” of 750Gb, and a user is looking for a service that provides a minimum of

500Gb of ”Storage”, it might be impossible to match the service from provider A

wuth the user requirement due to the usage of different concepts, although they

mean the same.

There is however, one type that is not defined in the CloudTaxonomy: Price.

The price is considered a special type and in different parts of the CloudAid Proto-

type is indeed handled differently from the remaining types, which will be explained

87

CHAPTER 6. CLOUDAID PROTOTYPE

Figure 6.3: CloudAid Prototype: Insert new Service Template

Figure 6.4: CloudAid Prototype: Insert new Requirement and Criterion

88

6.2. USER DATA CAPTURE

Figure 6.5: CloudAid Prototype: Insert a Qualitative Value Requirement

whenever necessary. However, in respect to the requirements the price type is dealt

as any other requirement.

Another important distinction is between Quantitative and Qualitative require-

ments. This has mainly to do with the Linked USDL usage of the GoodRela-

tions ontology [55] which distinguishes from QualitativeProductOrServiceProperty

and QuantitativeProductOrServiceProperty (see Section 6.3 for details).

This lead also to a distinction in the requirement types. Those that are quantifi-

able as StorageCapacity, CPUSpeed, etc, and those who are not quantifiable. Note

however that, it might be the case that a particular type could be both quantifi-

able or not. For example, availability could be a percentage value (quantifiable)

or a certain feature of the service: ”High availability provided by different hosting

location”. These cases however were not considered in this prototype for sake of sim-

plicity. It should also be stressed that the Price type is considered a quantitative

value requirement.

In case of a quantitative value requirement the user has the opportunity to define

a minimum or maximum limit value for this requirement, as shown in Figure 6.4.

These requirements are usually used for defining computing, storage or network

resources (e.g.: CPU Cores, CPU Speed, Storage Capacity, Memory Size, Network

Latency, etc).

In Figure 6.5 we are adding a requirement that relates to a qualitative value:

StorageType. As we can see the questions differ from those of the quantitative value

requirements. In this case the user can specify a specific value (a search string)

for the requirement. As we wanted our database service to have SSD storage we

specify that in the requirement. These are usually used for service features, policies

or capabilities (e.g.: Security policies, monitoring capabilities, scaling, performance)

rather then resources.

It could also happen that a user wants his service to not have a specific feature.

In this case he can set the requirement to negative (see Section 6.6). For instance:

”we want our database service to not use SSD storage”. All the storage types would

be considered except those with SSD.

The final remark regarding requirements goes to the possibility to define a re-

quirement also as a criterion. This means that the type of the requirement will

89

CHAPTER 6. CLOUDAID PROTOTYPE

also be used to create a new criterion. It is simply a mechanism to ease the user

interaction. By explicitly saying that the requirement will also be a criterion the

user is already creating a new criterion, thus not needing to manualy create it.

Criterion

A criterion is defined in the same way as a requirement and respects the same

rules concerning the type and the quantitative or qualitative values. However, its

goal is completely different. While a requirement is used to define a blueprint in

which cloud services, in order to be considered alternatives, must fit, a criterion is a

decision variable. By defining a criterion the user is saying that he wants to capture

and evaluate the cloud service attribute concerning the criterion type. Figure 6.4

shows, in the final step, how to insert a new criterion.

Note that a criterion may or may not be related to a requirement. A user might

define StorageCapacity as a criterion but not defining any specific requirement. This

means that the amount of StorageCapacity provided by the service has no limit or

special constraint but it will be considered in the decision process. The reverse

can also happen. A user might want to specify a limit StorageCapacity but is

not concerned with the actual value provided by the service, provided that the

requirement is fulfilled.

Another important concept concerning criteria is the preference direction. The

preference direction is the user way to express is desire about the maximization

or minimization of the cloud service attribute captured by the criterion. Price for

example is a typical criterion to be minimized, the smaller the price the better. Stor-

ageCapacity in the other hand could be maximized, the bigger the capacity value

the better. However, there may be situation where a specific value is the optimal

solution. We want our database to have 500Gb, bigger is not better and smaller is

also not better. This is a preferable value for the criterion that substitutes the pref-

erence direction. However, if no preferable value is specified, the preference direction

is then used. The preferable value is also a good example of a user preference.

User Preferences

User preferences are pieces of information asked throughout the execution process

when needed. Usually they are related to a preference value or a criterion weight

value. These pieces of information are collected if necessary by the decision method

being applied in the moment and may vary depending on the other information

inserted in the beginning. In Figure 6.6 we have an example of the system asking

if the criterion StorageCapacity has a preferable value, and what it might be. Note

that this information is asked during the decision process and not in the initial user

data input phase.

6.3 Mappings Between Linked USDL Service Descriptions

and the Application Prototype

Linked USDL is a key element in this thesis and as already explained in Section 5.2 a

great research effort has been put into the pricing model. The Price is after all, one

90

6.3. MAPPINGS BETWEEN LINKED USDL SERVICE DESCRIPTIONS
AND THE APPLICATION PROTOTYPE

Figure 6.6: CloudAid Prototype: User Preferences Example

of the most important factors when enterprises think of the Cloud for their solutions.

However, in spite of the price model importance we still need to access the service

description and extract all the other service information besides price. Thus, the

Linked USDL Core [100] module, in addition to the Pricing, was used for encapsu-

late the main service concepts such has Service Model, Service Offering, or Provider.

The first challenge was to look into the Linked USDL service description and

extract the service relevant information to the potential consumer. Thus, the first

step was to understand what could be the interesting part of the description from the

consumer point of view. The fact is that a consumer is not concerned with the service

and its components, or either if the service is composed of several other services or

if it is an atomic service. The concern, most of the times, is with the actual offer.

What set of functionalities and resources does the provider offers and what is the

compensation (price)? This is usually the question asked by the consumer. Looking

at the problem from this perspective we decided that the Service Offering should

be the central concept. This is, by the way, what we see in the Service Data Model

depicted in Section 4.2.4.2.

The ServiceOffering class was also a good link between the linked USDL Core

and the Pricing since it is indeed the connection point between the two modules.

Accordingly to the Linked USDL core specification a Service Offering can be

composed of several Services, ”A service offering is an offering...of one or more

services to the public or specific customers.” [100], thus, two other Linked USDL

concepts are needed: Service and ServiceModel. The former holds all the service

features and resources, the latter as [100] says, ”is used to represent ’classes’ of

services, i.e. services that share a number of characteristics. ServiceModel enables

the capturing of these characteristics.”, and is in fact a subclass of Service. This

means that in order to capture the full set of the offered resources and features we

need to gather all the Services and ServiceModels included by the ServiceOffering

class.

The CloudAid Prototype Offering class groups all this information. The process

used to capture this data is explained in Section 6.6.3.

An important remark should be made to the Linked USDL usage of the GoodRela-

tions ontology [55] which distinguishes the service features from QualitativeProduc-

tOrServiceProperty and QuantitativeProductOrServiceProperty. The difference is

evident, while the former describes properties that can be quantifiable (e.g.: Stor-

age, Speed, any number of things or metrics), the latter describes unquantifiable

concepts, usually features or service capabilities (e.g.: Security, Policies, etc). This

91

CHAPTER 6. CLOUDAID PROTOTYPE

distinction is also captured and maintained in the Service Data Model (see Section

4.2.4.2) Thus, instead of having only one list of service features we have one for each

type: quantitative and qualitative. The way these properties are extracted is also

explained in Section 6.6.3.

It should also be stressed out that the price had a special concern as explained

in 5.2. However, further explanation on how to deal with the service price are given

in Sections 6.6.2.1 and 6.6.3.

6.4 Controller

As the name suggests, the Controller is responsible to control the execution flow. It

corresponds to the controller in the MVC model. Among its tasks we have:

1. Environment Startup

2. Start the correct execution mode

3. Choose between the different Decision Methods

4. Control the application execution flow

5. Establish communication between User Interface module and all the other

modules.

These first four tasks are sequential, task 5, however, is performed at the same

time as task 3 and 4. Task 1 is only executed once, when the application starts. Task

2, 3 and 4 are executed every time the user wishes to start a new CSA. However,

the execution mode cannot be changed during the same execution.

Startup

The first task performed by the Controller is the startup of all the application com-

ponents. Although they can be used several times in one execution, these modules

are only instantiated once, their methods can then be invoked whenever necessary

to process the required data and returning the results.

The first module to be initialized is the User Interface, followed by the Search

Engine (Section 6.6), the Decision Engine (Section 6.7) and finally the Aggregation

Engine (Section 6.8).

While the other modules are only instantiated and nothing else is performed, the

Search engine, however, has a special task: initializing the Service Set. The reason

for doing this task at this point was to reduce the waiting time for the user. We

are initializing the entire service triple store, which might take a while depending of

the number of triples. Therefore, there was no point in doing this every time a new

search was performed. See Section 6.6.1 for more details about the Service Set.

Execution Modes

After the startup task is complete and before the first module is invoked the

Controller checks which execution mode is being executed. The execution mode

92

6.4. CONTROLLER

Figure 6.7: CloudAid Prototype: Application startup and Decision Method Choice

Question

defines the type of interaction with the CloudAid application. Currently in the

Prototype two execution modes exist:

• Automatic mode uses the simulation data from the DataSimulator.java and

not the User Interface for inserting the CSA data. This mode is only used for

testing purposes.

• Shell mode is the default execution mode. It uses the shell based user inter-

face for inserting the CSA data.

Choose Between Decision Methods

As specified in Appendix C.2.4 with the SR2 requirement, the application should

be able to use different decision methods depending on the user choice. Choose

between the available decision methods is the third task of the controller.

The CloudAid Prototype is currently using two different decision methods: Sim-

ple Additive Weighting (SAW) and Analytic Hierarchic Process (AHP). In Section

6.7.4 we explain the differences between the two methods in more detail and how

they are being used. However, we can say that the entire application is ruled by

which decision method is being used. Thus, it must be decided which to use prior

to the application process start.

This decision between the different method is intended to be based on the user

preference. However, it may often happen that the user does not know about decision

methods and what does imply to use one method over the other. Hence, Instead

of asking directly to the user, through the user interface, which decision method

he wishes to use, the approach was to ask questions to the user about what he is

comfortable doing. Then, based on this questions the Controller can decide which

is the best method to be used.

Figure 6.7 shows the question asked to the user for deciding which decision

method will be used. Since this prototype uses only two methods and they differ

in one specific characteristic there was no need for more questions. However, the

inclusion of new methods may require extra questions. The question, ”Are you

93

CHAPTER 6. CLOUDAID PROTOTYPE

comfortable giving weight to the criteria?” is enough to distinguish the two available

decision methods. If the answer is ”Y” (Yes), the SAW will be used. However, if

the answer is ”N” (No) the AHP will be used instead.

Execution Flow

After tasks 1, 2 and 3 are complete the application can start the execution of

the other modules. The Algorithm 1 shows the entire process followed until the

aggregated solutions are displayed to the user.

Algorithm 1 CloudAid Prototype Execution Flow

method← DecisionMethodChoice()

data← EvaluateCSA()

if data passes the evaluation process then

for all serviceTemplate ∈ data do

alternatives← Search(serviceTemplate)

if alternatives not empty then

decisionResults← Decision(serviceTemplate, alternatives,method)

Add decisionResults to data

else

No alternatives found

Start from the beginning.

end if

end for

result← Aggregation(data,method)

Write result

else

data not ok

Start from the beginning.

end if

This process starts by evaluating the CSA data inserted by the user. The eval-

uation task is performed by the CSAEvaluator module.

If the data passes all the tests we can start the search mechanism, performed

by the SearchEngine Module. This search, however is performed for each individual

Service Template, allowing to find a list of alternatives for each Service Template.

It may happen that different Service Templates share common alternatives, but this

only means that the service offering in question is a valid candidate for both Service

Templates.

After finding the alternatives for a particular Service Template the Decision

mechanism can start. The first step is to rank the found alternatives accordingly

to the user preferences and criteria (performed by the DecisionEngine). The second

step is performed, after step 1 has been executed for all the Service Templates, by

the AggregationEngine. While in the first step we decide upon the best alternatives

for each Service Template, the second step decides which are the best aggregated

94

6.4. CONTROLLER

solutions.

We could indeed merge these two steps. However, it could prove impossible

for the user to understand what was being done. Therefore, reducing the accuracy

of the answers to the required questions during this decision process (e.g.: User

preferences data, comparison between alternatives, etc...). It also proved easier

to model the decision problem. Instead of trying to model a complex multi level

decision problem we splitted the problem into two steps: the best alternatives for

each Service Template, and the best aggregated solution. Being this second step

facilitated by the results obtained in the first.

Module Communication

The final responsibility of the Controller module is to ensure communication be-

tween all the modules in the CloudAid prototype.

This task is particular important when some module needs user input to pro-

ceed. As we saw in Section 6.2 the user preferences are specified throughout the

application execution, assuming special importance in the DecisionEngine and Ag-

gregationEngine, where most of these preferences are requested (e.g.: Preferable

values). However, all the other modules request the User Interface functionality,

even if only for status report or data display.

In order to maintain the MVC model and the modularity and extensibility re-

quired for IMPR1 and IMPR2 requirements, it was decided to use the Controller to

establish these requests to the User Interface. Every time a module requires user

input or wants to display something, it calls the Controller which invokes the proper

functionality of the User Interface. Then returns the response, if any exists (in case

of input requests) to the requester method. Table 6.1 shows the codes used for iden-

tifying the different request types. This approach also enables the ease for future

extension, in this case enabling the modification of the User Interface without the

need for any modification in the other modules.

Table 6.1: CloudAid Prototype: User Interface Requests Controller Codes

CODE Method

GET WEIGHT askforCriterionWeight()

Asks the user the desired criterion weight. Returns the criterion weight

value.

GET PREFERENCE DIRECTION askforCritPrefDirection()

Asks the user the desired preference direction. Returns the preference

direction value.

GET PREFERENCE VALUE askforPreferenceValue()

Asks the user the desired preferable value. Returns the preferable value.

GET DISTANCE VALUE askforDistance()

Asks the user the desired distance between two concepts. Returns the

distance value.

GET YESNO ANSWER promptYesNo()

Continued on Next Page. . .

95

CHAPTER 6. CLOUDAID PROTOTYPE

Table 6.1 – Continued

CODE Method

Ask the user a Yes/No question. Returns the answer result.

PROMPT prompt()

Displays some message in the User Interface.

PRINTCSA printResults()

Displays the CSA in the User Interface.

PRINTALTDATA printAlternativesData()

Displays the alternatives in the User Interface.

PRINTRESULTLIST printResultList()

Displays the decision results in the User Interface.

6.5 CSA Evaluator

The CSA Evaluator has two main responsibilities: check the CSA for any inconsis-

tency or potential error and the inference of new data.

The evaluation process is responsible for checking the overall consistency of the

CSA data and all its components. For example, duplicate criteria for the same Ser-

vice Template, or situations where two requirements block each other (StorageCa-

pacity > 500Gb and StorageCapacity < 400Gb, these will never return any suitable

service offerings, since al the requirements are used in the search with AND opera-

tions). However, in this prototype the only test being done is the number of Service

Templates in the CSA. There is no point in executing all the search and decision

process when there is no Service Template to analyse.

Thus, since the testing and inconsistency check was not fully implemented in this

prototype, the purpose of the CSA Evaluator shifts almost entirely to the inferring of

new data. A process called Generalization, because it is exactly that, a generalization

of global data.

6.5.1 Generalization process

This process takes place after the evaluation process, and only if the CSA passes all

the tests. It analyses the entire CSA data inserted by the user and finds information

that can produce other information. For the system to know what can be inferred

a group of rules was established which can be tested from the data in the CSA:

• If a Requirement has the flag criterion set to true, a new Criterion can be

created with the same type as the Requirement.

• If a Requirement is defined as global (at the CSA level instead of the Ser-

viceTemplate), a copy of the Requirement can be added in all Service Tem-

plates.

• If a Criterion is defined as global, a copy of the Criterion can be added in all

Service Templates.

96

6.6. SEARCH ENGINE

These rules are tested in all the CSA components producing the extra infor-

mation. Only then the CSA is ready to be sent to the Search Engine. Usually

when creating new Criteria out of the flagged Requirements some extra information

must be asked to the user (eg: criterion weights or preference directions). These

information requests may vary depending on the decision method.

By ensuring that all the global requirements and criteria are generalized to all

the Service Templates we make sure that no requirement is left behind when search-

ing for the alternatives that fit the template. Note that these mechanisms (global

requirements/criteria and requirement flagged as criteria) are ways to ease the user

interaction as explained in Section 6.2 that must be expanded in order to obtain the

complete CSA.

6.6 Search Engine

The Search Engine is the second step in the execution flow, after the CSA Evaluator,

and as depicted in Algorithm 1 is executed once for each Service Template in the

CSA. The Controller invokes the SeachCore class, which has three tasks:

1. Distinguish the exclusive requirements from the non-exclusive requirements

2. Start the search process for the exclusive requirements

3. Enrich the resulting alternatives with the service offering attributes

As we can see in task 2 the search is only performed with the exclusive re-

quirements. Therefore, before the search mechanism itself the Service Template

requirements must be analysed to gather all these type of requirements.

The reason for searching only for service offerings that fulfills the exclusive re-

quirements is because these are those requirements who will limit the search spec-

trum. Rather than non-exclusive that only state a wish but not a mandatory con-

straint, an exclusive requirement eliminates service offerings from the list of potential

alternatives. For example, a user defines a requirement for StorageCapacity, how-

ever, he does not specify any limit value and states that the requirement will be also

a criterion and if it is not present there is no problem. This requirement will be a

non-exclusive requirement since the user does not define any limit, but he still want

to evaluate this attribute even if there is no value for it. In order for a requirement

to be exclusive he must fulfills at least one of the following rules:

• Not flagged as a Criterion - If the requirement is not linked to a criterion

there is no point in defining a non-exclusive requirement since it will not affect

the search or decision processes. By specifying that a requirements is not a

criterion the user is saying: ”I want this feature/resource, but i don’t care

about its value and it will not be important for the decision process.”

• Has a maximum value - If the requirement has a maximum value defined

all the service offerings with values that exceed this maximum value will be

excluded. The user is saying: ”I want to have this resource with a lesser value

than X”.

97

CHAPTER 6. CLOUDAID PROTOTYPE

• Has a minimum value - If the requirement has a minimum value defined all

the service offerings with values bellow this minimum value will be excluded.

The user is saying: ”I want to have this resource with a greater value than X”.

• Flagged as not needed - If the requirement has been flagged as not needed,

it means that even if this resource or feature is not present in the service

offering the offering is not excluded. The user is saying: ”I would like to have

this resource or feature although it is not mandatory”.

Note that in order for the search to take place at least one exclusive requirement

must exist. The rational was that, in case of no exclusive requirements, the search

process will be rather a listing functionality instead of a query search, since no lim-

itations to the search were being introduced.

After this first task of requirements distinction the actual search process can

start. To do so, the SearchCore class invokes a particular method in the JenaEngine:

getOfferingByExcludedReqs(). This method receives the the list of excluded require-

ments gathered in the previous step and returns the list of alternatives found based

on those. Section 6.6.2 will explain in detail this method.

This leaves one final step to be performed, the enrichment of the alternatives

with the attribute values. The enrichment is the populating process of an HashMap

(attributes in the Offering class) where each pair (key, value) corresponds to the

criterion in the Service Template(key) and the actual service offering value for that

attribute (value).

For example, we have a Price criterion and a StorageCapacity criterion. During

the search process a service offering SO that fulfills the requirements has the price

of AC25 and 250Gb of storage. The final alternative would have an HashMap with

two pairs (key, value): ”Price” = 25 and ”StorageCapacity” = 250.

It should be stressed out that the Price is the only attribute permanently in the

attributes HashMap. This means that even when no criteria is defined for a partic-

ular Service Template, the price is set as one, and in this case the only, attribute.

The reason for this is the high importance given to the Price, and the fact that it is

the actual compensation for the provision of a certain service offering.

After all these three steps are finished the SearchEngine terminates is job for

a particular Service Template, returning the list of alternatives to the Controller

which will continue with the execution flow.

6.6.1 Service Set

The Service Set is our triple store. The representation of an Apache Jena Model
1. The purpose for the creation of a separate class to hold the Service Set is the

separation between the knowledge base and the application. By doing so we once

1http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/

model/Model.html

98

http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Model.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Model.html

6.6. SEARCH ENGINE

more ensure the extensibility needed if in future developments better versions of the

triple store are to be implemented.

For simplicity purposes, and since this is a prototype with no big issues regarding

durability or performance, the entire Service Set is stored in memory. The reason

was mainly concerned with ease of implementation. However, future developments

should consider the use of a persistent triple store. With this being said, the concern

of the ServiceSet class is to import all the service descriptions and deal with all the

operations related to data consistency.

Every time the application starts and the Service Set is initialized the load()

method is invoked. This method reads all the files in a specific folder (./Services/)

in search for any turtle or RDF files. Note that only files inside this folder will be

considered for the Service Set. However, subdirectories are also supported.

Every file is then submitted to a small validation process, which checks if we are

in presence of a Linked USDL description or any other kind of vocabulary. This

validation is merely for debugging purposes since even if the file is not a Linked

USDL description it must be imported. This has to do with the impossibility to

ensure that concepts used to describe Service Properties are hosted in the same

RDF file as the description itself. In fact, all the good practices for modelling a

service with Linked USDL point exactly to this differentiation between the Service

Description and the service concepts vocabulary. An example the the Linked USDL

Service Description tuturial presented in Appendix A.

This import process was essentially performed by adding to the main model

(ServiceSet) all the individual models extracted from each file. This however, created

a few problems with the namespaces and prefixes.

Since theoretically, each file could have their own set of prefixes and link to

other resources in other baseURIs, we had to figure out a way to deal with this

cross referencing. The solution was to initialize the model with a set of predefined

prefixes, those which were more common such as, RDF, GoodRelations, SKOS, all

the linked USDL prefixes, etc. Then, every time a new model was read a name

was given to the model (typically based on the file name) and this name was added

to the prefix list together with its baseURI. Thus, ensuring that any references to

resources described in different baseURIs of the service description were also found

within the main model.

6.6.2 Jena Engine

The JenaEngine class is the wrapper class for all the operations concerning the

Jena library [2]. Jena is an RDF manipulation library with support for many of the

standards used in Semantic Web, such as SPARQL, and as explained in Section 4.2.5

was the choice for dealing with our triple store. Thus, being directly responsible with

the communication with the Service Set.

Note that every instance of the JenaEngine class shares the same Service Set.

Since there is only one instance of the SearchCore there is also only one instance of

the JenaEngine and the Service Set. In spite of the statement in Section 6.4 that

the Controller was responsible to initialize the ServiceSet, that is not completely

99

CHAPTER 6. CLOUDAID PROTOTYPE

true. The Service Set is initialized by the JenaEngine, which by himself is initialized

by the SearchEngine. However, since the Controller is the one who initializes the

SearchEngine, and since the other initialization are performed in each class con-

structor, or in the case of the ServiceSet, are Static pieces of code, by transitivity

the Controller initializes all the SearchEngine components: SearchCore, JenaEngine

and ServiceSet.

The Jena Engine can be divided into three different parts: the query builder, the

search itself and finally the search results conversion. As any search engine for the

search to be performed a query must be submitted to the database, or in our case

the knowledge base (Service Set). In order to query a a triple store a SPARQL query

must be submitted. The first phase in te JenaEngine is precisely this SPARQL query

creation. The queryBuilder() method is responsible for creating the query based on

the list of exclusive requirements received from the SearchCore class.

Only after the query is ready the search can be performed by submitting the

final SPARQL query. The getOfferingByExcludedReqs() method takes the query

and executes it in the ServiceSet (Apache Jena Model). The result is always a two

column table. Being the first column an Apache Jena Resource 2 of the Linked

USDL ServiceOffering and the second a Literal 3 with the overall calculated price

for that particular offering.

The final step performed by the JenaEngine, before returning the list of Alter-

natives, is to convert the search results. These results are still in the RDF format,

which has no use for the next steps in the application execution flow. This need for

a conversion operation lead to the creation of a new class which receives a Service-

Offering Resource and converts it into an Offering instance with all its properties

as explained in Section 4.2.4.2. After the conversion has been performed we have a

list of Alternatives (which are instances of the Offering class) that can be returned

to the SearchCore class

It should also be noted that the search mechanism assumes a Closed World,

which by the author in [107] is defined as ”...certain answers are admitted as a

result of failure to find proof. More specifically, if no proof of a positive ground

literal exists, then the negation of that literal is assumed true.”. What this means

is that if a ServiceOffering described in the ServiceSet does not have information

about a specific feature or resource, the system assumes it does not exist. This was

the solution fo some issues regarding the lack of completeness of service descriptions.

Too often a provider omits information about the service he is providing, or because

he thinks it is not important for the user to know or because he thinks it is too

complex for the user to understand. Either way, without assuming a closed world

the complexity of the system would escalate to unbearable levels for this prototype.

2http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/

model/Resource.html
3http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/

model/Literal.html

100

http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Resource.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Resource.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Literal.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Literal.html

6.6. SEARCH ENGINE

6.6.2.1 Queries

In the CloudAid Prototype the SPARQL queries are far from trivial, and encompass

a lot of different constraints, all of them extracted from the exclusive requirements

received as input in the getOfferingByExcludedReqs() method.

All the relevant data from these requirements must be converted in a suitable

SPARQL query prior to its submission. Besides, a special concern was dedicated

to the Price. From the Linked USDL Pricing model described in Section 5.2 and

available in [102], we see that one ServiceOffering can have multiple price calcula-

tions. Thus, in order to calculate the overall offering price, a series of calculations

must be performed. We intended to capture this final price in the final query to be

submitted. This way all the offerings would have an overall price associated with it

directly from the search result without the need for post-processing.

All this reasons lead to the splitting of the JenaEngine query builder into three

parts:

• Quantitative Value Requirement query builder (e.g.: Listing 6.1 line 12 to 37)

• Qualitative Value Requirement query builder (e.g.: Listing 6.1 line 39 to 56)

• Price calculation and retrieval query builder (e.g.: Listing 6.1 line 94 to 125)

Each exclusive requirement is treated by one of the above query builders producing

one query. The final result is a merged query with all the individual requirement

queries. This means that for each Service Template only one query is produced,

composed however, of n sub-queries, being n the number of exclusive requirements.

Listing 6.1 shows an example of a resulting query based on the heroku testing envi-

ronment.

Note however, that in case of the non-existence of any Price Requirement, the

price query is still executed. Since we use the Price as a permanent attribute we

still need it to be calculated and retrieved in order to be added to the attributes

HashMap. In Listing 6.1 line 124 however, we define a maximum value of AC4000 for

the price, since the user had specified a Price Requirement with this limit value.

The use of the CloudTaxonomy (Appendix F) has an important role in the

search mechanism. As we already know, each requirement has a specific type, which

corresponds to a particular concept from the taxonomy. These types are the main

search parameters since they are the ”tags” by which the features will be retrieved.

If a requirement has a StorageCapacity type, the system knows that all the features

or resources linked to the CloudTaxonomy StorageCapacity class should be retrieved.

Therefore, the CloudAid Search mechanism is based in keyword searching, where the

keywords are the cloud concepts defined in the CloudTaxonomy. Hence, the more

complete the Taxonomy the more efficient will be the search mechanism. In Listing

6.1 we can see the use of the CloudTaxonomy prefix in line 8. This prefix is then

used in every query (except price queries) to check if the Service Offering has this

particular feature or resource (Line 17 and 47 are two examples for StorageCapacity

and Backup Recovery properties). Note that each subquery relates only to one

101

CHAPTER 6. CLOUDAID PROTOTYPE

CloudTaxonomy concept. For instance: in Listing 6.1 the subquery from line 12 to

37 only has the StorageCapacity concept.

It may also happen that a user wants to search for Service Offerings that do

not posses a particular feature or resource. In these cases we have a negated search

as Listing 6.1 shows for the subquery from line 76 to 92. The difference is line 80

where the MINUS operator is used. This means that the user does not want Service

Offerings with the Platform MySQL (Listing 6.1 lines 83 and 84).

Another important remark is the intersection (logical AND) of all the exclusive

requirements. This means that all the requirements must be fulfilled otherwise the

ServiceOffering will not be considered an Alternative for the Service Template. In

Listing 6.1 lines 38, 57, 75 and 93 show this requirement intersection.

1 PREFIX core: <http://www.linked-usdl.org/ns/usdl-core#>
2 PREFIX price: <http://www.linked-usdl.org/ns/usdl-price#>
3 PREFIX pf: <http://jena.hpl.hp.com/ARQ/property#>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 PREFIX gr: <http://purl.org/goodrelations/v1#>
7 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
8 PREFIX CloudTaxonomy: <http://rdfs.genssiz.org/CloudTaxonomy#>
9 SELECT REDUCED ?offering ?finalPrice

10 WHERE {
11 {
12 SELECT REDUCED ?offering
13 WHERE {
14 ?offering rdf:type core:ServiceOffering .
15 ?offering core:includes ?a .
16 {
17 ?a gr:quantitativeProductOrServiceProperty CloudTaxonomy:

StorageCapacity .
18 ?f gr:hasValue ?value
19 FILTER(?value >= 500.0)
20 }UNION{
21 ?a gr:quantitativeProductOrServiceProperty ?f .
22 ?f rdf:type CloudTaxonomy:StorageCapacity .
23 ?f gr:hasValue ?value
24 FILTER(?value >= 500.0)
25 }UNION{
26 ?a core:hasServiceModel ?model .
27 ?model gr:quantitativeProductOrServiceProperty CloudTaxonomy:

StorageCapacity .
28 ?f gr:hasValue ?value
29 FILTER(?value >= 500.0)
30 }UNION{
31 ?a core:hasServiceModel ?model .
32 ?model gr:quantitativeProductOrServiceProperty ?f .
33 ?f rdf:type CloudTaxonomy:StorageCapacity .
34 ?f gr:hasValue ?value
35 FILTER(?value >= 500.0)
36 }
37 }
38 } . {
39 SELECT REDUCED ?offering
40 WHERE {
41 ?offering rdf:type core:ServiceOffering .
42 ?offering core:includes ?a .
43 {
44 ?a gr:qualitativeProductOrServiceProperty CloudTaxonomy:

Backup_Recovery .

102

6.6. SEARCH ENGINE

45 }UNION{
46 ?a gr:qualitativeProductOrServiceProperty ?f .
47 ?f rdf:type CloudTaxonomy:Backup_Recovery
48 }UNION{
49 ?a core:hasServiceModel ?model .
50 ?model gr:qualitativeProductOrServiceProperty CloudTaxonomy:

Backup_Recovery .
51 }UNION{
52 ?a core:hasServiceModel ?model .
53 ?model gr:qualitativeProductOrServiceProperty ?f.
54 ?f rdf:type CloudTaxonomy:Backup_Recovery
55 }
56 }
57 } . {
58 SELECT REDUCED ?offering
59 WHERE {
60 ?offering rdf:type core:ServiceOffering .
61 ?offering core:includes ?a .
62 {
63 ?a gr:qualitativeProductOrServiceProperty ?f .
64 ?f rdf:type CloudTaxonomy:Platform .
65 ?f gr:name ?value
66 FILTER regex(?value, ’PostgreSQL’, ’i’)
67 }UNION{
68 ?a core:hasServiceModel ?model .
69 ?model gr:qualitativeProductOrServiceProperty ?f.
70 ?f rdf:type CloudTaxonomy:Platform .
71 ?f gr:name ?value
72 FILTER regex(?value, ’PostgreSQL’, ’i’)
73 }
74 }
75 } . {
76 SELECT REDUCED ?offering
77 WHERE {
78 ?offering rdf:type core:ServiceOffering .
79 ?offering core:includes ?a .
80 MINUS{
81 {
82 ?a gr:qualitativeProductOrServiceProperty ?f .
83 ?f rdf:type CloudTaxonomy:Platform .
84 ?f gr:name ?value FILTER regex(?value, ’MySQL’, ’i’)
85 }UNION{
86 ?a core:hasServiceModel ?model .
87 ?model gr:qualitativeProductOrServiceProperty ?f.
88 ?f rdf:type CloudTaxonomy:Platform .
89 ?f gr:name ?value FILTER regex(?value, ’MySQL’, ’i’)
90 }
91 }
92 }
93 } . {
94 SELECT ?offering ?offeringPrice ?deduction ((?offeringPrice-?deduction)as

?finalPrice)
95 WHERE{
96 {
97 SELECT ?offering ?offeringPrice (COALESCE(?finalDeductPrice, 0) AS

?deduction)
98 WHERE{
99 {

100 SELECT ?offering (SUM(?price) AS ?offeringPrice)
101 WHERE{
102 ?offering rdf:type core:ServiceOffering .
103 ?offering price:hasPricePlan ?plan .
104 ?plan price:hasPriceComponent ?comp .
105 ?comp rdf:type price:PriceComponent .

103

CHAPTER 6. CLOUDAID PROTOTYPE

106 ?comp price:hasPrice ?priceSpec .
107 ?priceSpec gr:hasCurrencyValue ?price
108 }
109 GROUP BY ?offering
110 }OPTIONAL{
111 SELECT ?offering (SUM(?deductPrice) AS ?finalDeductPrice)
112 WHERE{
113 ?offering rdf:type core:ServiceOffering .
114 ?offering price:hasPricePlan ?plan .
115 ?plan price:hasPriceComponent ?comp .
116 ?comp rdf:type price:Deduction .
117 ?comp price:hasPrice ?priceSpec .
118 ?priceSpec gr:hasCurrencyValue ?deductPrice
119 }
120 GROUP BY ?offering
121 }
122 }
123 }
124 FILTER((?offeringPrice-?deduction) <= 4000.0)
125 }
126 }
127 }

Listing 6.1: Heroku Use Case Query Example

6.6.3 Resource Converter

The Resource Converter is an helper class, with the sole purpose to convert RDF

resources from the Linked USDL model to Java objects. More specifically to the

Offering class from the Service Data Model (See Section 4.2.4.2). This is a static

class, thus is never initialized but rather used when necessary by other components.

The converter links directly to the Linked USDL model, both the Core and the

Pricing modules in order to extract all the relevant data about the Serviceffering.

It is important to not forget that the ServiceOffering is the central concept for the

CloudAid prototype as stated in Section 6.3. In fact the ResourceConverter receives

an HashMap with a list of ServiceOffering resources and their associated prices.

Then, for each of them, it follows the graph of the ontological model to retrieve its

data. The retrieved data is:

• Offering name

• Offering description (rdf:comment property)

• List of Qualitative properties (gr:QualitativeProductOrServiceProperty prop-

erty)

– Property value (gr:name property)

– Description (rdf:comment property)

• List of Quantitative properties (gr:QualitativeProductOrServiceProperty prop-

erty)

– Numerical value (gr:hasValue property)

– Description (rdf:comment property)

104

6.7. DECISION ENGINE

– Unit of measurement (gr:hasUnitOfMeasurement property)

It also sets the permanent attribute Price in the attributes HashMap by convert-

ing the Literal from the input HashMap received. As said the ResourceConverter

directly links to the Linked USDL model, thus being very sensitive to any modifica-

tion in the model. However, this susceptibility to change was the reason that lead

to the usage of this class as an external class, allowing its modification without any

effect in the application behaviour.

6.7 Decision Engine

Following the Search Engine, the next step is the Decision Engine. Likewise, the

Decision Engine is also executed once for every Service Template in the CSA and

immediately after the execution of the Search Engine. In other words, only after

the Search and Decision processes are finished with a particular Service Template,

is that the Controller passes to the next Service Template to analyse.

However, unlike the Search Engine, that only receives as input the current Ser-

vice Template being processed, the Decision Engine also receives the alternatives as

a result of the search process. The purpose of the Decision Engine is therefore to

look into the Service Template criteria, to the user preferences, asking for other in-

formation if necessary, and rank the alternatives accordingly. Thus, this is probably

the module where the majority of the CloudAid calculations are performed. As a

result it outputs a ranked list of alternatives sorted from the highest ranked to the

lowest ranked alternative.

The ranking of the alternatives is performed by an external method the so called

Decision Method. These methods are Multi-Criteria Decision Making methods or

simply MCDM methods. Each of them has special requirements about which data

is needed and the type of user interaction required. However, independently of the

decision method used, the output ought to be the same: a list of the alternatives

ranked accordingly to the user preferences and criteria.

The option for this approach was originally due to the wish of allowing different

MCDM methods to be used, possibly from the Decision Deck Project [35]. Later

on, the initial idea was abandoned. However, there is still a strong desire to allow

the usage of different methods for the decision process even if they are not from the

Decision Deck Project, as is the case for the two used examples (Section 6.7.4). This

desire is otherwise evident in the usage of a standard for modelling and publishing

decision problems: XMCDA [38].

Independently of the method to be used several steps must be performed to

achieve the final sorted list of ranked alternatives:

1. Normalize All the Data - The Service Template data can have values too

with different intervals, this would add undesirable noise to the decision pro-

cess. Thus, we need to process the entire Service Template data and standard-

ize the values (Section 6.7.1).

2. Express the Decision Problem in XMCDA Format - After all the values

105

CHAPTER 6. CLOUDAID PROTOTYPE

have been normalized they must be modelled and described with the XMCDA

format (Section 6.7.2).

3. Publish the XMCDA File - After the decision problem has been expressed

in XMCDA, it must be published for the external decision method to use

(Section 6.7.3).

4. Retrieve and Read the Decision Results - The moment the XMCDA

file is published until the decision method executes its decision process the

Decision Engine has to wait. When finally the Decision Methods publishes the

results they must be once again converted, this time in the opposite direction,

from XMCDA to Java Objects.

5. Sort the Ranked List - Since the results returned by the decision method

might not be properly sorted from the highest to the lowest, the final step is

to perform such sorting on the ranked list of alternatives.

6.7.1 Normalization Process

The normalization is performed by the Normalizer class. This process is a series

of mathematical calculations performed to standardize the alternatives attributes

values.

In order to be able to compare multiple criteria we need for the attributes of

each alternative to be in the same scale. Otherwise, a value in an wider interval

could compromise the entire decision process.

For example we are deciding upon a Service Template with two criteria: Price

and StorageCapacity. Two alternatives are found in the Search Engine, A1 with

[price = 5, StorageCapcacity = 1024] andA2 with [price = 0.5, StorageCapcacity =

750]. Also, the decision weights for the criteria are price = 4 and StorageCapcity =

1. In this example we can see that even with a lower decision weight the Stor-

ageCapacity criterion will make the Price irrelevant to the calculations since the

StorageCapacity order of magnitude is much bigger than the one used for Price.

The normalization process makes these different scales disappear by standardize the

attribute values to the interval [0,1]. Other problem with this example is the Price

itself. We usually want to minimize the price (preference direction), but in order

for that to happen the result must be inverted, so the alternative A2 would have a

better performance in Price criterion than alternative A1.

Therefore, the Normalization class is not only responsible for the standardization

of the alternatives attribute values but also the application of the preference direction

(minimize/maximize) to its normalized value.

However, it is usually the case where the criterion being normalized is not nu-

merical. This happens for example when Qualitative Types are being evaluated

instead of Quantitative Types. In such situations, after identifying the type of the

attributes being evaluated, the Normalization class may need a series of questions

to be answer in order to asses the difference between values.

For example, the Criterion Performance is being evaluated, and the values of the

alternatives areA1 with [performance = ”NetworkLow”], A2 with [performance =

106

6.7. DECISION ENGINE

”NetworkHigh”] and A3 with [performance = ”NetworkMedium”]. In this case

a distinction between the different values must be performed. After asking which

is the preferable value, which in this cases the user must define, a series of ques-

tions is performed about the distance between each alternative attribute value and

the preferable value. Note that equal values are only asked once. These types of

attributes are called non-numerical.

It may also happen that a certain attribute is non-numerical but has only two

possible options. This is in fact the first question asked when a non-numerical

attribute is found. If the answer is ”yes, there are only two options” the attribute is

treated as a binary attribute, where one value is the best and the other the worst.

If not, the attribute is treated as a normal non-numerical attribute as explained

above.

Therefore, there are three different types of attributes:

• Numerical

• Non-Numerical Binary

• Non-Numerical

Another important task is to deal with preferable values. As explained in Section

6.2, sometimes the application has the need to ask the user extra information in order

to enhance the results. This normalization process is the case of such a situation.

Every time a new criterion is being evaluated the application asks if the user has

a special value that would be preferable to the simple maximization/minimization

process. In case of positive answer, this new value will be used instead of the

preference direction. In such cases the calculation changes slightly since, instead of

using the highest or lowest value from all the alternatives as the default preferable

value, it is used the inserted preferable value. Then, the distance between each

attribute value and the preferable value is calculated. The preferable value will

be assigned the highest value and all the others will have lower values according to

their distance to the preferable value. It may also happen than no alternative has an

attribute value equal to the preferable value. In these cases nothing changes in the

calculation process, the only difference is the non-existence of the highest possible

value.

It should be stressed out that all the extra data needed for the normalization

process is requested through the Controller as explained in Section 6.4.

The purpose, once again, is to the alternatives attributes to be standardized in

an interval from 0 to 1. Where 1 is the best value and 0 the worst for the Criterion

type to which the attribute relates. The entire process to achieve the desired results

is:

1. Check which type of attribute is being processed - Check wether we

are analysing a numerical, non-numerical or non-numerical binary attribute.

107

CHAPTER 6. CLOUDAID PROTOTYPE

2. Ask if there is a preferable value to the attribute - It may happen that

the user has a specific value that he considers the preferable value for that

attribute. These values should be asked before the normalization in order to

use them in the calculations ahead.

3. Normalize the ttribute according to its type - Once all the data has

been collected the attribute can be normalized calcuating the distance to the

preferable value and then standardizing to the interval [0,1].

4. Return the results - When the process is finished the normalized values are

stored in a new hasMap identical to the attributes. The difference is that this

version has the normalized values instead of the original attribute values. The

original, however, are still necessary, essentially for displaying purposes.

Note also that this process is repeated for each Criterion in the Service Template.

6.7.2 XMCDA Standard

The XMCDA is a XML like format developed by the Decision Deck [35] for describing

decision problems to be solved using a MCDM method. Therefore, this format is a

data structure to wrap all the information about the decision problem. The Decision

Deck provides a Java library, J-XMCDA [37], to deal with XMCDA transformations.

This Library was the tool used in this prototype to import and export the XMCDA

files.

Depending on the Decision method used, the XMCDA file will have different

data. However, all the operations performed with this Library have been wrapped

by the XMCDAConverter class. This class has not only the exporting methods but

also the importing ones. This means that both read and write operations can be

done through this class. Once again the idea was to enable the extensibility. So, if by

any case, in future developments we see the need for changing any process concern-

ing the XMCDA operations there is only one place where this changes might happen.

A list of the methods in the XMCDAConverter class and their descriptions is in

Table 6.2. It is also presented the XMCDA tags produced by each method.

Table 6.2: CloudAid Prototype: XMCDA Methods and the Tags Used

Method XMCDA Tags

getFromFile(FileName)

Read the file with FileName, and converts it to a XMCDA Object for

processing.

createAlternatives (Alterna-

tives)

Creates the alternative list in the XMCDA Object.

createAlternativeValues (Alter-

natives, MethodID)

alternatives, alternative

Continued on Next Page. . .

108

6.7. DECISION ENGINE

Table 6.2 XMCDA Methods and the Tags Used – Continued

Method XMCDA Tags

Assigns the alternatives attributes values to each alternative in the XM-

CDA Object. Depending on the Decision Method the values assigned

are different.

createCriteria(Service Tem-

plate)

criteria, criterion, scale, qualita-

tive,rankedLabel, rank, label

Creates the criteria list in the XMCDA Object. Each Criterion is as-

signed the preference direction and the preferable value

createWeights(Service Tem-

plate)

criteriaValues, criterionValue, crite-

rionID, value, real

Assigns the Criteria Decision Weights to the Criteria in the XMCDA

Object.

attachCompTimestamp (Time,

Service Template)

methodParameters , parameter ,

value, label

This method serves only to write in the XMCDA Object which Service

Template is being decided upon and a timestamp for differentiation.

getMethodParameters(XMCDA)

Extracts from the XMCDA Object the Timestamp and Service Tempalte

being analysed.

getPerformance (XMCDA, Al-

ternatives)

performanceTable, alternativePer-

formances, alternativeID, perfor-

mance, criterionID, value, real

Extracts the decision results (performances) from the XMCDA Object.

Returns the list of Results which is a list of alternatives with their as-

signed performance.

append(XMCDA list)

Appends a list of XMCDA objects into one single Object.

export(XMCDA, Destination-

FileName)

Exports the XMCDA data to the DestinationFileName file in the

FileSystem.

6.7.3 External Methods Communication

Once the decision itself is performed by an external method or application, the

communication between the CloudAid Prototype and those third party applications

is an important issue. Even more so when this communication link must be able to

send the XMCDA file with the decision problem data.

Therefore, the approach was to publish this file in a specific folder and wait for

the Decision Method to do the same. Note that we had the advantage of developing

part of the decision methods used, thus allowing the modification of the external

application to cope with this approach. However, that might not be the case in

109

CHAPTER 6. CLOUDAID PROTOTYPE

future application. Hence, it is advisable to modify this approach if the need arises.

However, since in this Prototype we had no such concerned beyond the proof of

concept, this approach was more than suitable.

FileSystem

/ToDecide

/SAW

/AHP

DecisionEngine

jSAW1

2

3

4

Decision Problem XMCDA File

Decision Problem XMCDA File

Decision Results XMCDA File

Decision Results XMCDA File 3

jAHP

2

Decision Problem XMCDA File

Decision Results XMCDA File

/Decision

/AHP

/SAW

Figure 6.8: CloudAid Prototype: Communication between CloudAid and External

Decision Methods

In Figure 6.8 we can see the communication process. The Decision Engine, af-

ter creating the XMCDA file with the decision problem data, publishes it in a specific

folder intended for the Decision Method to be used (./ToDecide/< DecisionMethod >).

Then it waits until the external method returns the decision results. These results

are also published in the same way, in a specific folder for the particular Decision

Method (./Decision/ < DecisionMethod >).

In order to handle this process it was necessary to develop a wrapper class

(FileChecker class) to handle the events in the FileSystem. What this class does is

waiting for events performed in the specific directory and awake the right method

to deal with the event whenever it happens.

6.7.4 Decision Methods

As previously stated in this thesis, one of the objectives was to allow the CloudAid

Application to use different Decision Method depending on the user preferences

or comfort about the definition of some data. Therefore, for the purpose of this

Prototype two different Decision Methods were used: Simple Additive Weighting

(SAW) and Analytical Hierarchic Process (AHP).

While the first is a simple mathematical process, the second is rather more

complex allowing different decision capabilities. The idea was not only to prove that

the application could support different methods but also show the differences they

110

6.7. DECISION ENGINE

imply.

Another concern was the rapid development of these methods allowing for rapid

prototyping and results discussion as explained in Section 6.1. This lead to the use

of some already existent application that implement a particular method.

6.7.4.1 SAW

The Simple Additive Weighting is the simplest of the MCDM methods and is based

on a series of multiplications. The idea is to multiply each attribute of each alterna-

tive by its Criterion Decision Weight value. Then all the attributes of an alternative

are added and the final alternative performance is obtained.

Being a simple method allowed for a quick development instead of applying some

third party library, skipping its learning curve. This also allowed the CloudAid

Application to use a full Decision Engine in its early stages.

The JSAW was the resulting application that reads the XMCDA file and makes

all the calculations necessary to perform the SAW method. After the decision results

have been obtained the application creates a new XMCDA file and publishes it for

the Decision Engine to use.

Note that the XMCDAConverter class used in the Decision Engine is also used

in this external application, only with smaller modification to cope with the data

types.

An important requirement of the SAW method however, is the need for the

Criteria Decision Weights to be defined somehow, which most of the cases is not an

easy task to do, either because they are not easy to assign or because the user does

not have a clue about the importance to assign to each of them. Still, as explained,

they are a key element for the calculations. Therefore, in case of using this method

the user needs to comfortable in assigning these Decision Weights to each Criterion.

Besides this special constraint the other required data is the normalized attribute

values for each alternative.

6.7.4.2 AHP

The Analytic Hierarchic Process is a more complex method that the SAW. It makes

use of a structured way to describe decision problems by dividing the problem in

sub-problems. Although, we do not make full use of this capability since all the

Criteria is considered to be at the same level. This multi-level could be applied if we

had merged the aggregation decision also in this step. In that case we would have a

multi-level decision, where the top level would be the individual Service Templates

and second the alternatives for each of the Service Templates. However, since all

the information would be displayed in front of them at the same time, this approach

would prove too complex for users to actually take advantages of.

The process follows a series of comparisons between the various alternatives.

Each Criterion can also be compared, allowing for the indirect definition of Decision

Weights. Basically the user is answering a series of question of the type: ”I prefer

Alternative A1 over Alternative A2” or ”For me it is more important Criterion C1”

than Criterion C2.

111

CHAPTER 6. CLOUDAID PROTOTYPE

This type of decision is therefore more suitable to users less comfortable with

the decision information, or with less certainty of the domain they are deciding upon.

The implementation of this method is an example of the usage of external appli-

cations. It was used the project in [87] to apply the AHP method. The application

has a graphical user interface, which greatly leverages the comprehension of the de-

cision method being used. In fact this was one of the key points for choosing this

particular implementation. However, the application was slightly modified in order

to cope with the XMCDA needs. The support for the import/export of XMCDA

was once again implemented with a version of the XMCDAConverter class which

had to be modified to cope with data types already present in the original applica-

tion. Another modification was the capability to display the alternative attribute

data at the same time of the decision process.

An example of the JAHP application is showed in Figure 6.9. The Figure shows

the sliders for changing alternatives performance regarding the StorageCapacity Cri-

terion. By sliding up or down we are saying for example that Alternative A1 is better

regarding StorageCapcity then Alternative A2. Note that the user should compare

all the alternatives in all the criteria. Figure 6.10 shows the comparison of Criteria,

in this example Price and StorageCapacity. In the example we are saying that Price

is way more important than StoraceCapcity.

After all these comparison are finished the application returns the calculated

results (Figure 6.11) to the Decision Engine by publishing the XMCDA file.

112

6
.7

.
D

E
C

IS
IO

N
E

N
G

IN
E

Figure 6.9: JAHP: Example of AHP Decision Process1
1
3

CHAPTER 6. CLOUDAID PROTOTYPE

Figure 6.10: JAHP: Example of AHP Criterion Comparison

Figure 6.11: JAHP: Example of AHP Alternative Performances

6.7.4.3 Application Execution Differences

Throughout the CloudAid Application the distinction between the two above de-

scribed methods is evident.

The most significative difference is about the data they need. While the SAW re-

quires an exact definition of all the Criteria and Service Template Decision Weights

the AHP does not. This difference however, influences the execution of the applica-

tion. Table 6.3 shows the list of major changes. Among them is the difference in the

methods used for the creation of the XMCDA file. This has to do exactly with the

data needed by the two methods. In case of the saw the XMCDA file must carry

the Criteria Decision Weights defined by the user. We can also see that both the

Controller and the Search Engine do not suffer any change in its execution. How-

ever, the Controller has the responsibility of invoking the User Interface for deciding

which method will be used and then communicate this information to the modules

that need it.

114

6.8. AGGREGATION ENGINE

Table 6.3: CloudAid Prototype: Decision Methods Differences in Application Exe-

cution

Module SAW AHP

User Interface Requires the definition of

Criteria Decision Weights

and Service Tempalte De-

cision Weights plus the de-

fault data

Uses the default data (Cri-

teria, Requirements, Ser-

vice Templates) Criterion

Controller Default Execution Default Execution

Search Engine Default Execution Default Execution

Decision En-

gine

Uses the full Normalizer

class

Only uses the addPrefer-

ences() method in the Nor-

malizer class

Uses the createAlterna-

tives(), createCriteria(),

createWeights() and cre-

ateAlternativeValues from

the XMCDAConverter

class

Uses the createAlterna-

tives(), createCriteria()

and createAlternativeVal-

ues from the XMCDACon-

verter class

Aggregation

Engine

Uses the default process.

No need to call the SAW

external method for calcu-

lating final Admissible So-

lutions performance

Uses the XMCDACon-

verter class again and

the JAHP application

for defining the Service

Template Decision Weights

6.8 Aggregation Engine

The CloudAid application is a prototype that proposes an Aggregator of Cloud

Services, recommending possible Aggregated Solutions to the user requirements.

Therefore, the final step in the CloudAid Execution flow is the Aggregation Engine

which unlike the previous two modules (Search and Decision Engines) is executed

only once as shown in Algorithm 1. It’s purpose is to aggregate all the information

collected so far, specially from the Decision Engine and present the best Aggregated

Solutions to the user.

Since this module aggregates information and processes it, it receives the entire

CSA already enriched by the previous modules. The Search Engine finds the alter-

natives and joins them with their related Service Template. The Decision Engine

takes these alternatives and creates a list of sorted ranked alternatives also assigning

them to their related Service Template. The Aggregation Engine will then take all

these sorted ranked lists of alternatives, one for each Service Template, and test their

admisibility when aggregated. Finally, after deciding which are the best options, it

outputs the results to the user.

Note that, each Aggregated Solution must have one alternative from each Sorted

115

CHAPTER 6. CLOUDAID PROTOTYPE

Ranked List. This is the same as saying that each Service Template must have one

alterantive present in the Aggregated Solution. So, if, for example, we have a CSA

with four Service Templates we would have four Sorted Ranked Lists of alterantives,

one for each Service Template, returned by the Decision Engine. This would mean

an Aggregated Solution composed always of 4 alternatives, one from each Sorted

Ranked List.

In order to achieve these final list of solutions the Aggregation Engine uses one of

two specific algorithms developed in this thesis (Section 6.8.1). The Combinations

class is responsible for the execution of the right algorithm. This class holds all the

necessary logic regarding the Admissible Solution Algorithms.

There was no initial plan for the development of more than one algorithm. How-

ever, after the first Aggregation Engine prototype it was decided that the first version

could be enhanced to support extra functionality. Thus, a second version was de-

veloped to support incomparability between Aggregated Solutions. This topic will

be further discussed in Section 6.8.1

Once the Admissible solutions have been found, we have a smaller group of

solution, all of them viable for the user requirements. However, we can still check

what are the best options from this reduced set by using extra information from the

user. This process once more depends on the Decision Method being used.

In case of the AHP, there is the need for asking this extra information, the

Service Templates Decision Weights. These values are the user preferences about

the CSA Service Templates. In other words, they represent the importance of the

particular Service Template to the overal system. The higher the value the higher

the importance. The Aggregation Engine needs these values to decide which are

the best options from the results returned by the Admissible Solutions Algorithm.

Since when using the AHP there is no previous information about these values a

new request to the external Decision Method must be performed. This means that

the JAHP must be called again, which requires the creation of a new XMCDA file.

However, this time the alternatives will not be the found service offerings but rather

the Service Template names themselfs. This change is only a conceptual change

since the file is created exactly in the same way. The decision results returned by

the JAHP now hold the Service Template Decision Weight values, which can be used

for calculating the Best Admissible Aggregated Solutions.

On the other hand, if using the SAW, there is no need for asking the user for

more information, since the user has already inserted the Service Template Decision

Weights in the CSA definition phase, together with all the other Service Template,

Criteria and Requirements data.

This final process of deciding which are the best Admissible Aggregated Solutions

is another application of the Simple Additive Weighting. However, this time the

calculations are performed by the Aggregation Engine rather than by the JSAW.

The reason for such an approach was simplicity. Since, no matter which Decision

Method is being used this step will always be performed in the same way, there was

no need for using the external application.

116

6.8. AGGREGATION ENGINE

6.8.1 Admissible Solutions Algorithms

As previously stated, an Aggregated Solution is composed of one and only one

alternative from each Sorted Ranked Alternatives List. This means that if we have

a CSA with ten Service Templates each with ten alternatives we would have a total

of 1010 possible combinations. Each of these combinations needs to be tested for its

admissibility and compared with the other to see if it is better or not. Although

the admissibility test might not be too heavy from the computing point of view, the

comparison between each combination demands a lot more. It would be impossible

to achieve such a solution using a simple brute force algorithm.

Therefore, the Admissible Solutions Algorithm and its two versions were de-

veloped with the purpose of finding the Admissible Aggregated Solution from the

Sorted Ranked Alternatives Lists in a more suitable way from the computation point

of view.

The first question to be asked was if we really needed to compare each and ev-

ery combination. In fact, we already know that the Alternatives lists are sorted,

from the highest to the lowest. This means that being SRA, SRB, SRC the Ranked

Sorted Lists for Service templates A,B,C and SRAi, SRBj , SRCk i, j, k ∈ N al-

ternatives of the SRA, SRB, SRC Ranked Sorted Lists, then SRAi > SRAi+1 is

always true. Applying this knowledge to the entire combination we have that: be-

ing [SRA, SRB, SRC,] the set of all possible Aggregated Solutions, we know that

[SRAi, SRBj , SRCk,] dominates [SRAi+l, SRBj+m, SRCk+n,], i, j, k ∈ N therefore,

there is no need for testing the set of combination [SRAo, SRBp, SRCq,] if o >

i ∩ p > j ∩ q > k. However, we cannot assume dominance of [SRAi, SRBj , SRCk,]

over [SRAo, SRBp, SRCq,] if o < i ∪ p < j ∪ q < k.

With this knowledge and applying the notion of combinatory tree to generate all

possible combinations of a set of lists, it was possible to use the Breadth-First Search
4 algorithm to traverse the tree and applying a method similar to the one used by the

Branch and Bound 5 to reduce the effort for calculating the Admissible Aggregated

Solutions. Now every time an Admissible Aggregated Solution is found we only have

to test it with the already found Admissible Aggregated Solutions if no dominance

is found between them we can add the solution to the list and discard its children.

If however, dominance is found between the node being tested and other Admissible

Aggregated Solution we can discard this node and all its children. Algorithm 2

shows this first version of the algorithm which does not support incomparability.

In Algorithm 2 when a new Admissible Aggregated Solution is found we still

need to compare it with all the Admissible Aggregated Solutions already found.

This is the only way to ensure that we are not adding an Admissible Aggregated

Solution that is already dominated by another already found. If it is dominated it

means that its overall performance value will be lower than the dominant solution,

thus, there is no need for storing it.

The second version of the algorithm adds support for incomparability. This

4https://en.wikipedia.org/wiki/Breadth-first_search
5http://en.wikipedia.org/wiki/Branch_and_bound

117

https://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Branch_and_bound

CHAPTER 6. CLOUDAID PROTOTYPE

Algorithm 2 Admissible Solution Algorithm: Without Incomparability

Create queue Q

Add root to queue Q

while Q is not empty do

node← Q.pop()

Add node to tested

if node is Admissible then

if node is not dominated by some admissible then

Add node to admissible

end if

else

for all possible children c of node do

if (c /∈ Q) ∧ (c /∈ tested)) then

if c is not dominated by some admissible then

Add c to Q

end if

end if

end for

end if

end while

means that we are no longer assuming that the Sorted Ranked List is a total order,

but rather a partial order. By admitting this new paradigm we might be able to say

that SRAi > SRAi+1, however it may happen that SRAj ∼ SRAj+1. In this cases

we cannot assume that when an Admissible Aggregated Solution is found all their

children in the tree can be ignored. We must check for incomparability between

the father and its children and only in case of dominance is that we can ignore

those dominated solutions. But if no father dominance is ensured the new child

must be compared with all the already found Admissible Aggregated Solutions. If

any dominance is found the child can be discarded, if not the child must be added

to the Admissible Aggregates Solutions and the process continues for its children.

Algorithm 3 shows the new algorithm version with support for incomparability.

6.8.1.1 Check Admissibility

The process of checking admissibility is a key element in finding all the Admissi-

ble Aggregated Solutions. An Admissible Aggregated Solutions is an Aggregated

solution that successfully fulfills all the global requirements defined in the CSA.

Therefore a series of tests must be performed in order to ensure that the combi-

nation of alternatives being testes can in fact be aggregated and considered and

Admissible Aggregated Solution. All these admissibility testes are performed by the

AggChecker class.

There are many possible constraints that can forbid the aggregation of several

alternatives. Either because some alternative used is not compatible with another,

or because together they surpass a certain user defined constraint. Imagine that we

118

6.8. AGGREGATION ENGINE

Algorithm 3 Admissible Solution Algorithm: With Incomparability

Create queue Q

Add root to queue Q

while Q is not empty do

node← Q.pop()

Add node to tested

if node is Admissible then

if node is incomparable with all admissible then

Add node to admissible

for all possible children c of node do

if (c /∈ Q) ∧ (c /∈ tested)) then

if c is incomparable with node then

Add c to Q

end if

end if

end for

end if

else

for all possible children c of node do

if (c /∈ Q) ∧ (c /∈ tested)) then

if c is not dominated by some admissible then

Add c to Q

end if

end if

end for

end if

end while

119

CHAPTER 6. CLOUDAID PROTOTYPE

have two alternatives for different Service Templates, one being an Oracle Database

and another a SaaS for data analysis. If by any case the SaaS alternative does not

support Oracle databases we cannot aggregate these two alternatives. Therefore we

have and Aggregated Solution but not an Admissible Aggregated Solution.

Many other constraints for admissibility may exist, however, in this prototype

it was only implemented a simpler version of this admissibility check system. The

only test being performed is the global price.

When the user defines a Global Price Requirement he is saying that the Ag-

gregated Solution must not exceed a certain value. Therefore, in order for an Ag-

gregated Solution to be admissible all its alternatives prices when added must not

exceed the fixed maximum value. Note that only maximum values are being consid-

ered for this prototype.

The reason for limiting these tests was essentially for implementation simplicity.

It is the intention to prove the concept of the admissibility test and how it should be

applied in the overall application but it was not in the set of requirements the imple-

mentation of a full admissibility testing solution. However, by using another class

for this purpose, the AggChecker class, we ensure the extensibility and modifiability

if further developments arise in this topic.

120

7
Test Results

This chapter presents the results obtained through the application testing phase as

well as the conclusions.

For time constraint reasons it was decided not to formally describe all the tests

presented in Section 4.3. Nonetheless, from those not formally described, most were

merged with other tests instead of individually tested, allowing to still prove their

correct implementation. Note also that due to the development methodology used

(RAD), all the functionalities were target of informal individual preliminary tests

(Unit Testing) alongside the development phase. This allowed, not only to have a

certain degree of confidence about the small prototypes being developed but making

the entire development/testing process much more agile as well.

Note that all the tests discussed in this Chapter and their related data can be

consulted in the CloudAid Public Git Repository [7].

We start by presenting the list of functional requirements implementation status

and the functional tests performed in Section 7.1. Section 7.2 presents the ap-

proach, results and conclusions of the reliability tests performed. The specific tests

performed to the Search Engine, including performance testing are discussed in Sec-

tion 7.3. Section 7.4 discusses the Decision Methods and what should be made to

ensure the use of multiple support for different Decision Methods from those used.

All the tests performed to the Admissible Solutions Algorithms and its conclusions

are discussed in Section 7.5. The last tests, integration tests, are presented and dis-

cussed in Section 7.6. Finally Section 7.7 draws the final conclusions to the overall

prototype testing.

7.1 Functional Tests

The functional tests aimed at testing the application key features. Those that were

fundamental to achieve a complete prototype. By complete it is implied the capabil-

ity to prove the concepts proposed in this thesis. In order to achieve this objective, it

should be noted the final status of each functional requirement defined in Appendix

C.1. Table 7.1 shows the full list of functional requirements and their status. The

two used status are:

• DONE - The requirement has successfully been implemented and tested.

121

CHAPTER 7. TEST RESULTS

• NOT DONE - The requirement was not implemented.

As we can see all the ”Must” and ”Should” requirements were implemented. This

allowed to have a fully functional prototype that at least does what was proposed.

Only the two ”Could” requirements were not implemented: FR8 and FR15.2. It

should be stressed out that all the ”Won’t” requirements were not considered in

Table 7.1 list as they were ruled out from the beginning and were moved to the

future development tasks.

Table 7.1: CloudAid: Functional Requirements List Implementation Status

ID Name Priority Status

CSA Data

FR1 Add a Service Template to the CSA MUST DONE

FR1.1 Add a Requirement to a Service Template MUST DONE

FR1.2 Add a Criterion to a Service Template MUST DONE

FR2 Add a Requirement to the CSA MUST DONE

FR3 Add a Criterion to the CSA MUST DONE

Search Engine

FR5 Search for services that fulfill the Service Tem-

plate Requirement list

MUST DONE

FR5.1 Search for services that do not have a certain

functionality

SHOULD DONE

FR5.2 Search for services with a minimum value re-

quirement

SHOULD DONE

FR5.3 Search for services with a maximum value re-

quirement

SHOULD DONE

FR5.4 Search for services with a specific value re-

quirement

SHOULD DONE

FR6 Search for services that fulfill price require-

ments

MUST DONE

FR7 Get the service values for the defined Criteria MUST DONE

FR8 Allow the usage of different units of measure-

ments for the requirements

COULD NOT

DONE

FR9 Read Linked USDL service descriptions MUST DONE

FR9.1 Extract the Service Qualitative & Quantitative

Values

MUST DONE

FR9.2 Calculate the service price when defined with

the price:hasPrice property

MUST DONE

Decision Engine

FR11 Import/Export XMCDA decision data MUST DONE

FR12 Rank the services according to their decision

value

MUST DONE

FR13 Normalization of Decision characteristics MUST DONE

Continued on Next Page. . .

122

7.1. FUNCTIONAL TESTS

Table 7.1 CloudAid: Functional Requirements List – Continued

ID Name Priority Status

FR13.1 Normalization of Decision Numerical charac-

teristics

MUST DONE

FR13.2 Normalization of Decision Non-Numerical

characteristics

MUST DONE

FR13.3 Normalization of Decision Binary characteris-

tics

MUST DONE

FR13.4 Normalization based on User preferences SHOULD DONE

Aggregation Engine

FR14 Generate Aggregated alternatives MUST DONE

FR15 Calculate the admissible aggregated solutions MUST DONE

FR15.1 Calculate the admissible aggregated solutions

based on price requirements

MUST DONE

FR15.2 Calculate the admissible aggregated solutions

based on service restrictions

COULD NOT

DONE

FR16 Decide which is the best admissible solution

from the admissible solutions list

MUST DONE

In order to asses the correct implementation of the list of requirements in Table

7.1 a series of tests were performed. In fact beyond the simple assessment of the

correct implementation these tests allowed to find possible problems in the prototype

execution, which in some cases existed. However, by identifying them it was possible

to fix or, if it was a conceptual problem rather than an implementation problem, to

change the original prototype concept. Thus, some of these tests were not simply

pass or no pass tests but also a tool to validate the overall prototype concept.

In this Section we present two examples of Test Cases performed. In Figure 7.1

the insertion of a new Service Template is being tested. The test was successfully

executed, passing all the steps. Moreover, this test can be generalized for all the

FR1 to FR3 requirements since its execution is partially the same, only changing

the data inserted.

Figure 7.2 on the other hand is a good example of the test merging approach

followed, where several test cases were grouped in only one. It is being tested the

Search Engine process and its capability to search for all requirement types. There-

fore, by creating a set of requirements that include all these types we could, in one

test, prove the correct implementation of the search mechanism. The requirement

types being tested are:

• Quantitative Type Requirement with a minimum value (StoragaCapacity)

• Qualitative Type Requirement (Backup recovery)

• Qualitative Type Requirement with a specific value (Platform = ”PostgreSQL”)

• Qualitative Type Requirement with a negated feature (Platform = ”MySQL”)

123

CHAPTER 7. TEST RESULTS

• Price Requirement which is at the same time a Requirement with minimum

value.

Therefore, with this Test Case we can prove Requirements FR5 to FR6. Most

of the other functional requirements such as FR7, FR9, FR11, FR12 and FR15 are

tested, in a similar merging approach, along with the Reliability tests depicted in

Section 7.2.

124

7
.1

.
F

U
N

C
T

IO
N

A
L

T
E

S
T

S

Figure 7.1: Test Case: TFR1

1
2
5

C
H

A
P

T
E

R
7

.
T

E
S

T
R

E
S

U
LT

S

Figure 7.2: Test Case: TFR5

1
2
6

7.2. OVERALL RELIABILITY TESTS

Note also that in Appendix G an example of the CloudAid Application is pre-

sented. This example executes the application with the Use Case defined in Chapter

3 in mind.

7.2 Overall Reliability Tests

The reliability tests play an important role to ensure correct data collection, manip-

ulation and results and so a big effort has been put into these tests.

In order to validate the results obtained by this thesis collection model (in prac-

tice represented by the application prototype), it is first mandatory to validate all

the data gathering and manipulation. Thus, the reliability tests are focused in the

following application prototype operations:

• Service Templates and Criteria weights normalization

• Linked USDL data import

• Service Offering price calculation

• Alternatives attribute values normalization

• Decision XMCDA data import/export

• Admissible Aggregated Solutions calculations

The approach to test these operations was to use the simulation scenarios defined

in Appendix E and then manually execute all the calculations. This allowed to pro-

duce a comparison sheet. Then by running the prototype with the same simulation

scenario we could assess if the results were the same or if there was some sort of

miscalculation. In some cases there was the need for external tools. An example is

the XMCDA file validation that was performed by using the XML schema provided

by the decision deck [39]. The Linked USDL data import was also compared with

the service description itself to check if all the data was being correctly imported.

The Admissible Aggregated Solutions were tested alongside with the algorithm itself

and therefore will be further discussed in Section 7.5.

Therefore, the reliability tests were mostly a manual process, composed of data

comparisons. However, they proved fundamental during the development since many

miscalculations have been found and dealt with. In other cases it was also possible

to enhance some functionalities such as the normalization operations.

All the tests performed and its instructions can be consulted in the CloudAid

Reliability Tests Document [8].

7.3 Search Engine Tests

Unlike the Decision Engine which was tested only for its data reliability, which in fact

is its biggest concern (mainly the normalization and XMCDA data Import/Export

operations) and should offer no performance issues (we are talking about simple

mathematical calculation and writing data into a file), the Search Engine has a

127

CHAPTER 7. TEST RESULTS

different constraint. In order for this thesis concept to be applied the system should

be able to perform with a reasonable service set size and realism. Since our service

set is composed of Linked USDL service descriptions and more specifically the system

is interested in ServiceOfferings (see Section 6.3) we need the Search Engine to be

able to search specific sets of requirements in a large number of ServiceOfferings.

This could in fact be an issue. Thus, testing the system response to this scenario is

important.

The first step to tackle this performance topic is to find a suitable service set

that could serve our purpose. However, due to the Linked USDL recent appearance,

there are still not many services described with it. In fact, most of the existing ones

were contributions of this thesis (see Section 5.2) but despite their importance for

the unit testing and the fact they are descriptions of real cloud services, they are

not in sufficient number for testing the Search Engine performance. The solution

to solve this issue is to generate our own service set. With this objective in mind it

was decided to create a simple application that could generate service sets based on

real services and big enough for testing the CloudAid Search Engine. The result is

the CloudGen application.

7.3.0.2 CloudGen

The CloudGen is a simple application built with the sole purpose of generating re-

liable Linked USDL service descriptions based on real service characteristics. What

CloudGen does is to take an input file (XML) with a specific configuration of the

service features or resources and generate all possible combinations of that configu-

ration. Then it outputs all these combinations as Linked USDL service descriptions.

This simple process allows to automate the creation of big service sets but still have

some control over the features generated. It then depends on the input file whether

or not the services being generated are realistic.

Note that this approach also solved another problem. As stated in Section 6.6

the Search Engine highly relies on the usage of the CloudTaxonomy concepts to

serve as keywords. However, for the search system to work properly, an early anno-

tation task must be performed in order for the service description to hold the extra

information about their features and resources. These annotation task however, is

already integrated into the CloudGen application. Therefore, not only the service

set creation is automated but also its services are automatically annotated with the

CloudTaxonomy concepts.

The full application and some configuration files examples are avalilable in the

CloudAid Public Repository in [7].

7.3.0.3 Performance Tests

With the CloudGen functionality we are able to generate service sets suitable for

the performance tests necessary for the Search Engine.

First of all it should be stressed out that more than one service set is used, some

generated with the CloudGen application, other built from a real service. However,

128

7.3. SEARCH ENGINE TESTS

all of them are available in the CloudAid Public repository [7]. The used service

sets are:

• HerokuServiceSet - Based on the Heroku service 1, this service is composed

of only a few services, but all real services.

• FullServiceSet - Generated by CloudGen it is the biggest service set, com-

posed of 132225 ServiceOfferings and 1407726 triples.

• PartialServiceSet - Generated by CloudGen it is a smaller version of the

FullServiceSet, with 5625 ServiceOfferings and 606558 triples.

• NormTesting - Also generated by CloudGen it is even smaller than the Par-

tialServiceSet, it was used for some specific tests related to normalization.

With this in mind we decided to use the two biggest service set: FullServiceSet

and PartialServiceSet. It was also made a division between two different steps in

the search engine. In one side the query execution and in the other the conversion

performed by the ResourceConverter class. This division was made in order to asses

if the conversion task is having any effect on the overall search time.

Table 7.2: Search Times with the Use Case data and Full Service Set (1407726

Triples & 13225 ServiceOfferings)

TemplateID #Reqs QueryTime(s) ConvertTime(s) #Alt

1 6 13.568579 0.039408 8

2 5 6.643025 0.004751 10

3 10 106.378179 0.015667 10

4 9 103.711556 0.012158 10

5 6 7.589101 0.003059 9

6 4 4.893188 0.002602 8

Table 7.3: Search Times with the Use Case data and Partial Service Set (606558

Triples & 5625 ServiceOfferings)

TemplateID #Reqs QueryTime(s) ConvertTime(s) #Alt

1 6 8.690287 0.025897 8

2 5 2.578836 0.004781 10

3 10 13.574883 0.011872 10

4 9 12.758888 0.010729 10

5 6 3.423489 0.004228 9

6 4 1.928326 0.002282 8

1https://www.heroku.com/

129

https://www.heroku.com/

CHAPTER 7. TEST RESULTS

In Table 7.2 and 7.3 we have the obtained results for the search process with the

Use Case Scenario. The first conclusion we can draw, without even comparing both

tables, is that the conversion task has no significative effect on the overall search

time. In fact, comparing the two tables we see that, as expected, the conversion task

does not depend on the triple stores size since their values are virtually the same

in both tables. These values might however, vary with the number of alternatives

found or the number of service properties of each alternative to be converted. Nev-

ertheless, there is no need for testing it with an higher amount of alternatives since

from these tables we can extrapolate that the core time of the overall search time is

spent processing the search query.

Regarding the search query processing time we see a clear difference between

the two triple store sizes, which is a normal conclusion. When the search spectrum

grows so does the query processing time. Figure 7.3 shows precisely this difference,

based on the triple store size the values for the FullServiceSet are far greater the

those of the PartialServiceSet. However, it seams that the query processing time is

being influenced by the number of requirements defined for each Service Template.

As explained in Section 6.6.2.1 the search query is composed of n subqueries, being

n the number of exclusive requirements in the Service Template. Therefore, the

higher the number of requirements the more complex the query will be. In fact,

further tests were performed in order to assess to what extent this could affect the

search time. Figure 7.4 shows for the two service sets used the query search time

for an increasing number of requirements. there is a clear increase on the query

processing time with the increase on the amount of requirements included in the

query. Note that instead of the Use Case Scenario we now used the Requirements

Scenario specially conceived for this purpose.

Figure 7.3: Search Time for Each Service Template in the Use Case depending on

the Triple Store Size

Consequently, we can say that besides the service set size also the number of

exclusive requirements in a Service Template influences the overall search time.

130

7.4. DECISION METHODS

Figure 7.4: Search Time Depending on the Number of Requirements and Triple

Store Size

However, by defining too few exclusive requirements the search engine will not be

able to reduce the search spectrum, probably presenting too many alternatives for

a Service Template, which is also not desirable. This can and will, influence the

remaining application steps. By returning a high amount of alternatives the system

will need to ask the user too many information to compare all the alternatives (with

the usage of the AHP Decision Method for example). The ideal solution would

be to reach a compromise in the number of alternatives to return. This could be

achieved either by filtering the alternatives or by grouping those that present similar

features or resources not being evaluated as criteria. These options should however,

be considered for future developments.

7.4 Decision Methods

Although the Decision Methods were not considering a part of the CloudAid Pro-

totype since they are considered external tools. They were in fact tested for their

capability to return the required results (ranked alternatives). These unit tests were

executed prior to the development of some of the modules. The reason is simple,

we needed to assess which could be the methods to be used, and how would they

integrate with the CloudAid prototype.

One of the proposed objectives was the system capability to use different decision

methods. While the use of two decision methods (SAW and AHP) should by itself

prove this capability, it should be stressed out that in order for the system to use a

different Decision Method some changes to the prototype might be needed.

Although it is possible to use any kind of Decision Method simply by opening

the XMCDA file produced by the Decision Engine module, it might be the case that

particular methods require different information. What we are saying is that it is

virtually possible to use any kind of decision method based o the current CloudAid

Prototype implementation if its information requirements cope with the current

produced XMCDA file. However, if different information is required, for example

131

CHAPTER 7. TEST RESULTS

thresholds for fuzzy calculations some alterations must be made to the prototype. In

this situations the system must be updated to support the new types of information

to request to the user, if the user must provide them. It should also be added the

new support for the generation of the XMCDA file with this new information.

Due to its modularity capability this changes should only be performed in the

decision modules (Decision and Aggregation Engines). The support for new infor-

mation however, should be introduced in the User Interface module as well as the

new questions for choosing the right method to apply. Finally, the Controller module

must use this new method code to let the decision modules know what they should

do.

7.5 Admissible Solutions Algorithm Tests

The Admissible Solutions Algorithm is a key element for the CloudAid prototype

since it is responsible by the aggregation component of this thesis conceptual model.

Therefore, in order to make sure that the objectives proposed for the algorithm

have been achieved, tests for both reliability and performance have to be performed.

In spite not having big concerns about performance, we still wanted to know how

does the algorithm performs in certain circumstances. The reliability tests, on the

other hand are fundamental to prove the accuracy of the resulting data (Admissible

Aggregated Solutions found).

7.5.0.4 Reliability Tests

In fact, as depicted in Section 7.2 the Admissible Aggregated Solutions calculations

are one of the topics targeted by the reliability tests, which means the testing of the

algorithms responsible for finding these solutions. Also the testing approach was

similar to the one used for all the other reliability tests. However, in this particular

case the complexity of the algorithm lead to the decision of not merging these with

other tests in order to ease the comparison process.

One scenario was defined for testing both algorithms. Using the same initial data

allows not only for testing results reliability, but also to compare both approaches.

In Figure 7.5 we have the expected results for the algorithm with no incomparability

support and in Figure 7.6 the expected results for the algorithm with incompara-

bility support. Note that, as already explained, by incomparability we mean the

similarity between two alternatives, the threshold used was 0.1. This means that

two alternatives are considered incomparable if their performances distance is lower

than 0.1 (Incomparability delta).

Applying the algorithm depicted in Algorithm 2 we must obtain the results in

Figure 7.5. These include the generated tree. We see that the main differences be-

tween the two algorithms is the number of visited nodes and the number of admissible

solutions, which are both greater in Figure 7.6 for the incomparability algorithm.

By using the Algorithm 3 we must obtain the results in Figure 7.6. As explained in

Section 6.8.1, with the incomparability algorithm we must not stop the tree traversal

for that node if we find an admissible solution. We still have to compare its chil-

132

7.5. ADMISSIBLE SOLUTIONS ALGORITHM TESTS

A1-B1

A2-B1 A1-B2

A3-B1 A2-B2 A2-B2 A1-B3
ADM ADM ADM

1

2 3

4 5 6

Results:
Visited Nodes = 6
Average Degree = 0.833333333
Average Depth = 1.333333333
#Admissible Solutions = 3
List of Admissible Solutions:
 - A3-B1
 - A2-B2
 - A1-B3

Initial Data:
Performances:
 A1 = 1, A2 = 0.4, A3 = 0.33, A4 = 0.25, A5 = 0.05
 B1 = 0.45, B2 = 0.4, B3 = 0.33, B4 = 0.25
Prices:
 A1 = 1100€, A2 = 1000€, A3 = 900€, A4 = 800€, A5 = 700€
 B1 = 1100€, B2 = 1000€, B3 = 900€, B4 = 800€
Price Limit = 2050€
Incomparability Delta = No Incomparability

Already Tested

Not dominated by other already found Admissible

Dominated by another Admissible

Caption:

Figure 7.5: Algorithm Testing Scenario and Expected Results (no incomparability

support)

A1-B1

A2-B1 A1-B2

A3-B1 A2-B2 A2-B2 A1-B3

A4-B1 A3-B2 A3-B2 A2-B3 A2-B3 A1-B4

A5-B1 A4-B2

ADM ADM

ADM

ADM

ADM

1

2 3

4 5 6

7 8 9 10

11

Results:
Visited Nodes = 12
Average Degree = 0.916666667
Average Depth = 2.333333333
#Admissible Solutions = 6
List of Admissible Solutions:
 - A3-B1
 - A2-B2
 - A1-B3
 - A4-B1
 - A3-B2
 - A1-B4

Initial Data:
Performances:
 A1 = 1, A2 = 0.4, A3 = 0.33, A4 = 0.25, A5 = 0.05
 B1 = 0.45, B2 = 0.4, B3 = 0.33, B4 = 0.25
Prices:
 A1 = 1100€, A2 = 1000€, A3 = 900€, A4 = 800€, A5 = 700€
 B1 = 1100€, B2 = 1000€, B3 = 900€, B4 = 800€
Price Limit = 2050€
Incomparability Delta = 0.1

Already Tested

Incomparable with its father

Incomparable with its father but comparable with other admissible solution

Comparable with father

Caption:

ADM

A4-B2 A3-B3
12

A2-B4

Figure 7.6: Algorithm Testing Scenario and Expected Results (with incomparability

support)

dren for incomparability. We can only stop if that incomparability in fact does not

exist. This approach leads to an increasing number of visited nodes which can be

proven by the two figures. The extra admissible solutions found are also realted to

this incomparability. Since we cannot compare these nodes with any other already

133

CHAPTER 7. TEST RESULTS

found admissible solution we must add them to the list. In Figure 7.6 the orange

nodes are examples of cases where the nodes are in fact incomparable with its father

but are dominated by other already found admissible solution. In this cases we can

discard them from the solutions list and stop the process for this node.

It should be stressed out that all these tests are available in the CloudAid Public

repository [7]. In addition a more complex scenario used for deeply testing the

algorithm with no incomparability support can be found in the ”Scenario3” No

Incomparability Document [9].

7.5.0.5 Performance Tests

In order to test the algorithms for its performance, it was first necessary to prepare a

testing environment. We needed to simulate the inputs necessary for the algorithm

to work. This means that a simulation of a CSA should be produced.

In fact, since the Admissible Aggregated Solutions Algorithms requires not only

the user defined data from the CSA (Service Templates and Requirements), but

also the data produced and added to the CSA by the previously executed modules

(list of Sorted Ranked Alternatives and their attribute values), creating this testing

environment was a challenge. Too many input variables exist and the results greatly

depend on these initial conditions. However, it would be impossible with the time

given to thoroughly test all combinations. This lead to the decision of running a

number of different combinations of these values.

Table 7.4: Test Parameters Generation Intervals

Parameter Interval

#Templates [2,6]

#Alternatives [2,9]

Template Weight [1.0, 5.0]

Price Limit [0.0, #Templates ∗ 1000.0]

Prices [0.0, 1000.0]

Performances [0.0, 1.0]

The approach followed was to automatically generate random scenarios within

determined intervals, each of them corresponding to one execution of the algorithm.

Although this approach does not allow to achieve the best testing data since there

is no linearity among tests, it still allows to extrapolate some conclusions. In Table

7.4 we have the parameters generated for each test and their intervals. Note how-

ever, that for each Test Scenario we have a Price Limit (the maximum price of the

Aggregated solution for testing admissibility) and the number of Service Templates.

Then for each Service Template we have the template decision weight and the num-

ber of alternatives. Finally, for each alternative in each Service Template there is

134

7.5. ADMISSIBLE SOLUTIONS ALGORITHM TESTS

Table 7.5: Tests Data Inputs for the Algorithm Comparison (Simplified)

Templates

Test Nr Combinations Price Limit #Temps
Temp 1 Temp 2 Temp 3 Temp 4 Temp 5 Temp 6

#Alts #Alts #Alts #Alts #Alts #Alts

1 512 1918.96802 4 2 8 8 4

2 784 1036.20016 4 4 7 7 4

3 840 406.872278 4 5 4 6 7

4 980 1337.82079 4 4 7 7 5

5 1050 1693.84132 4 7 5 5 6

6 1225 2565.91205 4 7 7 5 5

7 1296 2960.44128 5 3 9 4 2 6

8 1344 3567.3097 6 2 6 8 7 2 1

9 1600 1305.97988 5 5 5 4 4 4

10 1764 2531.32818 4 6 6 7 7

11 1764 321.245663 4 7 7 6 6

12 2240 1378.73929 5 5 4 7 4 4

13 2592 2473.31467 6 9 4 3 6 1 4

14 3500 1461.56963 5 5 5 4 7 5

15 4320 1181.21801 5 6 6 5 6 4

16 4536 2427.75394 5 7 3 8 9 3

17 5040 855.608643 5 6 5 6 7 4

18 5880 2852.83549 5 7 6 5 4 7

19 8000 3392.92358 6 5 4 4 5 4 5

20 19600 2752.31012 6 5 7 4 7 5 4

21 20160 2513.24823 6 4 6 7 5 4 6

22 21168 1770.42742 5 7 8 7 6 9

23 36288 1044.25947 6 6 6 6 4 6 7

24 36864 2307.22284 6 4 4 4 8 8 9

25 61740 1360.26683 6 7 6 7 7 5 6

a performance and price values. Moreover, with each test the following metric are

being captured:

• Execution time

• Number of visited nodes

• Number of Admissible Solutions returned

• Average tree depth

• Average tree degree

We started by comparing four different approaches to the algorithm: the al-

gorithm without incomparability support, and the algorithm with incomparability

support but with three different values for the incomparability delta (0.1, 0.05 and

0.01). By reducing the incomparability delta we are saying that the alternatives

must be much more similar in order to be considered incomparable.

In order to compare the results from these four approaches we used the same 25

tests. A simplified list of the initial conditions of these tests is displayed in Table

7.5. For sake of comprehension it was omitted the performance and price values for

each of the alternatives. However, the full version is available in the Comparison

Test Inputs Document [4].

135

C
H

A
P

T
E

R
7

.
T

E
S

T
R

E
S

U
LT

S

Figure 7.7: Comparison between Number of Visited Nodes with different Algorithm Variations

1
3
6

7.5. ADMISSIBLE SOLUTIONS ALGORITHM TESTS

Figure 7.7 shows the results obtained for the number of visited nodes. As ex-

pected with the increase of possible combinations the number of visited nodes also

increases. However, there are some tests where this tendency does not occur. To

understand this phenomenon we must look into the price limit parameter. Test 15

and 16 are a good example were the number of visited nodes decreases although the

number of combinations is increasing. But in fact, test 15 has a lower price limit,

this means that it will be more difficult to find Admissible Aggregated solutions to

fit this price requirement. The consequence is the increase on the number of visited

nodes. With test 17 and 18 this phenomenon is even more evident.

As we see the algorithm without incomparability support shows much lower

values. This was an expected result since, as we already know, unlike the other

algorithm, this version stops when an Admissible Solution is added to the final

solutions list rather than continuing testing its children. This of course reduces the

overall number of visited nodes. However, in respect to the other three cases there are

not many differences. A possible reason could be the low number of incomparable

alternatives, meaning that the alternatives performances are distant enough from

one another to not create many incomparability. Test 23 is an interesting example

case though. The values for the four cases are very similar. This in fact can be

an extreme case of incomparability non-existence. However, a deeper look into the

initial conditions (including prices and performances) of test 23 revealed that in fact

there is a lot of incomparability between its alternatives. The reason might once

more be linked to the low price limit, but in this case there is also the high values

for the alternatives prices leaving not many possible Admissible Solutions. Note

that for a solution to be considered Admissible (in this prototype) the sum of all its

alternatives prices must be bellow the price limit, meaning that a low price limit and

the high alternatives prices reduce the possibility of finding Admissible Solutions.

Therefore, by the results obtained in Figure 7.7 we can only say that the number

of visited nodes is influenced by all the initial conditions.

137

C
H

A
P

T
E

R
7

.
T

E
S

T
R

E
S

U
LT

S

Figure 7.8: Comparison between Number of Admissible Aggregated Solutions with different Algorithm Variations

1
3
8

7.5. ADMISSIBLE SOLUTIONS ALGORITHM TESTS

In Figure 7.8 we are now comparing the same cases but regarding the number

of admissible solutions found. Starting by test 23 we see that only one Admissible

solution was returned. This comfirms the theory used for explaining the results of

test 23 in Figure 7.7.

However, this new data allows us to conclude a little bit more. As expected,

the number of Admissible Solutions found with the no incomparability support al-

gorithm is always equal or smaller than the other cases. In fact we can say that if

the value is equal it means that there were no incomparability between Admissible

Solutions. That is precisely the case of test 23, but also tests 3 and 11. Note that

this does not mean there is no incomparability between alternatives in the initial

conditions. It does mean the other tested Admissible Solutions were dominated by

at least one of the already found Admissible Solutions. In the combination tree

there may exist many Admissible Solutions, however, the algorithm (both with and

without incomparability support) only stores in the final solution list those that are

not dominated by another Admissible solution already in that list.

Finally, we can also conclude that by increasing the incomparability delta we are

also increasing the potential for finding more Admissible Solutions not dominated

by another (incomparable). Consequently, we can say that an algorithm with an

higher incomparability delta value will return more Admissible Solutions or, in limit

cases as already seen, the same amount as an algorithm with a lower incompara-

bility delta value. This does not mean that a lower incomparability delta reduces

the possibility to find all the Admissible Solutions. What it does mean is that an

high incomparability delta considers alternatives less similar as incomparable thus

not dominated, resulting in returning more Admissible Solutions. The trade off in

this situation is the number of visited nodes. If an algorithm finds more admissible

solutions it must visit more nodes. Thus, a compromise must be achieved in order

to maintain a certain degree of incomparability support but also not increasing too

much the number of visited nodes, which in limit cases could reach the total number

of possible combinations.

139

C
H

A
P

T
E

R
7

.
T

E
S

T
R

E
S

U
LT

S

Figure 7.9: Comparison between Execution Time with different Algorithm Variations

1
4
0

7.5. ADMISSIBLE SOLUTIONS ALGORITHM TESTS

Figure 7.10: Average Times for Delta = 0.5 and less than 10000 Visited Nodes

The last metric analysed is the execution time for each of the tests performed.

Figure 7.9 shows the results obtained. Here we see a direct consequence of the num-

ber of visited nodes. The greater the visited nodes value the the longer it takes to

execute the test. It is in fact an expected result. Going back to the previous discus-

sion and adding this new element, by increasing the incomparability delta we are

increasing the number of visited nodes and now we know that we are also increasing

the execution time.

In order to better understand the limits of the algorithm further tests were

performed to analyse the execution time for different numbers of visited nodes.

From the previous conclusions we decided to use an incomparability delta of 0.5,

a medium value of those tested previously. It was also tested the no incomparability

support algorithm, although, we cannot compare both algorithms results since they

return different visited nodes values. The reasons is that for the same interval of

visited nodes different initial conditions were present (e.g.: where for test 200 the

incomparability algorithm might return 10000 visited nodes the no incomparability

algorithm might return only 50 what would mean that test 200 would be considered

for a different interval in the results averages).

For this stress tests a set of 750 tests were executed. However, since many of

those tests produced results with too few visited nodes, it was decided to add 15 more

tests with high number of combinations and a low price limit. From our previous

experience, this would increase the number of visited nodes, thus allowing to stress

the algorithm with a lot of work.

The first conclusion was that, in fact for small number of visited nodes the results

were satisfactory. However, when increasing values of visited nodes the execution

time became longer and longer. Figures 7.10 and 7.12 show the execution times for

less than 10000 visited nodes for the algorithm with incomparability support and

the one without incomparability support respectively. Figures 7.11 and 7.13 show

the execution times for more that 10000 visited nodes.

As we see the times are always increasing, coming to the point where it took more

than an hour to execute a test, in this case with more that 210000 visited nodes. It is

indeed a lot of time to process the best Admissible Aggregated Solutions. However,

it might not be an issue for the user if he does not have to wait for further interaction.

Meaning that a user waiting to find the best Aggregated Solution for his required

141

CHAPTER 7. TEST RESULTS

Figure 7.11: Average Times for Delta = 0.5 and more than 10000 Visited Nodes

Figure 7.12: Average Times for No Incomparability and more than 10000 Visited

Nodes

system would not mind waiting this long for a decision if he could just let the system

work and come later for the answer.

This conclusion lead to some changes in the Aggregation Engine execution flow.

Instead of collecting the required data about the Service Templates decision weights

after the algorithm execution, it was decided to do it before the algorithm execution.

The reason is precisely to make it possible for the user to insert all the required data

and then leave the system with its processing.

All the tests executed along with the results can be found in the Cloud Aid

Public Repository in the Algorithm Tests folder [5].

Figure 7.13: Average Times for No Incomparability and more than 10000 Visited

Nodes

142

7.6. INTEGRATION TESTS

7.6 Integration Tests

The integration tests represent the final step towards the final prototype. Looking

at the CloudAid architecture we see that the integration tests can be seen as simply

testing the Controller module since he is the responsible for invoking all the other

modules when necessary and keep the information flowing. However, a small excep-

tion exists to this simplistic view of the integration tests. We must not forget the

external call to the Decision Methods applications. These should also be considered

an integration test since these methods although external are still an important asset

of the overall prototype.

Using the RAD methodology enables quick development of the prototype mod-

ules that can be tested independently. Nevertheless we still have to integrate all

these modules and make sure they are working together.

However, as already stated most of the formal test cases were merged. This

provided the means to execute the integration tests along with the functional and

reliability tests. By testing several modules at the same time, as it was done in most

of the reliability tests, it was also being tested the communication between modules

and the expected flow of execution. Therefore, ensuring successful integration.

Note that this also includes the communication with the external Decision Meth-

ods which are part of the decision process. In this case, their testing is ensured with

the execution of the merged normalization and XMCDA data import/export relia-

bility tests.

7.7 Final Test Conclusions

By executing the test plan and ensuring successful implementation of all the ”MUST”

and ”SHOULD” functional requirements but also reliability in the data collection,

manipulation and results, we could prove to be possible the creation of a system

capable of recommending aggregated cloud services based on a set of requirements.

However, several constraints were raised by these tests. There is the need for a

better solution regarding the number of possible alternatives found during the search

mechanism. By applying too few requirements it might prove impossible to achieve

any kind of feasible decision due to the amount of alternatives. The grouping of

similar alternatives or the limitation to only a few are possible solutions. While

the first would not erase any possibility, but could possibly hide the differentiation

features of some alternatives, the second could easily eliminate better alternatives

if there is no previous knowledge of their decision performance. In the other hand

by using to many requirements the query execution time might be too long, if any

alternative is found at all.

Regarding the decision process, it was proven the utility of the MCDM methods

for ranking the set of alternatives. By applying two different methods with different

information requirements expressed by the XMCDA file, we also proved the system

capability to use different methods. The division of the multi level decision process

into different steps allowed to use these external methods for the ranking of the

143

CHAPTER 7. TEST RESULTS

alternatives and then their results for the computation of the aggregated decision.

The tests performed to the algorithms developed for returning the best Admissi-

ble Aggregated Solutions were only preliminary tests, however, fundamental to reach

a conclusion that further and more thorough tests must be performed to assess the

true nature of the algorithm. Nevertheless, we could draw some conclusions about

the various versions of the algorithms.

A final remark goes to the example presented in Appendix G where the Use

Case defined in Chapter 3 is used to prove that it is indeed possible to discover and

recommend cloud service aggregations based on decision aid mechanisms. Although

this example is not a test it highly relies on tested data to show the key functionalities

and results of the CloudAid Prototype.

144

8
Conclusions

This chapter presents the final conclusions of this thesis as well as the contributions

achieved during its research and implementation phases.

Section 8.1 summarizes what was proposed and how it was achieved focusing in

outlining the key elements described throughout this thesis. The findings and final

conclusions are discussed in Section 8.2. What are expected to be the benefits of the

work herein presented is the topic of Section 8.3. Finally, it is presented the future

work and possible future applications and developments based on this thesis.

8.1 Summary

The main purpose of this thesis was to produce an application capable of proving

the feasibility of a cloud service aggregation system based on user requirements and

decision methods. The concept by itself aggregates knowledge from several different

scientific areas as described in Chapter 1 where much work as been done as stated

in the vast state of the art research performed in Chapter 2.

The task of aggregating these different areas, such as service description, com-

position, aggregation, semantic web, linked data and multi-criteria decision making

is by itself a challenging job. However, we are confident that merging these concepts

and use them to solve smaller parts of the final task would add to its final value

achieving new and forward-looking tools with real world application.

This thesis starts by presenting an innovating new concept to discover new service

aggregations by introducing decision methods and applying user preferences besides

the constraint based aggregation system such as the one used in [130]. Although,

our approach is mainly focused in decision methods, there is still an important

constraint influence. This influence is visible through the requirements of the ”to-be

composed” system specified by the user and used to perform the service discovery

(service search).

The search mechanism, although it presents no big developments in its semantic

approach, it applies indeed some novel concepts since it uses a service set built from

Linked USDL service descriptions. In fact, we can say that this thesis presents one

of the first real application of Linked USDL service descriptions for such property-

145

CHAPTER 8. CONCLUSIONS

based discovery purpose. This usage of Linked USDL was not merely the usage of the

specification. A collaborative work as been done in order to enhance the description

of a particular non-technical aspect of services: pricing. The price is indeed a key

element in cloud services adoption by enterprises as expressed in Section 5.2 and

therefore was target of an extra effort in order to achieve a suitable description. It

should also be stressed the effort put into the elicitation of cloud concepts used by

providers in their service descriptions. This effort as stated in Section 5.1 resulted

in a new cloud taxonomy that tries to capture features and resources provided by

cloud vendors. This allowed also for an improved search mechanism.

This works presents a new algorithm for computing possible service aggrega-

tions. We introduce the concept of Admissible Aggregated Solution in an effort to

distinguish what is an aggregated solution from what in fact can be aggregated and

feasible from both the user and the service constraints point of view.

Finally, all these concepts were compiled and ultimately applied in a prototype

application. This prototype recommends service aggregations capable of providing

what the user has defined has fundamental (requirements) for his composite system

based on his own criteria or preferences. The system was tested with a real world

use case presented in full version in Appendix B. Other small use case examples were

also used for unit or manual testing. These scenarios are presented in Appendix E.

Note that all the data produced as well as the prototype application itself can

be accessed through the Cloud Aid Public Repository [7].

8.2 Findings

Throughout this thesis considerable findings and conclusion were being reported.

However, a global and final remark should be done.

According to the tests results presented in Chapter 7 we were able to prove the

prototype functionality as desired, as well as ensuring data reliability. Even some

performance tests were executed in order to asses the use of the system with higher

information processing demands, which, with some raised constraints, returned some

reasonable results. All these tests served to prove that, although there are obviously

room for improvements, the results obtained prove both the feasibility of applying

such concept but also its interest and added value. We can indeed extract useful

information for service aggregation based on decision methods.

We also applied the model to our real Use Case (Appendix B) proving that it

is possible to use and extract useful information for real world application. Indeed,

our entire approach was use case driven. Not only the prototype testing but also

the Cloud Taxonomy and the Linked USDL Pricing module development, as stated

in Section 5.2. This gives an extra credibility to the overall concept as well as all

this thesis contributions.

Summing up, we can say that the presented prototype is indeed a mechanism

capable of aggregate (conceptually) cloud services based on user requirements and

decision methods. Thus it can be used as a starting platform for improved version

and research.

146

8.3. IMPLICATIONS FOR SOCIETY

8.3 Implications for Society

As we saw in Chapter 1 Cloud Computing and Cloud Services in particular are a

blooming market with huge advantages for those willing to enter it. Thus, this work

biggest impact in an highly service oriented society is to increase the accessibility to

the cloud, facilitating its adoption to any interested enterprise. In fact the CloudAid

prototype impact goes much further than simply reducing the effort in cloud service

adoption:

• Facilitate cloud service discovery based on service properties (re-

quirements) - by automating the discovery process we are allowing cost and

time saving, that can be spent in building designing better systems or busi-

nesses.

• Facilitate provider agnostic cloud service aggregation - the provider

agnostic approach allows for a wider view on the cloud global market. Aggre-

gating several cloud services from multiple providers, knowing they will work

together (as Admissible Aggregated Solutions), can reduce costs and improve

enterprise efficiency.

• Providing decision mechanisms to evaluate the best solutions based

on the enterprise needs - the decision aid approach benefits companies

interests since they can adapt the results to their goals, relaxing less critical

criteria and enforcing those which really make a difference for their business.

Not only the consumers get all the benefits, cloud providers can also extract valuable

information from the work herein presented:

• Allowing providers to test their own service possible aggregations -

the possibility of testing possible aggregations can allow improvements in their

own composed service offerings (Service bundles)

• Evaluate the consumers expectancy - by knowing what costumers expect

of cloud services, through the requirements defined when searching, providers

can design new services to complement such customer expectations.

Another important remark goes to the standardization task, achieved both by

the pricing description with Linked USDL Pricing module and the Cloud Taxonomy

for cloud services features and resources. The first formalizes a novel way to describe

pricing models, specially from cloud services (Pay-per-User model), recurring to a

semantic approach. The latter tries to standardize how cloud providers describe

their services concepts by providing an ontology to be used as annotation tool for

cloud service descriptions in RDF. Thus contributing for a federated cloud 1.

1http://www.datacenterknowledge.com/archives/2012/09/17/

federation-is-the-future-of-the-cloud/

147

http://www.datacenterknowledge.com/archives/2012/09/17/federation-is-the-future-of-the-cloud/
http://www.datacenterknowledge.com/archives/2012/09/17/federation-is-the-future-of-the-cloud/

CHAPTER 8. CONCLUSIONS

8.4 Future Work

The contributions provided by the work herein presented are indeed a first approach

towards, what we expect to be, a full decision-based cloud service discovery and

aggregation system. However, precisely from the diversity of concepts from various

different research fields it was impossible to fully research each and everyone of

them, thus leaving many room for future developments. However, much of the

impact comes exactly from the possibilities opened by the prototype presented.

Therefore we hope that further developments can build upon this thesis to improve

the presented concept. Only a few possibilities, but surely not all, are listed bellow:

• Better support for the user inserted information - although there al-

ready exists an interesting support for Requirements, Criteria, and Service

Templates specification, there is still room for improving how they interrelate,

specially regarding global requirements. Improvements towards allowing the

recognition of requirements that must be fulfilled by the system as whole are

just a possible improvement. There might even occur situations where a user

wants his system to have a requirements but he does not care which Service

Template fulfills it provided that it is indeed fulfilled.

• Creation of real cloud service sets - Although we testes our prototype with

concrete data generated from real services a bigger effort should be put to the

creation of a cloud service set with descriptions from the providers themselves.

In other words the service set should be created based on web crawling of

Linked USDL service descriptions, which at a time is not yet possible due to

its ”still in development” status.

• Improved search mechanism - There are several parameters that can be

improved in order to enhance the search mechanism: support for different units

of measurement, natural language search mechanism and so on.

• Integration of price functions - One important contribution was the cloud

service dynamic pricing model formalization with Linked USDL. However, it

should be considered in future developments the integration of this capability

in the search mechanism.

• Continuos revision of the CloudTaxonomy - In order to cope with the

cloud market developments also the CloudTaxonomy should be focus of con-

stant revisions in order to keep its concepts up to date.

• Use of different decision methods - As stated throughout this thesis one

objective was to allow the use of multiple decision method. Although two

are already used, much more exist with different approaches. It would be

interesting to test these other decision methods and assess the consequences

for the overall solution.

• Further Admissible Solutions Algorithm testing - From the results ob-

tained in Section 7.5 it was already possible to draw some conclusions and to

148

8.4. FUTURE WORK

positively evaluate the approach. However, further and more thorough tests

must be executed in order to asses the full nature of the presented algorithm.

The big concern about modularity in the CloudAid Prototype enables precisely

these future developments, allowing for easy modification of parts of the full appli-

cation and testing its results. The presented prototype should be seen as a starting

platform for testing new approaches in all its steps (Search Engine, Decision Engine,

Aggregation Engine).

A final remark should go to the user interface. By providing a suitable GUI the

overall concept can greatly benefit from it. An example is the use of the JAHP

graphical interface for the AHP decision method explained in Section 6.7.4.2. With-

out it, it would be really painful for the decision maker to answer all the required

question even more to understand them.

Globally, each component of the prototype can be improved and subject of fur-

ther research. As already stated, this works aggregates several distinct scientific

fields in order to extract added value from them. Thus, this first prototype proves

exactly that this can be achieved, leaving however, space for further research and

improvement.

Concluding we should say that this thesis presents the first steps towards a full

decision-based cloud service aggregation system. However, its potential opens even

more doors for future applications thus requiring further development and research.

149

Appendices

A
Linked-USDL Service Modeling

This chapter aims to describe the process and explain some of the decisions made

while modelling a service in Linked-USDL [101].

The service being modelled is BIME [29], a business analytics SaaS provided by

”We Are Cloud”1. BIME is a service that provides multiple analysis features both

for management a business intelligence, and was one of the components described

in the use case.

The following sections are organized in the following manner: some of the under-

lying technologies in section A.1; an explanation of why choosing the BIME service

is given in section A.2; an overview of the methodology used to model this service

is in section A.3; in section A.4.1 a brief descriptions of the main prefixes and other

ontologies used during the modelling process; the service modeling in Linked-USDL

is described step by step in section A.4, and finally in section A.5 the description of

the service vocabulary where for each feature an example is presented.

A.1 Technologies Used

The technologies used are mostly based in the Semantic Web2, or Linked Data3.

All the code was written in Turtle4 which is a more ”human friendly” way of write

RDF5 triples.

A.2 Why BIME?

Looking at the use case description we can easily identify the services needed for the

solution, then, why choosing BIME? As a matter of fact any other component could

have been used, however as a first exercise in Linked-USDL modelling we wanted a

service that had a fair amount of information available and, at the same time, not

too complex.

1http://www.crunchbase.com/company/we-are-cloud
2http://www.w3.org/standards/semanticweb/
3http://www.w3.org/standards/semanticweb/data
4http://www.w3.org/TR/turtle/
5http://www.w3.org/RDF/

151

http://www.crunchbase.com/company/we-are-cloud
http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/data
http://www.w3.org/TR/turtle/
http://www.w3.org/RDF/

APPENDIX A. LINKED-USDL SERVICE MODELING

This takes out of the equation components like IaaS and PaaS, too complex for

the first approach, nevertheless interesting for later use. Also some services have to

little information which would make our model a weak example for later use.

With this being said and since BIME is a SaaS and it has a website full of

information the choice was evident. Note that the fact that the information is

available in the website was decisive.

A.3 Methodology

The methodology used was mainly based on the one followed in [54], where is de-

scribed one way of modeling a service in Linked-USDL.

In this case before starting to model the service into linked-USDL, a vocabu-

lary was created. This vocabulary is explained in A.5. The construction of this

vocabulary was an exhaustive procedure of ”scrapping” manually the BIME website

to list all the features and concepts of the service. Some concepts are directly ex-

tracted from the features list other are inferred from the service description or other

information available in the website 6 and its pricing information 7.

After this first step, the linked-USDL modelling starts. Unfortunately not all

the required information is available as is the case for the SLA (in A.4.4), one of

the linked-USDL modules. This step encompasses the mapping of the concepts

described in the vocabulary to the different price plans. This mapping is once again

based in the information from the website.

At the time of the writing the Linked-USDL module for the legal aspects is still

not complete, this matter will be addressed in A.4.3.

As a final result two final documents are obtained, both turtle files, one is the

Linked-USDL instantiation of the BIME service and the other is the vocabulary of

the service.

A.4 Linked-USDL Service Modeling

In this section will be explained how the BIME instantiation was made, and some

key concepts in linked-USDL vocabulary will be introduced. Note that like the

vocabulary definition the service modelling is also a subjective work, as a different

person might have choose a different approach. It is also important to state that

the Linked-USDL was still under development at the time of writing, and so, some

considerations had to be taken for this matter.

A.4.1 Prefixes

This section tries to explain the more important prefixes for the vocabulary and the

linked-USDL.

A good thing of Linked-DATA is that you can always refer to the knowledge

already collected, and as you can see in Listing A.1, we are doing the same. The

6http://www.bimeanalytics.com/
7http://www.bimeanalytics.com/pricing.html

152

http://www.bimeanalytics.com/
http://www.bimeanalytics.com/pricing.html

A.4. LINKED-USDL SERVICE MODELING

first 4 prefixes relate to the linked-USDL description, in this case all 4 modules, they

will be used in the linked-USDL instantiation of the BIME service.

The rest of the prefixes are pretty common for an ontology, however some de-

serve a little note, GoodRelations8, and SKOS 9, because they will be the most used

through out the service description. The GoodRelations is a widely used vocabulary

for e-commerce, and so it describes some concepts related to prices, product, and so

on. Also SKOS is a widely used vocabulary for knowledge organization, typically it

is used for hierarchy like concepts.

1 @prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .
2 @prefix legal: <http://www.linked-usdl.org/ns/usdl-legal#> .
3 @prefix price: <http://www.linked-usdl.org/ns/usdl-pricing#> .
4 @prefix sla: <http://www.linked-usdl.org/ns/usdl-sla#> .
5
6 @prefix owl: <http://www.w3.org/2002/07/owl#> .
7 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
8 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
9 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

10 @prefix dcterms: <http://purl.org/dc/terms/> .
11 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
12 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
13 @prefix gr: <http://purl.org/goodrelations/v1#> .
14 @prefix time: <http://www.w3.org/2006/time#> .

Listing A.1: Vocabulary Prefixes

A.4.2 Service Instance

The service instantiation uses the usdl-core and GoodRelations vocabularies and

some of its concepts.

Let’s start by explaining line 3 in Listing A.2, as you can see the attribute

hasClassification of the usdl-core vocabulary is used, this means that the BIME

service has a classification of the type SaaS, which is a SKOS concept defined in

Listing A.3. This was the first consideration taken for the BIME modelling, we

wanted to state that the BIME service was a SaaS, and this way we ensure it.

1 <#service_BIME> a usdl:Service ;
2 dcterms:title "Bime - SaaS Business Intelligence | Analytics & Dashboards "@

en ;
3 usdl:hasClassification :SaaS ;
4 usdl:hasProvider :provider_BIME ;
5 usdl:hasLegalCondition :legal_BIME ;
6 gr:quantitativeProductOrServiceProperty
7 :resource_BIME_Connector ,
8 :resource_BIME_Named_Viewers ,
9 :resource_BIME_Dashboard ;

10 gr:qualitativeProductOrServiceProperty
11 bime:Genetal_Features ,
12 bime:Key_Features ,
13 bime:Security_Features ,
14 bime:Customer_Support .
15
16 :resource_BIME_Named_Viewers a bime:Named_Viewers ;
17 gr:hasValueInteger 10.

8http://www.heppnetz.de/ontologies/goodrelations/v1
9http://www.w3.org/2009/08/skos-reference/skos.html

153

http://www.heppnetz.de/ontologies/goodrelations/v1
http://www.w3.org/2009/08/skos-reference/skos.html

APPENDIX A. LINKED-USDL SERVICE MODELING

18
19 :resource_BIME_Connector a bime:Connector ;
20 gr:hasValueInteger 10.
21
22 :resource_BIME_Dashboard a bime:Dashboard ;
23 gr:hasValueInteger 20.

Listing A.2: Linked-USDL BIME Instance

In Listing A.2 line 4 we are stating that the service provider is the one defined

in the provider BIME concept, as you can see in Listing A.4. This class holds the

data of the company who provides the BIME service.

The next step is to add the legal terms to the service as shown in line 5 of Listing A.2

by using the attribute hasLegalCondition. The legal terms will be further explained

in section A.4.3.

Finally we add the quantitative and qualitative properties of the service. by

using the GoodRelations vocabulary, refer to the GoodRelations specification for

further guidance.

The qualitative properties are the concepts described in the service vocabulary

explained in A.5 and basically they are features of the service, in the BIME exam-

ple, General Features, Key Features, Security Features and Customer Support. The

quantitative properties are the service features that can be quantified, this could be

storage capacity, number of servers available, or any other quantities, for BIME this

is, Connector, Named Viewers and Dashboard, this means that the BIME service

as a specific amount of this resources as described from lines 16 to 23 in Listing

A.2. More specifically in line 16 and 17 we are defining that the number of Named

Viewers is exactly 10.

1 :SaaS a rdfs:Class, skos:Concept ;
2 dcterms:description "Service model to all SaaS like services" .

Listing A.3: SaaS Concept

1 :provider_BIME a gr:BusinessEntity ;
2 foaf:name "We Are Cloud" ;
3 foaf:homepage <bimeanalytics.com> ;
4 foaf:logo <http://bimeanalytics.com/wp-content/uploads/2011/09/BimeLogo213x66

.png> ;
5 vcard:email "contact@wearecloud.com" .

Listing A.4: BIME Provider

A.4.3 Legal

The legal part of the service is quite simple to model, mostly because the Linked-

USDL specification was not yet final at the time of the writing.

As Listing A.5 shows in line 4, the only attribute used is the hasClause, this way

we are specifying that the class TermsAndConditions from the legal module has one

clause, stated in line 5 by the class Clause. Note that we are only pointing an URL

where the information resides.

154

A.4. LINKED-USDL SERVICE MODELING

1 :legal_BIME a legal:TermsAndConditions ;
2 dcterms:title "BIME legal statements"@en ;
3 dcterms:description "BIME legal statements are accessible at ’http://www.

bimeapp.com/terms_of_use.html’. Please consult this website for further
information"@en ;

4 legal:hasClause
5 [a legal:Clause ;
6 legal:name "Terms of Use" ;
7 legal:text "http://www.bimeapp.com/terms_of_use.html"@en] .

Listing A.5: BIME Pricing

A.4.4 SLA

The SLA, Service Level Agreement, was one of the missing parts from the website.

Unfortunately the providing company gives no significant information about this

matter which makes it impossible to model this particular part of the service.

A.4.5 Pricing

The pricing is probably the most important part of any service, and in Linked-USDL

it is where we define the components which make a product offering. The first step

is defining the service offerings, this is, what the provider offers, the product.

A.4.5.1 Service Offering

Listing A.6 shows the definitions of the BIME offering. A usdl-core class is used for

this effect ServiceOffering and as any product a price plan must be associated with

this offering as you can see in line 5 by using the usdl attribute hasPricePlan. In

BIME we have 6 different price plans one for each product edition, defined in the

vocabulary A.5.1. Note that by using the includes attribute in line 4 we are saying

that this offering is from the service described above in Section A.4 . Defining the

6 price plans is the next step.

1 :offering_BIME a usdl:ServiceOffering ;
2 dcterms:title "BIME instance"@en ;
3 dcterms:description "Offering for a BIME instance."@en ;
4 usdl:includes <#service_BIME> ;
5 usdl:hasPricePlan
6 :pricing_10_day_free_trial ,
7 :pricing_Quick_start_pack ,
8 :pricing_Eterprise_pack ,
9 :pricing_Premium_pack ,

10 :pricing_Big_data_pack ,
11 :pricing_Server_pack .

Listing A.6: BIME Offering

A.4.5.2 Price Plans

In Listing A.7 you can see the definition of the enterprise pack pricing. Here 2

concepts from the usdl-pricing vocabulary were used, the hasBillingCycle, (line 4),

155

APPENDIX A. LINKED-USDL SERVICE MODELING

which defines how often and the cycle that the client pays, in this example the client

pays every one month; and the hasPricingComponent (line 8) which will have the

description of the amount that has to be paid during this cycle and which service

components are included in the price.

1 :pricing_Enterprise_pack a price:PricePlan ;
2 dcterms:title "Enterprise pack"@en ;
3 dcterms:description "Fee for general use"@en ;
4 price:hasBillingCycle
5 [a gr:QuantitativeValue ;
6 gr:hasValueInteger "1" ;
7 gr:hasUnitOfMeasurement "MON"] ;
8 price:hasPriceComponent
9 :priceComponent_Enterprise_pack_General .

Listing A.7: BIME Enterprise Pack Example: Price Plan

A.4.5.3 Price Components

The third and final step is to define this PriceComponent class used in Listing A.7

line 9. We do this as shown in Listing A.8. In line 4 we are stating that this

particular price component (priceComponent Enterprise pack General) is linked to

a list of service features by using the attribute isLinkedTo. Now we have to list all

the BIME features that the Enterprise Pack includes. Note that all the next lines

from Listing A.9 to A.20 start with the word bime, this means that they are concepts

defined in the service vocabulary A.5.

1 :priceComponent_Enterprise_pack_General a price:PriceComponent ;
2 dcterms:title "General price"@en ;
3 dcterms:description "Fee for general usage of the instance."@en ;
4 price:isLinkedTo
5 [a bime:Named_Viewers ;
6 gr:hasValueInteger "10"] ,
7 [a bime:Connector ;
8 gr:hasValueInteger "10"] ,
9 [a bime:Dashboard ;

10 gr:hasValueInteger "20"] ,

Listing A.8: BIME Enterprise Pack Example: Price Component (Part 1)

The final lines in Listing A.8 define the quantitative properties of the enterprise

pack, from line 5 to 10 we are saying that this pack has exactly 10 Named Viewers,

10 Connectors and 20 Dashboards.

The following code examples, are the description of the several features of the

service included in the Enterprise Pack.

General Features

In Listing A.9 we describe the general features included in this pack. As the name

says general features are those included in all service editions, and they include

things like exporting data to multiple formats, desktop application, on premise or

cloud storage and so on.

1 #generel features
2 bime:On_premise_or_cloud_data_storage ,

156

A.4. LINKED-USDL SERVICE MODELING

3 bime:Dashbord_unique_url_sharing ,
4 bime:Export_data_to_multiple_formats ,
5 bime:Mobile_device_dashboard_comsumption ,
6 bime:Desktop_application ,
7 bime:Data_dashboard_security_options ,
8 bime:Data_snapshot_and_upload ,
9 bime:Integration_via_web_service ,

Listing A.9: BIME Enterprise Pack Example: Price Component (Part 2: General

Features)

All these features are described in more detail in A.5.2. However as an example

Listing A.10 shows the definition of the General Features group. As you can see in

line 4 we are using the skos:narrower attribute, this mean that all the bellow lines

are children of the general features class, this is, all the bellow concepts are general

features of the service.

1 :general_features a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "General Features"@en ;
4 skos:narrower
5 :On_premise_or_cloud_data_storage ,
6 :Dashboard_unique_url_sharing ,
7 :Export_data_to_multiple_formats ,
8 :Mobile_device_dashboard_consumption ,
9 :Desktop_application ,

10 :Data_dashboard_security_options ,
11 :Data_snapshot_and_upload ,
12 :Integration_via_web_service .

Listing A.10: BIME Service Features: General Features

1 :On_premise_or_cloud_data_storage a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Storage in the cloud or on-premise"@en ;
4 skos:broader :general_features .

Listing A.11: BIME Service Features: On Premise or Cloud Storage

In Listing A.11 the first concept of the general features group is defined, the On

Premise or Cloud Storage, in line 2 we are saying that this concept is a subclass of

the GoodRelations:QualitativeValue and in line 4 we explicitly specify the inheritance

to the general features class by using the skos:broader attribute.

Security Features

In Listing A.12 we continue to list the Enterprise Pack features, in this example

we list the security features. Again this features are explained in the service vov-

abulary in section A.5.4. Security features are those responsible for ensuring data

confidentiality or connection security.

1 #security features
2 bime:Encrypted_connections ,
3 bime:Data_encryption ,
4 bime:Daily_backups ,
5 bime:Secure_login ,

157

APPENDIX A. LINKED-USDL SERVICE MODELING

Listing A.12: BIME Enterprise Pack Example: Price Component (Part 3: Security

Features)

The example of Listing A.13 shows the same procedure of the general features,

again, note the use of the skos:narrower to define the child classes of the security

features group and in Listing A.14 the skos:broader. As you have already noticed

we are using all the security features in the Enterprise Pack, this means that all the

features are included in this pack.

1 :Security_features a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Security Features"@en ;
4 skos:narrower
5 :Encrypted_connections ,
6 :Data_encryption ,
7 :Daily_backups ,
8 :Secure_login .

Listing A.13: BIME Service Features: Security Features

1 :Encrypted_connections a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Encrypted connections to both amazon S3 and BIME servers"@en

;
4 skos:broader :Security_features .

Listing A.14: BIME Service Features: Encripted Connections

Customer Support

Again the customer support follows the same process. In Listing A.12 we list

the customer support components included in the Enterprise Pack. The customer

support are those components that the service have to help the customer to better

use the service, like product manuals, chat rooms, forum and so on, in total there

are 7 components, and as you can see we are including all of them in this pack.

1 #Customer Support
2 bime:Product_manual ,
3 bime:Chat_room_for_questions ,
4 bime:Support_forum ,
5 bime:Tuturial_videos ,
6 bime:Getting_started_guides ,
7 bime:Free_live_online_demo ,
8 bime:Glossary ,

Listing A.15: BIME Enterprise Pack Example: Price Component (Part 4:

Customer Support)

Listing A.16 shows the Customer Support class definition, again the skos:narrower

is used to list the child concepts. An example of a child concept of the customer sup-

port is shown in Listing A.17, the skos:broader is again used for showing inheritance.

This concepts are explained in more detail in Section A.5.5.

1 :Customer_support a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;

158

A.4. LINKED-USDL SERVICE MODELING

3 skos:prefLabel "Customer Support"@en ;
4 skos:narrower
5 :Product_manual ,
6 :Chat_room_for_questions ,
7 :Support_forum ,
8 :Tutorial_videos ,
9 :Getting_started_guides ,

10 :Free_live_online_demo ,
11 :Glossary ,
12 :2_hour_personalized_support.

Listing A.16: BIME Service Features: Customer Support

1 :Product_manual a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Product manual"@en ;
4 skos:note "https://docs.google.com/a/wearecloud.com/document/pub?id=1

V4SpbGJrU3P3zg-XkWlrGC-ZXXPa9FJQPxDYx3Z73rY" ;
5 skos:broader :Customer_support .

Listing A.17: BIME Service Features: Product Manual

Dashboards

A dashboard is a screen for data visualization, refer to section A.5.7 for more

information about dashboards.

In the Enterprise Pack example we use 2 dashboards (Listing A.18), however as

shown in Listing A.19 bellow the skos:narrower attribute 4 dashboard concepts

exist in total, this means that the enterprise pack only allows two of them, the

Basic Dashboard and the Standard dashboard.

This information is extracted directly from the website, however from all the

features listed in section A.5 not all of them have to be used, this is, for each service

edition some decisions have to be made to choose which features are included in

which editions.

1 #Dashboards
2 bime:Basic_Dashboard ,
3 bime:Standard_Dashboard ,

Listing A.18: BIME Enterprise Pack Example: Price Component (Part 5:

Dashboard)

1 :Dashboard a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Dashboard definition"@en ;
4 skos:narrower
5 :Basic_Dashboard ,
6 :Standard_Dashboard ,
7 :Advanced_Dashboard ,
8 :Customization_Dashboard .

Listing A.19: BIME Service Features: Dashboard

159

APPENDIX A. LINKED-USDL SERVICE MODELING

Connectors

A connector is a point where BIME is getting information from, a data source.

Read section A.5.6 for more information about connectors.

Continuing listing the enterprise pack features, in Listing A.20 3 connectors are

used, all of them described in the service vocabulary. Once again not all connectors

are used, in total 4 connectors are described in Listing A.21, but only 3 are included

in the enterprise pack price plan.

1 #Connectors
2 bime:Basic_Connector ,
3 bime:Sql_Connector ,
4 bime:Advanced_Connector ,

Listing A.20: BIME Enterprise Pack Example: Price Component (Part 6:

Connector)

1 :Connector a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "A connection to a source of data"@en ;
4 skos:narrower
5 :Basic_Connector ,
6 :Sql_Connector ,
7 :Advanced_Connector ,
8 :Big_data_Connector .

Listing A.21: BIME Service Features: Connector

Key Features

The key features are those related to data filtering and manipulation. These

are the features that truly influence the differences between editions. This means

that some of the features listed in Listing A.23 will not be used in all pack, as the

enterprise example shows only 7 out of the 13 key features are included.

As shown in Listing A.22 the enterprise pack has features like post processing,

value/atribute filtering, multiple sources query blender and so on. These features

are all described in more detail in section A.5.3.

Note that some of the features might not be directly mentioned in the website,

and so some have to be inferred from the editions descriptions given. These concepts

are a personal choice and you have to have this in mind while modeling a service,

however subjectivity should be avoided, a goal that is not always possible to achieve

in the first attempt, which makes the modeling process an iterative process.

1 #Key features
2 bime:Post_processing_functions ,
3 bime:Value_attribute_filtering ,
4 bime:Google_Analytics_API_integration ,
5 bime:Multiple_sources_query_blender ,
6 bime:Calculation_engine ,
7 bime:Drag_and_drop_querie_creator ,
8 bime:Messaging_function ;

Listing A.22: BIME Enterprise Pack Example: Price Component (Part 7: Key

Features)

160

A.5. SERVICE VOCABULARY

1 :Key_features a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Key Features"@en ;
4 skos:narrower
5 :Post_processing_functions ,
6 :Full_customizing_dashboard_functions ,
7 :What_if_analysis ,
8 :Drill_Down_analysis ,
9 :Drill_Through_analysis ,

10 :Cross_filtering ,
11 :Value_attribute_filtering ,
12 :Google_Analytics_API_integration ,
13 :Multiple_sources_query_blender ,
14 :Calculation_engine ,
15 :Drag_and_drop_query_creator ,
16 :Messaging_function ,
17 :Behind_firewall_deployment .

Listing A.23: BIME Service Features: Key Features

Price

The final step is the price itself for this component, in Listing A.22 line 1, the

attribute hasPrice of the the usdl-price module is used for this matter, then we define

the pricing specification by using the GoodRelations vocabulary, in this example 180

US Dollars per analyst per month.

1 price:hasPrice
2 [a gr:UnitPriceSpecification ;
3 gr:hasCurrency "USD" ;
4 gr:hasCurrencyValue "180" ;
5 gr:hasUnitOfMeasurement "Analyst/MON"] .

Listing A.24: BIME Enterprise Pack Example: Price Component (Part 8: Price)

Now we have to repeat this process for all the price plans we wish to define, in

BIME case 5 more times as you can note in Listing A.6. Only after this the full

service will be modeled.

A.5 Service Vocabulary

As mentioned in A.3, in order to express the service a vocabulary had to be created,

this vocabulary is nothing else but a description of the features provided by the ser-

vice. In other words the vocabulary is a number of classes each one describing a key

concept of the service. A concept can be a feature, a resource or any other relevant

information about the service being modelled. These concepts are fundamental to

understand the service, what it does, how it is done and so on. Note that all the

information in this vocabulary was extracted directly from the website10.

Because the interpretation of the information retrieved can vary with the person

making the modelling, there is an high amount of subjectivity associated with this

concepts, this is the goal of this section, to reduce the subjectivity of the concepts

presented in the vocabulary.

10http://bimeanalytics.com/

161

http://bimeanalytics.com/

APPENDIX A. LINKED-USDL SERVICE MODELING

For each group of concepts a brief explanation of it’s purpose is given, and then

each concept will be explained with an example if possible to better understand their

purpose. Note that model used is a personal choice so a different person might have

chosen a different approach, for this matter all the relevant choices will be explained

whenever necessary.

1 :general_features a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "General Features"@en ;
4 skos:narrower
5 :On_premise_or_cloud_data_storage ,
6 :Dashboard_unique_url_sharing ,
7 :Export_data_to_multiple_formats ,
8 :Mobile_device_dashboard_consumption ,
9 :Desktop_application ,

10 :Data_dashboard_security_options ,
11 :Data_snapshot_and_upload ,
12 :Integration_via_web_service .

Listing A.25: General Features Concept

In Listing A.25 we have an example of a concept definition, in this case the gen-

eral features concept. By using the attribute narrower of the SKOS ontology we are

specifying that all the below concepts are children of the general features concept. In

the opposite way in Listing A.26 we have the child using the broader attribute mean-

ing that the below class is the father of the current concept, this meant that the

On premise or cloud data storage concept is one of the general features concepts.

This 2 examples are illustrative of all the other concepts defined in the vocabulary

since all of them are described in the same way.

1 :On_premise_or_cloud_data_storage a rdfs:Class , skos:Concept ;
2 rdfs:subClassOf gr:QualitativeValue ;
3 skos:prefLabel "Storage in the cloud or on-premise"@en ;
4 skos:broader :general_features .

Listing A.26: On Premise or Cloud Data Storage Concept

A.5.1 Product Editions

As any other software product, BIME also have different levels of service, each one

with different features and different prices.

There are 4 main product editions: Enterprise, Premium, Big Data, Server.

However a decision was made to include 2 more concepts and treat them as 2 more

product editions in spite of them being a simple variation of the previous 4 editions.

They are: 10 Day Free Trial and Quick Start Pack.

Since the first 4 packs are pretty well described in the website 11, there is no need

for further description. However the 2 extra packs need a little description. The

first, 10 Day Free Trial, a nothing more than a full feature edition for 10 days time

where the client can test all the available features for later choosing the best pack to

11http://www.bimeanalytics.com/pricing.html

162

http://www.bimeanalytics.com/pricing.html

A.5. SERVICE VOCABULARY

subscribe. The second, Quick Start Guide, is more like a promotional starting kit,

where the client has 1 Premium Licence of the service, plus 2 hours of personalized

support per month, this kit lasts 3 months and has fee of $500 per month.

These editions could have been simply used as pricing plans in the Linked-USDL

pricing description, however, by including them in vocabulary the goal is to achieve

a richer service description

A.5.2 General Features

This group of concepts contains the basic concepts of the service. Mainly these are

the features fundamental for the core of the service, the data, sharing and accessi-

bility. The concepts related to data manipulation and analysis were grouped under

the Key Features, explained in section A.5.3.

Below each concept will be briefly explained and an example presented when

possible.

On Premise or Cloud Data Storage BIME allows clients to choose between

two data storages options. The data can be stored either on the cloud, and BIME

as their own servers, or on the client environment.

Dashboard Unique URL Sharing The definitions of dashboard is explained in

section A.5.7. What this feature allows is to refer to any dashboard created with

BIME using an unique URL. Imagine that an analyst is compiling a sales report

for his boss, however his boss wants to share this information with all department

managers, they can all access this dashboard through the URL, embedded in the

company web page for example.

Export Data to Multiple Formats The client can export his views or dash-

boards to any file format, jpg, excel, PDF, CSV, and so on.

Mobile Device Dashboard Consumption BIME has the possibility to be used

in mobile devices. Dashboard consumption means that the created dashboards can

be viewed in all major mobile devices. It is also possible to use BIME as a mobile

application in iOS or Android phones or tablets.

Desktop Application Besides de service being available as a SaaS in the cloud it

has also a desktop application that the analysts can use to work. It is called BIME

Desktop and is available for Windows and Mac OS.

Data Dashboard Security Options This is not a feature well explained in the

website, a few considerations had to be done here. By data dashboard security

options we mean the possibility to create groups of viewers or passwords for the

dashboards or only parts of the dashboards, this way only a few defined persons can

visualize de information.

163

APPENDIX A. LINKED-USDL SERVICE MODELING

Data Snapshot and Upload BIME gives the possibility to, if you don’t have

your data stored in the cloud, take a snapshot of it and upload it to BIME distributed

cache. This feature is also called ”Déjà Vu”.

Integration Via Web Service This means that you can connect to web services

to extract data. Imagine that your company has a webservice for data retrieval,

with BIME it is possible to use that web service and integrate it with the rest of the

data.

A.5.3 Key Features

The key features group has the concepts related to data analysis and dashboard

manipulation. Some of these features are particular to some editions others are

present in all editions.

Below each concept will be briefly explained and an example presented when

possible.

Post Processing Functions Post Processing functions are the options available

to the user after creating the query for the data, organizing columns, rows, aggregate,

change how the data is presented, percentage or simple numbers and so one.

Full Customizing Dashboard Functions This feature is actually a set of fea-

tures, instead of listing all the customization possible to a dashboard it was decided

to group them in this feature. Customization features include all operations of

re-sizing, adding documents, pictures, rich formatted text, etc, to a dashboard.

What If Analysis What if analysis allows the client to suppose possible scenarios

and see the results. For example, What would happen to my revenues if i change

price?

Drill Down Analysis BIME has the possibility to make a Drill Down analysis,

by going into more detailed data if the client wants to. For example, Category -

Sub-Category - Product Name

Drill Through Analysis Drill Through analysis allows the client to display un-

derlying data by examining results across different dimensions. For example, Man,

Woman, Children.

Cross Filtering This is the most advanced filtering option and it allows to make

any kind of filtering to the data retrieved.

Value Attribute Filtering This feature is the more basic filtering option, it lets

the client filter by attribute or by value. For example filter cities by country, or

filtering cities by country name Portugal.

164

A.5. SERVICE VOCABULARY

Google Analytics API Integration It is possible to fully integrate the client

website data using Google Analytics API.

Multiple Sources Query Blender The query blender is a features that allows

the client to make queries from different data sources. imagine that you have a Mysql

database of clients, and a CSV with the billing information, with query blender in

the same query you can retrieve data from the two sources.

Calculation Engine The calculation engine is an easier way to compose complex

functions for calculating data. It allows to group things dynamically, filter them

based on complex rules or measure the impact of a change on your other data.

Drag and Drop Query Creator To create a query in a dashboard the only

thing the client has to do is to drag&drop data fields, attributes or operations.

Messaging Function It is possible to leave comments in any dashboard, either

for explained complex data, or reducing subjectivity of graphs and so on.

A.5.4 Security Features

Since BIME is a data analysis tool and works with important business data it is key

to ensure that all connections and communications are secure, this was the reason

to include a pack of security concepts provided by the BIME service. The security

features were found through out the website, and they are the same to all product

editions. Four features regarding security were defined and are explained below:

• Encrypted Connections - this means that all the connections are encrypted

by default. The connections can be to the BIME servers or to Amazon S3

servers;

• Data Encryption - whenever data is transferred from one point to the other

this data is encrypted by default;

• Daily Backups - if the clients opts for keeping the data in the BIME servers,

the service ensures that daily backups are scheduled;

• Secure Login - all the logins made to the system, are secure.

A.5.5 Customer Support

As any good service BIME also have customer support, as an important part of the

service it was included in the vocabulary. However most of its concepts were not

explicitly explained in the website and had to be inferred by other features. For

example, the 2 Hour Personalized Support is never mentioned in the support area of

the website, the only time it is mentioned is when the Quick Start Pack is described,

nevertheless, it was included in the Customer Support class of concepts.

Since this concepts are self-explanatory there is no need for further explanation.

A full list is shown bellow:

165

APPENDIX A. LINKED-USDL SERVICE MODELING

• Product Manual;

• Chat Room for Questions;

• Support Forum;

• Tutorial Videos;

• Getting Started Guides;

• Free Live Online Demo;

• Glossary;

• 2 Hour Personalized Support.

A.5.6 Connector

A connector represents a data resource, this is, a database or a spreadsheet is a

connector, because it is a peer where BIME can extract data from. Since this is

a key concept for the overall understanding of the service it was included in the

vocabulary, in fact, several different types of connector are described below.

• Basic - A basic connector can retrieve data from: Excel, SalesForce, Google

Docs, CSV, SimpleDB, Lighthouse and SOAP;

• SQL - A sql connector can retrieve data from almost any RDBMS available

in the market, for example, SQL Server, Mysql, Oracle,...;

• Advanced - The advanced connector can retrieve data from Google Analytics

and XMLA OLAP engines such as Mondrian, Analysis Services, ...;

• Big Data - The big data connector is intended for the Google BigQuery and

SAP HANA.

A.5.7 Dashboard

A dashboard by definition is a screen where information can be displayed, in a quick

and effective way. For BIME a dashboard is the core of the product, this is, the

dashboard is the final result, where all the data is presented after being processed

and customized by the analyst. Once again this is a key concept that should be

included in the service vocabulary. The service also establishes 4 different levels of

dashboards, some allow give the user full customization power other are a little more

limited. A full list of the dashboard descriptions follows:

• Basic - The basic dashboard allows the user to make basic interactions and

customization, such as value and attribute filters and some post processing

options;

• Standard - This dashboard includes data filter prompts for slicing data;

166

A.5. SERVICE VOCABULARY

• Advanced - Has different types of analysis, such as What If, Drill Down,

Drill Through, Cross filtering and allows the user to re-size windows as well

as positioning different objects (images, text,...);

• Customization - Full customization, insertion of logos, pictures, documents,

hyperlinks,...

A.5.8 Extra Considerations

Besides the above explained concepts 2 more were later added. These concepts con-

cern sharing and viewing capabilities, and were considered of value for the service

description. They are the Basic Viewer and the Named Viewer. The first is un-

limited, and is directed for the common use, this means that everyone can access

them by an unique URL, of course it can be protected by a password if the client

wishes. The second is directed for a specific viewer and is protected by a login and

password, they are limited to 10 per license.

167

B
Use Case (Full)

B.1 Problem Description

We start by introducing our IT company, with 200 employees, most of them working

in the only building the company owns. Taking into account the number of elec-

tronic devices constantly running in the building, the company knows the energy

consumption is high, and is concerned about reducing it to a minimum, reducing

their operational costs. In addition to the above concerns, the European Union di-

rectives point to a 20% cut on the energy consumption as well as encourage the use

of energy meters to monitor consumption and efficiency 1.

Moreover, the constant increase in social awareness for green energy and environ-

mental concerns, press the company to adopt these measures in order to maintain a

”green image” and transparency standards to their consumers.

Since the building is full of electronic components there will be a huge amount

of sensors to retrieve the data for energy consumption and management. There are

many different approaches stated in [63], [50], [1], [119], [62]. With this many devices

the amount of data to collect, process and predict is huge, which leads to a fair

capability of storage and data processing. The company currently has none of this

capabilities to dedicate to their Energy Monitoring and Efficiency System (EMES),

and so it is willing to outsource these capabilities. Using the same arguments from

Section 1.3, choosing the cloud seems a good option.

The cloud will allow the company to surpass the storage and processing of all the

data, without building their own infrastructure. However, they also want to make

this data public through a website, that can be accessed by anyone. Also, due to the

European Union above mentioned concerns, a monthly report should be delivered,

for this matter the EMES needs to automatically create and send reports.

To facilitate the usability and ease of use, an app that allows employees and

managers to monitor and control the system should be developed. For eliminating

the ”in loco” controlling approach the company wishes to adopt an SMS system

to control the EMES, as well as to alert the right person if something of relevance

happens. The goal is to make the system as controllable as possible without the

need of a permanent manager in the building.

1http://ec.europa.eu/energy/efficiency/index_en.htm

http://ec.europa.eu/energy/efficiency/index_en.htm

B.2. SYSTEM USAGE

B.2 System Usage

In this section we present the actors and their interactions with the EMES, The

purpose is to better understand the system concept and the reason for some of the

choices for potential cloud services solutions.

Interacting with the EMES we can define 4 major actors, each of them with

their own functionality, and different access to information generated by the EMES.

The first identified actor is the sensor that will collect data from the correspondent

device and transmit it to a wireless receiver. Note that hundreds of sensors will be

collecting data at the same time and transmitting it to the main receiver.

The second actor is the building manager, or the person in charge of maintenance

or controlling the energy system. The three main interactions with the system are:

• View data (readings, predictions, reports, efficiency,...)

• Create patterns (prediction patterns, SMS alerts, report patterns,...)

• Control the system (SMS commands, App Control, resolve issues,...)

The third actor is the common employee, that only has access to some of the

features available to the building manager. They can view most of the information

available (average comsumption, ratios, etc), and can even be allowed to make some

extra simple interactions through the mobile app or website, such has turn on or off

their equipment, or communicate a malfunction to the building manager.

At last the general population. This actor has access to public information,

allowed by the company, such as overall readings, efficiency, public reports, overall

statistics, etc. This information will be available through the website.

Note that multiple levels of interaction can be specified for each of this actors.

For example, in the website, while the general public can only view public informa-

tion, an employee can see other kinds of information, alerts for example, or energy

consumption by department.

B.3 Contracting a Composite Service Solution

For convenience reasons we bring back the image from Section 1.4. Our company

wishes to contract several cloud services that can be integrated to fulfill their EMES

requirements. To achieve such a system several steps have to be preform as shown

in Figure B.1.

The first step corresponds to the identification of the company needs. Those

needs are the requirements for the system captured by analysing the company needs

as we did in Section 3.1 and 3.2. Other specification could have been collected

such as non-functional requirements, dependencies between components or metrics.

However, they are not important for the scope of this use case.

The second step, is to compile all the information collected in the previous step

and create an architecture view. It could be for example an UML component dia-

gram or any other tool the company wishes. Something that formalizes the require-

ments information. In this step everything that could influence a decision towards

169

APPENDIX B. USE CASE (FULL)

Identifying
Company Needs

Define service
Components/Architecture

Search for Cloud Service
Candidates

Choose Between All the
Candidates for Each Component

Contract the
Chosen Services

Final Composite Service Solution

Integrate All the
Services

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure B.1: Steps for contracting a composite service solution.

a specific service must be included. The purpose of this process is to gather and

maintain the important information for later steps, this way the company never

looses track of what they need, however the architecture can change with time, if no

good solutions are found. This process is no different than the one used in software

development.

In the third step the search for potential cloud services to fulfill the documented

requirements starts. The company knows the importance of the EMES they want to

implement and so it decides to allocate a team solely dedicated to this task. They

search for all potential candidates without excluding any, except for those who do

not fulfill the basic functional requirements. All those services who comply with

these basic requirements are cataloged and all the relevant service information is

collected and stored for later use in the decision process. This information is mainly

extracted manually from the service provider website, making this entire task long

and painful.

After collecting the information from enough sources, the fourth step begins. It is

now time to reach a decision on which cloud service to use for each EMES component

specified in step 2. Several meetings are scheduled with the team responsible for

finding the services and the team responsible for implementing the EMES, even

members of the administration are present for approval. All the cloud services are

discussed and pros and cons are debated. Due to the complexity of the system to

be implemented one meeting is not enough, several factors are critical, besides the

price, availability and security are of the up most importance. The system must also

170

B.4. REQUIREMENTS

comply with the amount of data collected from the sensors, which is not an easy

task.

After reaching a decision on which services to use, the board starts the contacts

to contract the chosen services, this is the step 5.

Once the cloud services are contracted and running the final step belongs to the

development team who has to integrate all the contracted services, and implement

some parts of the system such has the website, or the mobile app. This step can be

outsourced, however since the company is an IT specialized company they decide to

do it themselves.

After a few months the EMES is finally up and running and the first report

with the energy consumption and efficiency is sent to both the administration and

the EU. The next months the company starts to reduce energy usage, and begins a

marketing campaign in their new website for customers to prove their ”green image”.

B.4 Requirements

Because the smart building subject is in vogue, there are several examples ([62], [1],

[63]) of systems similar to the one presented here, mostly for smart homes but that

can easily be generalized to bigger buildings through the use, for example, of the

cloud. Some use a client server approach like [119], which is interesting for a multi-

building problem. More examples of different approaches for the smart buildings

can be found in [33].

Since we are facing a building with high energy consumption and some special

constraints from both cost reduction and EU directives, we require a different set of

requirements from those specified in the above examples.

In this section we will list a series of requirements and give a brief explanation

why they are really requirements.

B.4.1 Functional Requirements

The Functional requirements are a set of functions indispensable to the system. In

our case the EMES functionality is going to be outsourced and so these requirements

are strongly linked to the cloud components to be used later. Bellow we provide a

list of the more relevant functional requirements :

• Cloud Storage - For an IT company with around 200 hundred employees,

the building should be composed of several floors, each of them with several

rooms full equipped with computers, monitors, etc. Even if the company has

a smart approach for some resources like printers for example, this still means

a lot of devices to monitor constantly, which obviously mean a huge amount

of data. Since we are talking about a monitoring and efficiency system all

the data must be stored, and this occupies a huge amount of storage capacity,

capacity that the company currently does not possess;

• Processing capability - as explained in the previous requirement the amount

of data is huge so, the system must have a processing capability to process

171

APPENDIX B. USE CASE (FULL)

all the data, not only to read, but also to understand and produce new data,

predictions and efficiency, or even suggestions for enhancing the energy results.

This is a good example where the cloud can help;

• Analysis capability - The system should have a fair amount of tools to

analyse and predict data, this collected or produced data can then be displayed

to the end-user;

• Manage incoming and outgoing messages - The messages from and to

the system should be managed properly. All the requests for data must be

directed to a Webserver that decides what to do with them, and then sends

the information. This way we ensure that both inside and outside people can

access the data and control the system with proper privileges;

• Ease of access - since one of the company concerns is transparency, and

ensuring they have a ”green image”, the most relevant reports and information

should be available to everyone. A web-site or a mobile app can be introduced

to ensure these goals by providing the information to general public;

• Control - It must be possible to send commands from multiple platforms, and

devices in order to facilitate the system control for the company employees;

• Report Management - Since monthly reports to the UE must be sent, and

for management reasons, the reports should be generated and sent automat-

ically to the requesting entity or person. This way there is no need to waste

time producing these reports manually, accelerating the process;

• Alert System - Because sometimes something might go wrong in the build-

ing (ex: someone left the lights on, or a specific device is consuming more

energy then it should), the system should send alerts to someone in charge of

supervising the system, in order to the problem can be dealt with as quickly

as possible.

Note: above we have a list of high-level requirements and not development

requirements.

B.4.2 Non-Functional Requirements

Basically the non-functional requirements are focused in scalability, we expect the

web-site to be highly requested, availability, all the system should be running 24/7,

and reliability, since some data is going to be predicted it must be accurate and

based in accurate readings or else the reports would have no meaning.

Also important, but on another level, usability and maintainability, specially on

the presentation module, it should be possible and easy to add new features as well

as being easy to use by the end-user.

172

B.5. SYSTEM MODEL

B.5 System Model

In this section we give an overview of the system model according to the specification

given above. The system architecture is composed by three modules as shown by

Figure B.2,the Sensor Module, the Building Gateway and the Presentation Module.

While the first two can be perfectly transported to the cloud the Presentation Mod-

ule, for physical reasons (sensors), cannot, and this is the reason why we decided

to put it apart from the rest of the system. A more detailed explanation on this

module is given in B.5.1.

The other two modules are perfectly easy to justify, the second module, the

Building Gateway, is the backbone of the system, while the third module, Presen-

tation Module, concerns about the presentation of information to the user. More

detail about this two modules in B.5.2 and B.5.3.

B.5.1 Sensor Module

This is the only module that cannot be transported to the cloud, this happens

because it is a highly physical part of the system. The sensors must interact directly

with the devices to collect data.

The only requested function is to collect data about the consumption of each

device and communicate it to a central wireless receiver that communicates with

the database to store the data.

Since it is not the scope of this project to present a data collection system, or

communication, we will not detail further this module.

B.5.2 Building Gateway

The so called core of the system, this module has three main concerns: the storage

of the collected data in the database; the data processing to infer new pieces of data,

and in the end send the result to the the end-user as requested.

To achieve this three goals we need the following components:

• Web Server - The responsibility of the Webserver is to act as a gateway. It

manages all the communication with the outside applications that wish to view

the available information, as well as control commands sent to the system, it

should then process them and act as requested. Besides outside request, it also

communicates with the database to retrieve information, or to store new one.

The data retrieved from the database is then sent for processing if needed.

This component controls the entire flow of the information in the system. Can

obviously be distributed to more than one machine; Ex: Amazon Web Services
2, etc...

• Data Base - the database will receive data from the Sensor Module and will

store it in a proper way to be retrieved by the Webserver. it will also sometimes

2http://aws.amazon.com/

173

http://aws.amazon.com/

APPENDIX B. USE CASE (FULL)

receive already processed data directly from the Webserver.

Ex: Google Cloud Storage3, etc...

• Data Processing - This unit acts only as a processing and data analysis

station. His purpose is to get the data from the database and process it

accordingly. The purpose for this component is obvious, as stated in B.4, the

system requires a high processing capability, and so a dedicated unit is required

to make up to this need. A SaaS can and should be used to analyse the data

and make predictions.

Ex: Bime4, etc...

B.5.3 Presentation Module

This module is responsible for presenting all the data to the end-user (building

manager, employee, security, general public...), as well as provide the proper tools

for controlling the system from both inside and outside the building. It is also

responsible for the alerts to the end-user, this alerts can be customised. Many new

applications can be performed in this module, the only constraint is to follow the

communication protocol with the Webserver.

• Web-Site - The purpose for the web-site is to allow users to access all the

data, probably with some constraints, but the goal is to open the collected

data to anyone who wishes to see them. This goes in line with the company

concerns stated in B.1, for the EU directives, and public image;

• App - The app acts both as a system controller an information viewer. It is

in this app that the manager or anyone who was granted access can change

energy consumption parameters, or simply analyse them. Could be available

to all the building employees or general public, but can also be restricted to

some, or to have different levels of usability, and information access. This app

should also be multi-platform, and multi-device, for usability purposes.

Ex: Google App Engine5, etc...

• Mail Server - Since a report on the energy activity is regularly created and

can be sent to any entity by E-mail, it is important to have a mail server

capable of doing so. Besides all the reports are stored in the server and it

should be possible to review them later.

• SMS Service - Despite the fact that the system can send an sms to a specific

mobile number alerting to some events previously configured, it is also possible

to control the system through some special commands, given by a code in the

sms, to activate a feature for example.

Ex: Clickatell6, etc...

3https://cloud.google.com/products/cloud-storage
4http://bimeanalytics.com/
5https://developers.google.com/appengine/
6http://www.clickatell.com/

174

https://cloud.google.com/products/cloud-storage
http://bimeanalytics.com/
https://developers.google.com/appengine/
http://www.clickatell.com/

B.5. SYSTEM MODEL

.

.

.

Presentation Module
(User Interfaces, User

Communication)

Web Site

App

Mail Server

SMS Service

Building Gateway
(Information Storing, Processing and

Transmission)

Web Server

DatabaseData Processing

Sensor Module
(Information Retrieval)

Wireless Receiver

 ...Sensor Sensor Sensor

Figure B.2: EMES architecture model

175

C
Requirements List

This document lists all the CoudAid Prototype defined requirements according to

the FURPS+ methodology [42] and prioritized with the MoSCoW method [28].

The lists are organized into two section functional requirements Section C.1 and

non-functional requirements in Section C.2. This last section holds all the URPS+

as in Usability, Reliability, Performance, Supportability and the + for Design, Im-

plementation and Interface.

C.1 Functional Requirements

The F in FURPS+ refers to the functional requirements which describes the overall

functionality and capability of the system. Therefore, Table C.1 shows the full list

of the CloudAid Application functional requirements. Note that some Requirements

are specializations of others. This means that the ”father”, or top requirement, can

be subdivided in smaller requirements. Note also that to facilitate the list compre-

hension the requirements are grouped according to the target application module.

These modules were later used in the application architecture and are explained in

Section 4.2 of the main document.

Table C.1: CloudAid: Functional Requirements List

ID Name Priority

CSA Data

FR1 Add a ServiceTemplate to the CSA (Composite Service

Architecture)

MUST

Description:

The user should be able to insert data about a ServiceTemplate

and add it to the his Composite Service Architecture. These Ser-

viceTemplates will be the building blocks of the aggregated solu-

tion.

FR1.1 Add a Requirement to a ServiceTemplate MUST

Continued on Next Page. . .

C.1. FUNCTIONAL REQUIREMENTS

Table C.1 CloudAid: Functional Requirements List – Continued

ID Name Priority

Description:

The user should be able to insert requirements for a specific Ser-

viceTemplate in order to focus the search.

FR1.2 Add a Criterion to a ServiceTemplate MUST

Description:

The user should be able to insert criteria for a specific ServiceTem-

plate. These Criteria are the characteristics to be evaluated and

on which is based the decision process.

FR2 Add a Requirement to the CSA MUST

Description:

It should be possible to the user to insert general requirements

that are not specific to a particular ServiceTemplate but apply to

all the Composite Service Architecture. An overall price limit is a

good example.

FR3 Add a Criterion to the CSA MUST

Description:

It should be possible to the user to insert general criteria that are

not specific to a particular ServiceTemplate but will be used by all

the Composite Service Architecture ServiceTemplates. The price

characteristic is a good example.

Service Set

FR4 Crawl the Web for Linked USDL service descriptions WON’T

Description:

The service set on which the search engine will be used should

be built upon the crawl of the web for Linked USDL service de-

scriptions. These Service description are provided directly by the

service provider and published in the web for later retrieval. Due

to the fact that Linked USDL is a new tool and is still under devel-

opment there was no point in the development of this requirement

for this version. However it should be considered in later versions.

Search Engine

FR5 Search for services that fulfil the ServiceTemplate Re-

quirement list

MUST

Description:

The search mechanism should be able to return services that ful-

fill the user defined requirements list for a given ServiceTemplate.

There can be more than one requirement and all should be ful-

filled in order to the service to be considered an alternative and

presented to the user.

FR5.1 Search for services that do not have a certain function-

ality

SHOULD

Description:

Continued on Next Page. . .

177

APPENDIX C. REQUIREMENTS LIST

Table C.1 CloudAid: Functional Requirements List – Continued

ID Name Priority

The search mechanism should allow ”negation searches”. This is,

allow the user to find services that do not have a certain function-

ality or a value for a specific characteristic. Ex: ”I want Databases

that are not MySQL”.

FR5.2 Search for services with a minimum value requirement SHOULD

Description:

The search mechanism should allow the the search for require-

ments with a minimum value defined. Ex: ”I want to store more

that 500Gb of data.”

FR5.3 Search for services with a maximum value requirement SHOULD

Description:

The search mechanism should allow the the search for require-

ments with a maximum value defined. Ex: ”I want less than 1TB

of data storage.”

FR5.4 Search for services with a specific value requirement SHOULD

Description:

The search mechanism should allow the the search for require-

ments with a specific value defined. Ex: ”I want MySQL

databases”.

FR6 Search for services that fulfill price requirements MUST

Description:

The search mechanism should allow the search for price require-

ments with a minimum, maximum or specific value defined. The

price is usually the most common requirement while searching for

a service and therefore this requirement is a priority.

FR7 Get the service values for the defined Criteria MUST

Description:

The system should be capable of extracting the service values for

the user defined criteria. The Service features are stored in the

Linked USDL Service Description and therefore they should be

extracted and the needed values filtered for the Decision Process.

FR8 Allow the usage of different units of measurements for

the requirements

COULD

Description:

The requirements can be described in a different unit of mea-

surement of the one described in the service (Ex: Database with

500GB, and the service set has a Database with 0.5TB). This dif-

ference should be invisible to the user.

FR9 Read Linked USDL service descriptions MUST

Description:

Continued on Next Page. . .

178

C.1. FUNCTIONAL REQUIREMENTS

Table C.1 CloudAid: Functional Requirements List – Continued

ID Name Priority

Since the Services are described in Linked USDL, the system

should be able to read this format and convert its data for all

the necessary decision related calculations.

FR9.1 Extract the Service Qualitative & Quantitative Values MUST

Description:

The system should be able to extract from the service descrip-

tion the Qualitative and Quantitative Service Properties. These

properties are the service features, that will either be related to a

requirement or a criterion for the decision process.

FR9.2 Calculate the service price when defined with the

price:hasPrice property

MUST

Description:

The system should, from the Linked USDL description, be able

to automatically calculate the service price define with the Linked

USDL property: hasPrice. This Price should be stored in the

Service Data.

FR9.3 Calculate the service price when defined with the

price:hasPriceFunction property

WON’T

Description:

The system should, from the Linked USDL description, be able to

automatically calculate the service price defined with the Linked

USDL property: hasPriceFunction. This is the Linked USDL op-

tion for describing dynamic pricing. Due to its complexity it was

decided to leave this requirement for later versions since it would

only delay the application prototype with no major benefits for

the immediate prototype objective: to provide a workable proof

of concept.

FR10 Group Similar Alternatives WON’T

Description:

The system should be capable of grouping alternatives that have

the same values for the defined criteria and only vary in non-

criteria characteristics. These alternatives should be considered

as a single alternative and be dealt as such. Since these require-

ment would affect mainly the ease of use for the user allowing the

reduction of user interaction, it was considered of less importance

for the immediate prototype objective: to provide a workable proof

of concept. However, it should be considered in later version.

FR10.1 Use a indifference threshold WON’T

Description:

Continued on Next Page. . .

179

APPENDIX C. REQUIREMENTS LIST

Table C.1 CloudAid: Functional Requirements List – Continued

ID Name Priority

The system could allow the user to define a indifference threshold

that would allow the filtering and grouping of similar alternatives.

This requirement was viewed as less important for the immedi-

ate prototype objective: to provide a workable proof of concept.

Therefore its development was postponed to a later version.

Decision Engine

FR11 Import/Export XMCDA decision data MUST

Description:

The decision module should be capable to export the decision

problem to XMCDA [38] and import the decision results from

XMCDA. XMCDA is a standard for Decision Methods data trans-

actions and therefore has an important role in requirement SR2.

FR12 Rank the services according to their decision value MUST

Description:

The alternatives for each ServiceTemplate should be ranked ac-

cording to their decision value. This will produce an ordered list

of alternatives based on the Decision Method result.

FR13 Normalization of Decision characteristics MUST

Description:

The system should be able to normalize the characteristics of the

service defined defined as criteria in order to weight and decide

upon them.

FR13.1 Normalization of Decision Numerical characteristics MUST

Description:

The system should be able to normalize numerical characteristics.

Eg: 500Gb, 2CPUs, etc.

FR13.2 Normalization of Decision Non-Numerical characteris-

tics

MUST

Description:

The system should be able to normalize non-numerical charac-

teristics. Eg: High replication is defined as being the best option

(preference), if a service has the value ”Low Replication”, the user

should define a distance to the best option.

FR13.3 Normalization of Decision Binary characteristics MUST

Description:

The system should be able to normalize binary characteristics. Eg:

SSH/NO SSH, YES/NO, etc.

FR13.4 Normalization based on User preferences SHOULD

Description:

Continued on Next Page. . .

180

C.1. FUNCTIONAL REQUIREMENTS

Table C.1 CloudAid: Functional Requirements List – Continued

ID Name Priority

The normalization should be done based on a preference intro-

duced by the user. If no preference is defined the direction of

the preference should be defined, maximizing or minimizing the

criterion.

Aggregation Engine

FR14 Generate Aggregated alternatives MUST

Description:

The system should generate aggregated solutions composed of at

least one alternative for each existent ServiceTemplate. The ag-

gregated solution is the best combination of alternatives for the

user Composite Service Architecture based on the user defined

data (requirements, criteria, weights, preferences).

FR15 Calculate the admissible aggregated solutions MUST

Description:

The system should be capable of deciding which aggregated so-

lutions are admissible or not. The admissibility of an aggregated

solution is based on the Composite Service Architecture user re-

quirements and intrinsic alternative restrictions. These alternative

restrictions are already defined in the Service Description and are

not controlled by the user, but should be respected when aggregat-

ing different alternatives. Eg: A service that only allows the im-

port of data from Oracle formats cannot work with a PostgreSQL

database.

FR15.1 Calculate the admissible aggregated solutions based on

price requirements

MUST

Description:

The system should be capable of deciding which aggregated solu-

tion meet the overall price requirements. Eg: ”I don’t want to pay

more than AC200 for my aggregated solution”.

FR15.2 Calculate the admissible aggregated solutions based on

service restrictions

COULD

Description:

The application should be capable of deciding which aggregated

solution meet the intrinsic alternative restrictions.

FR16 Decide which is the best admissible solution from the

admissible solutions list

MUST

Description:

The system should be capable of deciding which is the best ad-

missible solution if more than one exists. This decision should be

based in the user data. In the end only one aggregated solution is

presented to the user, if any is found.

181

APPENDIX C. REQUIREMENTS LIST

C.2 Non-Functional Requirements

The rest of FURPS+ specification describes non-functional requirements. Non-

functional requirements deal with system properties rather than functions performed

by the system. Usability, Reliability, Performance and Suportability are the cate-

gories described by FURPS. The ”+” in FURPS+ refers to four extra categories:

Design, Implementation, Interface and Physical. These requirements are usually

referenced as system constraints. The following sections list the requirements for

each of the FURPS+ specified categories.

C.2.1 Usability Requirements

Usability requirements relate to user interface aesthetics and data presentation to

the user. Although this is not a priority as already stated, some concerns are still

considered and are expressed in Table C.2.

Table C.2: CloudAid: Usability Requirements List

ID Name Priority

UR1 Adapt the Decision Method to the User Preferences MUST

Description:

The decision method used is based on the user information. This

information should be collected through a set of questions.

UR2 Show the CSA information to the user MUST

Description:

The user interface should show the Composite Service Architec-

ture information inserted by the user. i.e: Requirements, Criteria,

Service Templates, etc.

UR3 Show the Search results for a ServiceTemplate to the

user

MUST

Description:

The user interface should show each ServiceTemplate search re-

sults based on the defined requirements.

UR4 Show the Aggregation results to the user MUST

Description:

The user interface should show the final aggregation solution to

the user.

UR5 Understandable sentences MUST

Description:

The system should interact with the user in a easy to understand

language without ambiguity.

UR6 Prompt user for extra information SHOULD

Description:

The system should ask the user for extra information if the decision

method in use requires it or if at any point required by the system.

Continued on Next Page. . .

182

C.2. NON-FUNCTIONAL REQUIREMENTS

Table C.2 CloudAid: Usability Requirements List – Continued

ID Name Priority

UR7 Error Messages and Flow of execution status SHOULD

Description:

The system should show understandable error messages and ex-

plain what should be changed in order to progress.

UR8 Allow to change requirements if no service is found but

keep previous decisions

WON’T

Description:

The system should be able to keep the state if no service is found

for the user defined requirements. The user should be prompted

for changing its data. Since this requirement would only improve

the user experience and has no major impact in the overall proto-

type concept it was postponed to further versions development.

C.2.2 Reliability Requirements

Focused in Availability, system accuracy and Failover mechanisms, Reliability Re-

quirements were used to group all the CloudAid application calculation accuracy

related requirements. The accuracy of the system data is of great importance for it

to properly present a final solution to the user, hence, all the calculations should, at

all time, be correct. Table C.3 lists all the reliability requirements.

Table C.3: CloudAid: Reliability Requirements List

ID Name Priority

RR1 Correct normalization of Service Template Weights MUST

Description:

The ServiceTemplate weights, if used, should be correctly normal-

ized at all times. This normalization allows the consistency and

comparability of the decision data.

RR2 Correct normalization of Criteria weights MUST

Description:

The Criteria weights, if used, should be correctly normalized at

all times. This normalization allows the consistency and compa-

rability of the decision data.

RR3 Correct Decision Data Export/Import to XMCDA MUST

Description:

The decision data should be correctly exported and imported to

and from the XMCDA standard. The decision methods will read

the data exported to XMCDA and therefore, if any misleading

conversion occurs the decision process is corrupted. The same

happens with the decision results in the opposite direction.

Continued on Next Page. . .

183

APPENDIX C. REQUIREMENTS LIST

Table C.3 CloudAid: Reliability Requirements List – Continued

ID Name Priority

RR4 Correct service price calculation MUST

Description:

The Service Price information should be correctly extracted from

the Linked USDL service description and then correctly calculated.

Any incorrect conversion or calculation will corrupt the search and

later the decision process.

RR5 Correct decision on the Admissible solutions algorithm MUST

Description:

The system should correctly test and return the admissible solu-

tions.

RR6 Correct calculation of the overall admissible solution de-

cision value

MUST

Description:

The admissible solutions decision value should be correctly cal-

culated based on the ServiceTemplates weights which are defined

either directly by the user or through a decision method.

RR7 Correct mapping of the Linked USDL service descrip-

tion

COULD

Description:

All the Linked USDL concepts should be correctly mapped to the

”in-memory” service description.

RR8 Correct normalization of Decision characterisitcs MUST

Description:

The decision characteristics of all types (numerica, bynary and

non-numerical), should be correct at all times. This normalization

allows the consistency and comparability of the decision data.

C.2.3 Performance Requirements

Performance requirements capture the system metrics such as throughput, response

time, etc. These are not a top priority, mainly because of the project research scope.

As previously stated, the goal is to prove that the concept is valid and not to develop

an high performance application. Nevertheless a few metrics are of interest and are

listed in Table C.4.

Table C.4: CloudAid: Performance Requirements List

ID Name Priority

PR1 Admissible Algorithm performance with high amount

of alternatives

SHOULD

Continued on Next Page. . .

184

C.2. NON-FUNCTIONAL REQUIREMENTS

Table C.4 CloudAid: Performance Requirements List – Continued

ID Name Priority

Description:

The algorithm for admissible solutions decision should be able to

deal with high amount of combinations since we can have many

ServiceTemplates and many alternatives for each of them. This

requirement will serve as a metric to test the algorithm but no

minimum value is pre-defined

PR2 Allow the search of a high number of service descriptions SHOULD

Description:

The system should be capable of searching high amounts of ser-

vices descriptions in a few seconds time, around 3 to 5 seconds.

C.2.4 Supportability Requirements

The suportability requirements category concerns about testability, modifiability

and extensibility among other characteristics. These three characteristics however,

are quite important in the CloudAid application, mostly because this is a prototype

research application hence, the possibility of future development is high enough to

turn extensibility/modifiability into one big concern. Moreover the research oriented

perspective makes the testability characteristic also of great importance. It should

be possible to test and prove that the achieved results are valid. Table C.5 lists the

Suportability Requirements.

Table C.5: CloudAid: Supportability Requirements List

ID Name Priority

SR1 Testable System MUST

Description:

It should be possible to test the different modules of the system.

It should be possible to test each and every requirement in the

requirements list.

SR2 Allow the use of different Decision Methods SHOULD

Description:

It should be possible to change the Decision Method if wanted or

needed. The system should easily accept the use of new decision

methods. The idea is to provide to other researchers the capability

to use the environment and test their own methods.

SR3 Allow the ease of functionality extension MUST

Description:

Continued on Next Page. . .

185

APPENDIX C. REQUIREMENTS LIST

Table C.5 CloudAid: Supportability Requirements List – Continued

ID Name Priority

The system should allow the easy extension or modification of

functionalities in each of the independent modules. This makes

possible the future development of further or more complex func-

tionalities. We should not forget the research perspective of the

application.

C.2.5 Design Requirements

Also named as Design constraints, these requirements give an overview of what are

the design time requirements, usually data models or databases if needed. The

CloudAid application has some special data needs as Table C.6 shows.

Table C.6: CloudAid: Design Requirements List

ID Name Priority

DR1 CSA Data Model MUST

Description:

It should be defined a data structure to store the ServiceTem-

plates, Requirements and Criteria defined by the user.

DR2 Use of a Triple Store COULD

Description:

If possible a triple store can be used for storing the Service set data.

This Triple store should be considered for large scale storage.

DR3 Use of an external Cloud Concepts Ontology SHOULD

Description:

In order to facilitate the user requirements analysis by the system

and later the search engine capability the use of an external on-

tology with cloud concepts is important. These concepts should

act as ”tags” for the search engine.

DR3.1 Import a list of concepts from the CloudTaxonomy WON’T

Description:

Since the external ontology can be modified, it should be impor-

tant to ensure that the system copes the this modifications and

imports all the new concepts when needed without changing is

normal execution.

186

C.2. NON-FUNCTIONAL REQUIREMENTS

C.2.6 Implementation Requirements

The implementation requirements define system implementation constraints such

as standards to use, architectural constraints or coding constraints for the system

development. As stated before, there were no big implementation constraints, since

we had full freedom in the prototype development. However, it was decided, for sake

of Suportability, to use the MVC model. Note that besides requirement IMPR1 the

other are related to previous requirements. Table C.7 shows the Implementation

Requirements list.

Table C.7: CloudAid: Implementation Requirements List

ID Name Priority

IMPR1 MVC Architecture MUST

Description:

The System should implement the MVC model for easier modu-

larity and later extensibility/modifiability.

IMPR2 Modularity capability MUST

Description:

All the modules (UI, Search, Decision, Aggregation), should be

extensible, if new functionalities are to be added, without the need

for changing the others. This requirement is strongly linked to

requirement SR3

IMPR3 Interface for Decision Methods WON’T

Description:

All the Decision method should implement an interface that would

facilitate the inclusion of new decision methods. This would ben-

efit the SR1 requirement. However since a deeper study of how

and if it is possible to implement such general interface capable of

wrapping all the decision methods is mandatory, it was decided to

postpone the development for later versions.

C.2.7 Interface Requirements

Interface requirements specify constraints about external items with which the sys-

tem has to interact. In our case two items are of the upmost importance: Linked

USDL, which is used to describe the services and XMCDA [38], a standard for de-

scribing decision problems. Table C.8 shows the requirements for the two above

external interfaces.

187

APPENDIX C. REQUIREMENTS LIST

Table C.8: CloudAid: Interface Requirements List

ID Name Priority

INTR1 Service Set based on Linked USDL service Descriptions MUST

Description:

The services are described in Linked USDL, an RDF

model.Therefore it should be possible to deal with RDF files.

INTR2 Decision problem expressed in XMCDA MUST

Description:

The decision problem should be described in the XMCDA (which

is a XML Schema) standard for SR1 purposes and the results

should also be imported from XMCDA.

INTR3 Service information compliant with Linked USDL SHOULD

Description:

The service data should be stored and managed in a similar way

to the Linked USDL service description.

188

D
Model-View-Controller Overview

As stated in section 4.1.3 one of the main objectives was the modularity of the

prototype and the subsequent independence of its modules. With this in mind a

decision for using the Model-View-Controller Model (MVC Model) [70] was made.

The MVC Model as the name implies is divided in three major components which

are depicted in [70]:

• Model - ”is the domain-specific software simulation or implementation of the

application’s central structure.”. These are usually referenced to as the data

model, that can be a database or objects in memory.

• View - ”views deal with everything graphical; they request data from their

model, and display the data. They contain not only the components needed for

displaying but can also contain subviews and be contained within superviews.”.

Usually reference as user interfaces.

• Controller - ”Controllers contain the interface between their associated mod-

els and views and the input devices (keyboard, pointing device, time). Con-

trollers also deal with scheduling interactions with other view-controller pairs”.

It is the connector between model and views, responsible for the flow of exe-

cution.

Figure D.1: Model View Controller State and Message Sending. From [70]

189

APPENDIX D. MODEL-VIEW-CONTROLLER OVERVIEW

Using this model we were able to detach the user interfaces from the application

logic and the service data. Going back to the objectives from Section 4.1.3, we were

able to focus on the application development without any concerns with the usability

issues, that could be developed later on if wanted. Also the modularity was achieved

since each Model and Controller could be developed independently from the others.

190

E
Simulation Scenarios

In order to facilitate the testing phase several simulation scenarios were built. This

document presents the used simulation scenarions for the CloudAid Prototype test-

ing. These try to exemplify possible usage scenarios for the application. The obvious

scenario is the Use Case defined in Appendix B. However, due to its complexity some

testes were easier to execute with less amounts of information as is the case of the

Heroku Scenario. These less complex scenarios aim at validating data calculations

(reliability) or some functional requirements such as the Search module related re-

quirements. Bellow is presented the full specification of the used scenarios.

Each scenario is composed of a CSA Data structure with Service Templates, Re-

quirements and Criteria. Although all the bellow scenarios were used as simulations,

there is no difference in the application execution and results if we manually define

the same set of data. Hence, these scenarios simulate the user interaction with the

system.

UseCase Scenario: The UseCase Scenario represents a real world problem to be

solved by the CloudAid application. It is the most complex of the four scenarios used

in the testing phase. However, it is the most important because it brings together

all the concepts discussed throughout this thesis and applies them to our real world

use case.

The CSA Data is composed of a list of Service Templates, each with their own

requirements and criteria, a list or global requirements and a list of global criteria:

• Service Templates:

– Database

∗ Requirements:

· ”StorageCapacity > 200Tb”

· ”Must have some Encryption feature”

· ”Location = ’EU’”

· ”Must not have the ’MySQL’ platform”

· ”DataTransferOUT per month > 200Tb”

∗ Criteria:

191

APPENDIX E. SIMULATION SCENARIOS

· StorageCapacity

· DataTransferOUT

– Data Analytics

∗ Requirements:

· ”Must have 24/7 support feature”

· ”Must have SSL feature”

· ”Must have some Backup feature”

· ”API calls per minute > 2000000”

∗ Criteria:

· API Calls

– WebServer

∗ Requirements:

· ”Must have the ’Apache’ platform”

· ”Must have ’autoscalability’ feature”

· ”Location = ’EU’”

· ”CPU cores > 4”

· ”Must have some network performance metric”

· ”StorageCapacity > 500Gb”

· ”MainMemory < 16Gb”

· ”Must support ’PHP’ language”

· ”Must be a Unix machine”

∗ Criteria:

· CPU Cores

· Performance (network)

· StorageCapacity

· MainMemory

– App Platform

∗ Requirements:

· ”Must have the ’Apache’ platform”

· ”Must have ’autoscalability’ feature”

· ”Location = ’EU’”

· ”CPU cores > 8”

· ”Must have some network performance metric”

· ”StorageCapacity > 500Gb”

· ”MainMemory < 8Gb”

· ”Must support ’Ruby’ language”

∗ Criteria:

· CPU Cores

· Performance (network)

192

· StorageCapacity

· MainMemory

– Mail Service

∗ Requirements:

· ”Must send ’E-mail’ messages”

· ”Must use ’SMTP’ protocol”

· ”Messages per month > 5000”

· ”Number of dedicated IPs > 1”

· ”Send files > 100Mb”

∗ Criteria:

· Number of Messages

– SMS Service

∗ Requirements:

· ”Must send ’SMS’ messages”

· ”Messages per month > 1000”

· ”Number of Users > 4”

∗ Criteria:

· Number of Messages

• Global Requirements:

– ”Price < AC300”

– ”Availability > 99.9” (All Service Templates must fulfill these require-

ment)

• Global Criteria:

– Price

– Availability

Heroku Scenario The Heroku Scenario was the first to be used. This scenario

was design for low complexity but still reliable enough for the prototype testing.

Hence, although it has only a few data, it is based on a real case and real service

Heroku databases 1. The objective was to be able to manually calculate all the data

and results in order to validate the prototype calculations and results. The example

is based in a potential cloud solution that requires 3 storage services with different

needs.

This is the scenario used in all reliability tests (except TRR8), and most of the

functionality tests has well. The CSA Data:

• Service Templates:

– Database 1

1https://www.heroku.com/

193

https://www.heroku.com/

APPENDIX E. SIMULATION SCENARIOS

∗ Requirements:

· ”StorageCapacity > 500Gb”

· ”Must have some Backup feature”

· ”Must not have the ’MySQL’ platform”

· ”Must support the ’PostegreSQL’ platform”

∗ Criteria:

· StorageCapacity

– Database 2

∗ Requirements:

· ”StorageCapacity > 500Gb”

· ”Availability > 99%”

· ”CacheSize > 16Gb”

∗ Criteria:

· StorageCapacity

· CacheSize

– Database 3

∗ Requirements:

· ”CacheSize > 5Gb”

∗ Criteria:

· CacheSize

• Global Requirements:

– ”Price < AC4000”

• Global Criteria:

– Price

Normalization Scenario This scenario was designed with the sole purpose of

testing the normalization of the decision characteristics (TRR8). A decision char-

acteristic can be numerical, non-numerical or binary, this scenario has at least one

of each type in order to test the normalization process. The CSA Data:

• Service Templates:

– Server

∗ Requirements:

· ”StorageCapacity > 150Gb”

· ”DataOutExternal > 40Tb”

· ”Must have the ’Apache’ platform”

· ”Must be locates in ’EU’”

· ”Must have ’64bit’ CPU architecture”

· ”Must support ’Java’ language”

194

· ”Availability > 99.9%”

· ”Must have some network performance metric”

∗ Criteria:

· StorageCapacity (Numerical characteristic)

· DataOutExternal (Numerical characteristic)

· Performance (Non-Numerical characteristic, can assume ”Low”,

”Medium”, ”High” or ”Very High”)

· StorageType (Binary characteristic, either ”HardDisk” or ”SSD”)

• Global Requirements:

– ”Price < AC5000”

• Global Criteria:

– Price (Numerical characteristic)

Requirements Scenario The Requirements scenario was designed for testing

the SearchEngine module execution time with different number of requirements. It

was created with a total of 7 Service Templates each with an increasing amount of

Requirements but no criteria (Only for testing the search mechanism). There is no

point in fully describing all the requirements in this scenario since their data is not

important, different requirements could have been defined without major effects in

the performance test to be performed.

195

F
Cloud Taxonomy

This document holds the full list of concepts present in the Cloud Taxonomy as well

as its description.

F.1 Top Level Concepts

There are three top level concepts in the Cloud Taxonomy as Figure F.1 shows.

These concepts wrap completely different things. While Deployment model and

Service Model describe the service as a whole the Property on the other sides de-

scribes the service features or characteristics:

• Deployment Model - Describes what type of cloud is the service targeted

for: Private, Public, Hybrid, Community cloud as described in [84] by the

NIST.

• Property - A service property, wraps all the cloud service properties.

• Service Model - Describes the cloud service models as defined in [84] by the

NIST: IaaS, PaaS, SaaS and added the BPaaS (Business Process as a Service)

from the mOSAIC ontology [89].

F.2 Property

The most important class. Groups all the service characteristics or features also

called Service Properties. In Figure F.2 we can see the 5 different categories of

properties:

• Feature - Describes all the service features that do not belong in any of the

other categories but are still features or service properties. Mainly used for

SaaS since they have the highest degree of differentiation which makes hard

to clearly state which type of service property the SaaS feature is related to.

• Functional Property - Groups all the cloud service functional properties.

See Section F.2.1.

F.2. PROPERTY

Figure F.1: Cloud Taxonomy: Top Level

• Interface - Groups all the types of interfaces or points of interaction between

actors and the Cloud Service. See Section F.2.2.

• Non-Functional Property - Groups all the cloud service non-functional

properties (Eg: availability, scalability,...). See Section F.2.3.

• SupportProperties - Groups all the cloud service support properties or types

of support available in the service. See Section F.2.4.

Figure F.2: Cloud Taxonomy: Property

F.2.1 FunctionalProperty

A functional property of a service is a specific feature or resource provided by the

service. These are the most important properties in a service as they define what

exactly the service offers or does. In order to distinguish all the functional prop-

erties it was decided to group them according to their usage in different Service

Model. Therefore, for example all the IaaS related properties such as CPU Speed or

Operating system are grouped under the ComputingFuntionalProperty class. This

decision was solely for organization process, nothing obliges a IaaS service to use all

the properties defined in the Computing Functional Property category and nothing

prevents the same service to use properties of any other category. It should be nor-

mal for a cloud service to use properties of several different categories. Figure F.3

shows the list of functional property categories:

• Computing Functional Property - Groups all the computational (IaaS)

resources related characteristics.

197

APPENDIX F. CLOUD TAXONOMY

Figure F.3: Cloud Taxonomy: Functional Properties

• Data Functional Property - Groups all the Storage as a Service and data

transfer related characteristics.

• Encryption - Describes cloud service encryption characteristics.

• License - Describes cloud service license types. Typically can be open source

or proprietary.

• Location - Describes location characteristics, for example region of access or

hosting location.

• Monitoring - Describes the available service monitoring related characteris-

tics.

• Network Functional Property - Groups all the network related character-

istics.

• Platform - Describes any kind of platforms used or allowed by the service.

Eg: Oracle, MySQL, or Apache.

• Platform Functional Property - Groups all the Platform as a Service and

Software as a Service related characteristics.

• Replication - Describes the service or its data replication characteristics.

F.2.1.1 Computing Functional Property

The computing functional properties are all the IaaS related characteristics and

are typically related to computing resources as CPU, memory or operating systems

used by the instance to be contracted. Good examples of services that use this

characteristics are Amazon EC2, Google App engine, or GoGrid. Figure F.4 show

the tree of characteristics:

• CPU Architecture - CPU architecture type. Eg: 32 or 64 bits.

• CPU Cores - for number of CPU cores related features.

• CPU Flops - for CPU FLOPS related features

• CPU Speed - for CPU speed related features. Eg: 1.2Ghz.

198

F.2. PROPERTY

Figure F.4: Cloud Taxonomy: Computing Properties

• CPU Type - for specific types of processor. Eg: Xeon, AMD, or other type

of information.

• Computing Instance - for features that perform as computing instances but

are described by the service provider as a single unit. Eg: Worker Daemons

that process data.

• DiskSize - for hard disk storage size related characteristics.

• GraphicalCard - for graphical processing resources or features.

• IO Operations - for Input/Output operations related characteristics. Could

be the number of operations per second or any other kind of feature related

to I/O operations.

• Load Balancing - for load balancing features allowed by the service. Could

be capacity or number of load balancers or any other features provided by the

cloud service.

• Memory Allocation - for memory allocation policies, algorithms or strate-

gies.

• Memory Size - for main memory or RAM related characteristics.

• Operating System - Groups all the Operating system related characteristics.

It describes which are provided or supported by the cloud service. They can

be of the types: Embedded, Mobile, Real Time, Unix or Windows.

F.2.1.2 Data Functional Property

Mainly composed of database characteristics the DataFunctionalProperty class groups

all the data related characteristics including data storage, transfer and processing

but also database requests or backup and redundancy features. We can see the full

list of properties in Figure F.5 as listed bellow:

199

APPENDIX F. CLOUD TAXONOMY

• Backup & Recovery - for backup policies and recovery features.

• Cache Size - for the cache size provided by the service.

• Data IN External - for the amount of data transferred from external sources

to the service in question.

• Data OUT External - for the amount of data transferred from the service

to outside locations.

• Data IN Internal - for the amount of data transferred from other service in

the same cloud to the service in question.

• Data OUT Internal - for the amount of data transferred from the service

to other service in the same cloud.

• Data Processed - for the amount of data processed by the service.

• Data Request - groups all the database related requests:

– COPY Request

– DELETE Request

– GET Request

– LIST Request

– POST Request

– PUT Request

– Read

– Write

• File Size - for characteristics related to the file size allowed either for trans-

ferring or to storage or any other purpose.

• Queries - for any characteristics related to database queries. Can be either

query amounts or specific query types allowed.

• Records - for any characteristics related to number of records, rows, or specific

constraints or features to data elements.

• Redundancy - for describing redundancy policies or strategies.

• Storage Capacity - for storage resources amount capacity. The amount of

storage space.

• Storage Type - for describing the type of storage used. Eg: SSD, HardDisk,...

• Transactions - for transactional databases or transaction policies related fea-

tures.

200

F.2. PROPERTY

Figure F.5: Cloud Taxonomy: Data Properties

F.2.1.3 Network Functional Property

The NetworkFunctionalProperty class groups the network characteristics of the ser-

vice. They are usually related to IP address or network metrics such as latency or

bandwidth. Figure F.6 shows the tree of network characteristics:

• IP Address - for any characteristics related to IP addresses. Eg: IPv4 or

IPv6.

• Network Delay - for network delay characteristics. Eg: 200ms.

• Network Internal Bandwidth - for characteristics related to network band-

width inside the provider cloud.

• Network Latency - for network latency characteristics. Eg: Low latency,

200ms...

• Network Protocol - for describing the network protocols used or allowed by

the service.

• Network Public Bandwidth - for characteristics related to network band-

width for public domains.

• Network Request - Groups all types of requests and any characteristics

related to them.

• Transfer Rate - for any features about transfer rates or transfer speeds.

Could also describe limit amounts of transfer rates.

F.2.1.4 Platform Functional Property

The platform functional properties are those properties usually seen in SaaS and

PaaS services. Characteristics such as the programming language or the amount of

201

APPENDIX F. CLOUD TAXONOMY

Figure F.6: Cloud Taxonomy: Network Properties

Figure F.7: Cloud Taxonomy: Platform Properties

users allowed to access are grouped under this category. The fact that SaaS offers are

highly differentiated from one another makes it difficult to wrap their characteristics.

However, for such situation the Feature class can be used. In Figure F.7 we can see

the tree for the PlatformFunctionalProperty Class

• API Calls - for the amount of API calls or accesses to the service.

• Applications - for describing any constraints or features about the amount

of application allowed.

• Language - for specifying programming languages supported by the service.

• Messages - Groups all the message related characteristics. These messages

can be of a certain type (Eg: E-mail, SMS, etc) and use a certain protocol

(HTTP, SOAP, SMTP, etc).

– Message Number

– Message Protocol

– Message Type

• Users - for the amount o users or any restrictions to the user with granted

access to the service.

• Websites - for services that deal with web hosting or any website activity.

Eg: Number of hosted websites allowed.

F.2.2 Interface

The Interface class can be used to describe any type of interaction point between the

cloud service and the consumer. Although the major interfaces have been describes

as shown in Figure F.8 other types can be wrapped by the top class Interface.

202

F.2. PROPERTY

Figure F.8: Cloud Taxonomy: Interfaces

Figure F.9: Cloud Taxonomy: Non-Functional Properties

• API - for API like interfaces.

• Command Line - for interfaces that use a command line to issue operations.

• Console - for services that provide a special console for user interaction or

management.

• GUI - for services that provide a graphical user interface.

• Web - for services that use a web interface or website for user interaction or

management.

F.2.3 NonFunctionalProperty

This class groups all the non-functional properties of the services. These character-

istics are usually related to performance or quality of service. Figure F.9 shows the

tree of categories for the non-functional properties:

• Availability - for availability related features or characteristics.

• Consistency - for consistency policies or other related features. Can describe

degrees of data or results consistency.

• Durability - for features that deal with persistence of data.

• Fail Over - for fail mechanisms or policies implemented or used in case of any

failure.

• Performance - for any metric or characteristic of the service that describes its

performance. Eg: High Network Bandwidth, requests processed per second.

• Reliability - for describing features provided by the service to ensure the

process or data reliability.

• Scalability - for describing any policies or scalability strategies.

• Security - for security policies or protocols used or allowed.

203

APPENDIX F. CLOUD TAXONOMY

Figure F.10: Cloud Taxonomy: Support Properties

F.2.4 SupportProperties

From the services we analysed we found out that support was a common feature in

almost all the cloud services. Hence, this class tries to capture the most common

types of support features. Figure F.10 shows the sub categories of the SupportProp-

erties class:

• Developer Centre - for services that provide some development knowledge

base.

• Forum - for services that have a specific forum dedicated to topics related to

the cloud service in question.

• Manual - for services that provide any kind of manual for its usage.

• Support Team - for services that provide a specialized support team to its

users.

• Support 24x7 - for services that provide 24 hours a day 7 days a week support

of any kind.

• Videos - for services that provide videos either of tutorials or other kind of

support to their users.

204

G
Application Example

This Chapter aims at presenting an example of the CloudAid Prototype execution

for the Use Case defined in Appendix B.

In this example it is used the data in the Use Case Scenario depicted in Appendix

E. In order to execute the CloudAid Prototype already with this scenario one can

use the command in Listing G.1 from the CloudAid installation folder. The first

argument specifies the scenario to use, in this case the use case. The second argument

the Decision Method to be used, SAW. The third specifies the type of Admissible

Solutions Algorithm to use, no incomparability support was the one used in this

example.

Listing G.1: Command to run the CloudAid Prototype with this example setup

1 java -jar CloudAid.jar usecase saw noinc

Note also that it was used the partial service set which is available in the

CloudAid Public repository [7].

Once the application is started the first step is to load the service set. It loads all

the turtle or RDF/XML files in the Services folder. Figure G.1 shows the files loaded

as well as the status for the components being initialized. From the partial service

set there are 13 service descriptions each of them with dozens of service offering.

After initializing the service set and all the application components (Search, De-

cision and Aggregation Engines), in a normal execution the user would be prompted

for information about the CSA he wishes to build. However, this example runs

on the Use Case Scenario, thus all the data is already automatically inserted (see

Appendix B for the Use Case CSA data).

Skipping the CSA data insertion by the user, the next step is the CSA evaluation

(CSAEvaluator module). It may happen that the user is required to insert extra

information. Since we are using the SAW (Simple Additive Weighting) method

there is the need to specify weights for the criteria defined. Figure G.2 shows these

questions. For each criterion defined in the CSA the user has to insert a numerical

value for its weight and the preference direction. There are a total of 14 criteriain

this example, and one is global: the price. The Price is also the only criterion which

205

APPENDIX G. APPLICATION EXAMPLE

Figure G.1: CloudAid Example: Service Set Startup

Figure G.2: CloudAid Example: Inserting criteria weights (SAW method)

has a minimum preference direction as shown in Figure G.2. This means that the

smaller the value of the price the better. With a total of 14 criteria means that there

are 28 questions to answer, 14 with the weight values and 14 with the preference

directions. Table G.1 lists the values inserted in this example.

Table G.1: Use Case Example: Service Templates Criteria Weights

Service Template Criterion Weight

General Price 2

Database StorageCapacity 3

Database DataOutExternal 5

Data Analytics APICalls 4

WebServer CPUCores 1.5

WebServer Performance 4

WebServer StorageCapacity 1

WebServer MemorySize 1.3

App CPUCores 2.5

App Performance 2

App StorageCapacity 1

App MemorySize 1.3

Continued on Next Page. . .

206

Table G.1 – Continued

Service Template Criterion Weight

Mail Service MessageNumber 4

SMS Service MessageNumber 4

If we were using the AHP (Analytic Hierarchic Process) method there would be

no need for the criteria weight information. However, the user still needs to insert

the preference direction as shown in Figure G.3.

Once all the weights are inserted they must be normalized. Figure G.4 shows this

normalization. Note that this is a simple weights normalization to intervals between

[0,1] and does not involve the full normalization process explained in Section 6.7.1.

After all the data as been evaluated by the CSAEvaluator module, the Search

Engine can start. The first Service Template in the Use Case CSA is the Database,

which has the following requirements:

• ”StorageCapacity > 200Tb”

• ”Must have some Encryption feature”

• ”Location = ’EU’”

• ”Must not have the ’MySQL’ platform”

• ”DataTransferOUT per month > 200Tb”

In Figure G.5 we see these requirements mapped as exclusive requirements. In

fact, in this particular case, all the requirements defined are exclusive, however, there

might be cases where this does not happen. An important remark goes to the extra

requirement. In the list above we only see 5 requirements, however, in Figure G.5

we see 6. The last requirement in the figure represents the global price requirement

that was generalized according to the Generalization process explained in Section

6.5.1.

With this list of requirements and the service set used, it was possible to discover

8 service offerings to fit the Database Service Template. These are the alternatives.

The last lines in Figure G.5 show precisely these 8 service offerings and their prices,

also captured and calculated during the search process. Note that for both decision

methods (SAW and AHP) the search process is the same.

Figure G.3: CloudAid Example: Inserting criteria preference direction (AHP

method)

207

APPENDIX G. APPLICATION EXAMPLE

Figure G.4: CloudAid Example: Service Templates and Criteria weights normaliza-

tion

Figure G.5: CloudAid Example: Exclusive requirements and alternatives found

208

The application then converts all the Linked USDL Service Offerings found

from RDF to Java Objects according to the Service Data Model depicted in Section

4.2.4.2. This conversion is performed by the ResourceConverter (see Section 6.6.3).

To the already converted offerings is added the attributes data. These attributes

are the values of each Service Offering for each criterion defined for the Service

Template.

An example of an alternative is shown in Figure G.6. We can see three divisions:

the qualitative features, the quantitative features and the attributes. The first two

correspond directly to the service description and are tagged with the CloudTaxon-

omy concepts (See Section 5.1). The third part are the attribute values extracted

from the other two parts. Note that for the Database Service Template two criteria

are defined plus the global price criterion. Thus, as we see in Figure G.6 three at-

tributes exist: Price, StorageCapacity and DataOutExternal.

The next step to be executed is the decision process, still for the Database Ser-

vice Template. With the data collected in the Search Engine (alternatives and their

attributes), the first task is to normalize all the data. This process is explained in

detail in Section 6.7.1. Once again the user is requested for further information, in

this case for any preferable value. In Figure G.7 we are defining, in the first 5 lines,

that the storage capacity is going to have a preferable value of 5120000 (in this case

the unit is Gb). This means that all the alternatives attribute values have to be

normalized according to this preference. If none as been specified the preference

direction is used. Figure G.7 shows the results obtained for the normalization pro-

cess. The first step is to calculate the distances to the preferable value (5120000),

the second is to normalize this distances. Line 6 to 13 show the distances results

and the remaining lines show the normalization of these distances. The closer the

value to the preferable value the better. If we add all the normalized attributes the

result must be 1.

This example shows how the process goes for the numerical attributes. However,

some Service Templates may have non-numerical attributes as is the case of the

WebServer (that will be processed later on). As an example figure G.8 shows how

they are treated. In this case the value is not binary since the Performance can

assume Low, Medium, High and Very High (at least this is the perspective of the

user). When asked to define the preferable value (which is mandatory for non-

numerical attributes) the user defined ”high” as the value. Then it is required to

compare each alternative attribute value with this preferable value (distance). This

distance is stored for each different attribute value found in the list of alternatives.

This way we achieve a similar distances table to the one in Figure G.7 for numerical

attributes. The last step, the actual normalization is performed in the same way as

for the numerical attributes.

Once all the attributes have been normalized the decision problem can be for-

malized. We have all the alternatives and their attribute values for each criterion.

Figure G.9 shows the final normalized values for all the alternatives found for the

Database Service Template. All the data is ready for the XMCDA file which is the

next step. Examples of these XMCDA files can be seen in the CloudAid Repository

209

APPENDIX G. APPLICATION EXAMPLE

Figure G.6: CloudAid Example: Alternative Data

210

Figure G.7: CloudAid Example: Insert preferable value and attribute normalization

process

Figure G.8: CloudAid Example: Insert data about a non-numerical attribute

211

APPENDIX G. APPLICATION EXAMPLE

Figure G.9: CloudAid Example: Decision Problem Data

[7]. Note also that the CloudAid Prototype execution halts until it receives the

decision results from the Decision Method.

Depending on the method being executed the next steps in the interaction are

different. If using the SAW method nothing needs to be done besides waiting for

the results to arrive. However, when using the AHP method extra information is

required. This information is inserted in the JAHP application (external to the

CloudAid Prototype). Figure G.10 shows a screen of the application where the user

is comparing the three criteria of the Database Service Template being evaluated.

Figure G.11 on the other hand shows the screen used for comparing the alternatives

regarding the StorageCapacity criterion. These comparisons are made by sliding up

or down each slider according to the level of preference. When the user is satisfied

with the data inserted, he can press ”Save Alternatives” and the data will be sent to

the CloudAid application. Note that a detailed explanation can be found in Section

6.7.4.2

212

Figure G.10: JAHP Interface: Comparing criteria of the use case scenarios database

Service Template

213

A
P

P
E

N
D

IX
G

.
A

P
P

L
IC

A
T

IO
N

E
X

A
M

P
L

E

Figure G.11: JAHP Interface: Comparing alternatives of the Use Case Scenarios Database Service Template regarding the StorageCapacity

criterion

2
1
4

Figure G.12: CloudAid Example: Decision Results extracted from the Decision

Method

When the Decision Method finishes with its processing, it sends back the results

as a XMCDA file. This file must be read and its data extracted. As seen in Figure

G.12 each alternative is assigned a performance value. Note that the first 9 lines

present the results as they come from the Decision Method, unsorted. Thus the final

task is to sort these results from the highest to the lowest. This way we achieve our

Sorted Ranked List of Alternatives.

This process is repeated for each Service Template in the CSA, thus, in the Use

Case Scenario, 6 times. After all the Search and Decision mechanisms have been

executed, the last step of the process can start, the Aggregation Engine.

As explained in Section 6.8 the Aggregation Engine’s job is to combine one alter-

native of each Service Template in the CSA and check if this Aggregated Solution

is Admissible or not. Finally when all the Admissible Aggregated Solutions are

found (using one of the algorithms depicted in Section 6.8.1) the final step is to ap-

ply the Service Template weights in order to find the best solution. However, once

again there is a difference between the Decision Method being executed. Using the

SAW, nothing is required since the user has already inserted the Service Template

Weights. But if using the AHP an extra step is required. A new request to the

Decision Method must be sent (creating a new XMCDA file) to compare the Service

Templates. Figure G.13 shows this step. In this case the user must compare the 6

Service Templates with each other. The final result is returned in the same way as

before for the alternatives decision.

215

A
P

P
E

N
D

IX
G

.
A

P
P

L
IC

A
T

IO
N

E
X

A
M

P
L

E

Figure G.13: JAHP Interface: Comparing Service Templates of the Use Case Scenario

2
1
6

Figure G.14: CloudAid Example: Aggregation Results with Global Price limit of

AC5000 (SAW method)

The final results are then extracted and the values of each Service Template are

used for calculating the overall performance of each Admissible Aggregated Solution.

Finally the result is presented to the user as shown in Figure G.14.

From the Use Case Scenario we can see that the global price defined is AC5000.

This means that an Aggregates Solution is considered Admissible if its total price

is bellow this value. Comparing the data collected during the execution, showed

in Figure G.15, with the final results in Figure G.14 we conclude that the first

alternative in the Sorted Ranked List of each Service Template was the one chosen to

be part of the best Admissible Aggregated Solution. However, it might happen that

the first alternative in each Sorted Ranked List when aggregated does not fulfill all

the admissibility requirements, thus not being and Admissible Aggregated Solution.

In fact, with the current example if we change the Price limit from AC5000 to AC1000

we see this different. Figure G.16 shows these results, where it is possible to see that

the last Service Template does not use the first alternative in its Sorted Ranked List,

it uses its second. The reason is because the total price of the Aggregated Solution

composed by the first alternative in each Sorted Ranked List is above AC1000 and

therefore not Admissible. By the algorithm (in this example it is used the algorithm

without incomparability support), the best Admissible Aggregated Solution is the

one presented in Figure G.16.

Note also that with different Decision Methods also the final results may be

different. Mainly because they calculate the performances for each alternative in

different ways. Figure G.17 shows some results using the AHP method.

217

APPENDIX G. APPLICATION EXAMPLE

Figure G.15: CloudAid Example: Sorted Ranked Lists for each Service Template

(SAW method)

218

Figure G.16: CloudAid Example: Aggregation Results with Global Price limit of

AC1000 (SAW method)

Figure G.17: CloudAid Example: Aggregation Results with Global Price limit of

AC1000 (AHP method)

219

Bibliography

[1] Al-Ali, A., El-Hag, A., Bahadiri, M., Harbaji, M., and Ali El Haj,

Y. Smart home renewable energy management system. Energy Procedia 12

(2011), 120–126.

[2] Apache. Apache jena homepage. http://jena.apache.org/. Accessed:

5/5/2013.

[3] Apfelbacher, R., and Curth, A. Fmc and uml. http://www.

fmc-modeling.org/fmc-and-uml. Accessed: 5/5/2012.

[4] Araújo, J. CloudAid Algorithm Comparison Test Inputs. https:

//github.com/jorgearj/CloudAid/blob/master/CloudAid/

PrototypeTesting/AlgorithmTests/ComparisonTestInputs.

txt. Accessed: 26/5/2013.

[5] Araújo, J. CloudAid Algorithm Tests. https://github.com/

jorgearj/CloudAid/tree/master/CloudAid/PrototypeTesting/

AlgorithmTests. Accessed: 26/5/2013.

[6] Araújo, J. CloudAid Architecture Diagrams. https://github.com/

jorgearj/CloudAid/tree/master/CloudAid/Architecture. Ac-

cessed: 27/6/2013.

[7] Araújo, J. CloudAid Public Repository. https://github.com/

jorgearj/CloudAid/tree/master/CloudAid. Accessed: 22/6/2013.

[8] Araújo, J. CloudAid Reliability Tests Document. https:

//github.com/jorgearj/CloudAid/blob/master/CloudAid/

PrototypeTesting/ReliabilityTestSheet.xlsx. Accessed:

22/6/2013.

[9] Araújo, J. CloudAid Scenarion3 Document. https://github.com/

jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/

Scenario3_NoInc.pdf. Accessed: 26/5/2013.

[10] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Kon-

winski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Za-

haria, M. A view of cloud computing. Commun. ACM 53, 4 (Apr. 2010),

50–58.

[11] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M.,

Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuinness, D.,

et al. Semantic web services framework (swsf) overview. World Wide Web

Consortium, Member Submission SUBM-SWSF-20050909 (2005).

[12] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M.,

Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuinness, D.,

http://jena.apache.org/
http://www.fmc-modeling.org/fmc-and-uml
http://www.fmc-modeling.org/fmc-and-uml
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/AlgorithmTests/ComparisonTestInputs.txt
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/AlgorithmTests/ComparisonTestInputs.txt
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/AlgorithmTests/ComparisonTestInputs.txt
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/AlgorithmTests/ComparisonTestInputs.txt
https://github.com/jorgearj/CloudAid/tree/master/CloudAid/PrototypeTesting/AlgorithmTests
https://github.com/jorgearj/CloudAid/tree/master/CloudAid/PrototypeTesting/AlgorithmTests
https://github.com/jorgearj/CloudAid/tree/master/CloudAid/PrototypeTesting/AlgorithmTests
https://github.com/jorgearj/CloudAid/tree/master/CloudAid/Architecture
https://github.com/jorgearj/CloudAid/tree/master/CloudAid/Architecture
https://github.com/jorgearj/CloudAid/tree/master/CloudAid
https://github.com/jorgearj/CloudAid/tree/master/CloudAid
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/ReliabilityTestSheet.xlsx
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/ReliabilityTestSheet.xlsx
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/ReliabilityTestSheet.xlsx
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/Scenario3_NoInc.pdf
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/Scenario3_NoInc.pdf
https://github.com/jorgearj/CloudAid/blob/master/CloudAid/PrototypeTesting/Scenario3_NoInc.pdf

BIBLIOGRAPHY

et al. Semantic web services ontology (swso). Member submission, W3C

(2005).

[13] Bichier, M., and Lin, K.-J. Service-oriented computing. Computer 39, 3

(march 2006), 99 – 101.

[14] Bisdorff, R., Meyer, P., and Veneziano, T. Quick dive into xmcda-2.0.

Decision Deck (2009).

[15] Bizer, C., Heath, T., and Berners-Lee, T. Linked Data - The Story So

Far. International Journal on Semantic Web and Information Systems 5, 3

(2009), 1–22.

[16] Blake, M., Tan, W., and Rosenberg, F. Composition as a service [web-

scale workflow]. Internet Computing, IEEE 14, 1 (jan.-feb. 2010), 78 –82.

[17] Booch, G., Rumbaugh, J., and Jacobson, I. The unified modeling lan-

guage user guide. Pearson Education India, 1999.

[18] Booth, D., Haas, H., Mccabe, F., Newcomer, E., Champion, M.,

Ferris, C., and Orchard, D. Web Services Architecture, Oct. 2004.

[19] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,

Nielsen, H., Thatte, S., and Winer, D. Simple object access protocol

(soap) 1.1, 2000.

[20] Cardoso, J., Barros, A., May, N., and Kylau, U. Towards a unified

service description language for the internet of services: Requirements and

first developments. In Services Computing (SCC), 2010 IEEE International

Conference on (july 2010), pp. 602 –609.

[21] Cardoso, J., Pedrinaci, C., Leidig, T., Rupino, P., and De Leenheer,

P. Open semantic service networks. In International Symposium on Services

Science (ISSS?12), Leipzig, Germany (2012).

[22] Cardoso, J., and Sheth, A. Semantic e-workflow composition. Journal of

Intelligent Information Systems 21, 3 (2003), 191–225.

[23] Cardoso, J., Winkler, M., and Voigt, K. A service description language

for the internet of services. In Proceedings of ISSS (2009).

[24] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M.-C.

Adaptive and dynamic service composition in eflow. In Advanced Information

Systems Engineering, B. Wangler and L. Bergman, Eds., vol. 1789 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2000, pp. 13–31.

[25] Chen, M.-F., Tzeng, G.-H., and Ding, C. Fuzzy mcdm approach to

select service provider. In Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE

International Conference on (may 2003), vol. 1, pp. 572 – 577 vol.1.

221

BIBLIOGRAPHY

[26] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.,

et al. Web services description language (wsdl) 1.1, 2001.

[27] Cisco. Cisco cloudwatch summer 2012. http://www.cisco.com/

cisco/web/UK/assets/cisco_cloudwatch_2012_2606.pdf. Ac-

cessed: 27/12/2012.

[28] Clegg, D., and Barker, R. Case method fast-track: a RAD approach.

Addison-Wesley Longman Publishing Co., Inc., 1994.

[29] Cloud, W. A. Bime analytics. http://www.bimeanalytics.com/. Ac-

cessed: 15/11/2012.

[30] Comission, E. Energy efficiency standards. http://ec.europa.eu/

energy/efficiency/index_en.htm. Accessed: 12/12/2012.

[31] Comission, E. Unleashing the potential of cloud computing in eu-

rope. http://ec.europa.eu/information_society/activities/

cloudcomputing/docs/com/com_cloud.pdf. Accessed: 27/12/2012.

[32] de Bruijn, J., Lausen, H., Polleres, A., and Fensel, D. The web ser-

vice modeling language wsml: An overview. In The Semantic Web: Research

and Applications, Y. Sure and J. Domingue, Eds., vol. 4011 of Lecture Notes

in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 590–604.

[33] De Silva, L., Morikawa, C., and Petra, I. State of the art of smart

homes. Engineering Applications of Artificial Intelligence (2012).

[34] Deck, D. Decision deck - xmcda. http://www.decision-deck.org/

xmcda/index.html. Accessed: 5/5/2013.

[35] Deck, D. The decision deck project. http://www.decision-deck.org.

Last Accessed: 5/5/2013.

[36] Deck, D. The decision deck project manifesto. http://www.

decision-deck.org/_static/D2manifesto.pdf. Last Accessed:

13/01/2013.

[37] Deck, D. J-XMCDA project. http://sourceforge.net/apps/

mediawiki/j-mcda/index.php?title=Main_Page. Accessed:

5/5/2013.

[38] Deck, D. Xmcda 2.2.0 documentation. http://www.decision-deck.

org/xmcda/_static/html-doc/2.2.0/XMCDA-2.2.0.html. Ac-

cessed: 5/5/2013.

[39] Deck, D. Xmcda Schema. http://www.decision-deck.org/xmcda/

_downloads/XMCDA-2.2.0.xsd. Accessed: 26/5/2013.

[40] Dietze, S., Liu, D., Yu, H., and Pedrinaci, C. Semantic web-driven

development of service-oriented systems-exploiting linked data for service an-

notation and discovery.

222

http://www.cisco.com/cisco/web/UK/assets/cisco_cloudwatch_2012_2606.pdf
http://www.cisco.com/cisco/web/UK/assets/cisco_cloudwatch_2012_2606.pdf
http://www.bimeanalytics.com/
http://ec.europa.eu/energy/efficiency/index_en.htm
http://ec.europa.eu/energy/efficiency/index_en.htm
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/com/com_cloud.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/com/com_cloud.pdf
http://www.decision-deck.org/xmcda/index.html
http://www.decision-deck.org/xmcda/index.html
http://www.decision-deck.org
http://www.decision-deck.org/_static/D2manifesto.pdf
http://www.decision-deck.org/_static/D2manifesto.pdf
http://sourceforge.net/apps/mediawiki/j-mcda/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/j-mcda/index.php?title=Main_Page
http://www.decision-deck.org/xmcda/_static/html-doc/2.2.0/XMCDA-2.2.0.html
http://www.decision-deck.org/xmcda/_static/html-doc/2.2.0/XMCDA-2.2.0.html
http://www.decision-deck.org/xmcda/_downloads/XMCDA-2.2.0.xsd
http://www.decision-deck.org/xmcda/_downloads/XMCDA-2.2.0.xsd

BIBLIOGRAPHY

[41] Dustdar, S., and Schreiner, W. A survey on web services composition.

International Journal of Web and Grid Services 1, 1 (2005), 1–30.

[42] Eeles, P. Capturing architectural requirements,. Technical report IBM

(November 2005).

[43] Erl, T. SOA Principles of Service Design (The Prentice Hall Service-

Oriented Computing Series from Thomas Erl). Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2007.

[44] Fehling, C., Leymann, F., Mietzner, R., and Schupeck, W. A collec-

tion of patterns for cloud types, cloud service models, and cloud-based appli-

cation architectures, May 2011.

[45] Fensel, D., and Bussler, C. The web service modeling framework wsmf.

Electronic Commerce Research and Applications 1, 2 (2002), 113 – 137.

[46] Figueira, J., Greco, S., and Ehrgott, M. Multiple Criteria Decision

Analysis: State of the Art Surveys. Springer Verlag, Boston, Dordrecht, Lon-

don, 2005.

[47] Fortis, T.-F., Munteanu, V. I., and Negru, V. Towards an ontology

for cloud services. In Complex, Intelligent and Software Intensive Systems

(CISIS), 2012 Sixth International Conference on (2012), IEEE, pp. 787–792.

[48] Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V., and Va-

quero, L. M. Service specification in cloud environments based on extensions

to open standards. In Proceedings of the Fourth International ICST Confer-

ence on COMmunication System softWAre and middlewaRE (New York, NY,

USA, 2009), COMSWARE ’09, ACM, pp. 19:1–19:12.

[49] Gartner. Gartner says cloud consumers need brokerages to unlock the

potential of cloud services. http://www.gartner.com/newsroom/id/

1064712, 2009. Accessed: 19/6/2013.

[50] Gill, K., Yang, S., Yao, F., and Lu, X. A zigbee-based home automation

system. Consumer Electronics, IEEE Transactions on 55, 2 (2009), 422–430.

[51] Guan, Y., Ghose, A., and Lu, Z. Using constraint hierarchies to support

qos-guided service composition. In Web Services, 2006. ICWS ’06. Interna-

tional Conference on (sept. 2006), pp. 743 –752.

[52] Han, T., and Sim, K. M. An ontology-enhanced cloud service discovery

system. In Proceedings of the International MultiConference of Engineers and

Computer Scientists (2010), vol. 1.

[53] Haslhofer, B., Momeni Roochi, E., Schandl, B., and Zander, S.

Europeana rdf store report.

[54] Heberle, F. Comparison of service offerings in the future internet, spanning

over multiple providers and stores, 2012.

223

http://www.gartner.com/newsroom/id/1064712
http://www.gartner.com/newsroom/id/1064712

BIBLIOGRAPHY

[55] Hepp, M. Goodrelations: An ontology for describing products and ser-

vices offers on the web. In Knowledge Engineering: Practice and Patterns,

A. Gangemi and J. Euzenat, Eds., vol. 5268 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2008, pp. 329–346.

[56] Hill, T. On goods and services. Review of income and wealth 23, 4 (2005),

315–338.

[57] IDC. Quantitative estimates of the demand for cloud computing in europe

and the likely barriers to uptake. http://ec.europa.eu/information_

society/activities/cloudcomputing/docs/quantitative_

estimates.pdf. Accessed: 27/12/2012.

[58] Kang, J., and Sim, K. M. Cloudle: A multi-criteria cloud service search

engine. In Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific

(2010), IEEE, pp. 339–346.

[59] Kang, J., and Sim, K. M. Cloudle: An agent-based cloud search engine that

consults a cloud ontology. In Cloud Computing and Virtualization Conference,

CCV (2010).

[60] Kapitsaki, G., Kateros, D., Foukarakis, I., Prezerakos, G., Kakla-

mani, D., and Venieris, I. Service composition: State of the art and future

challenges. In Mobile and Wireless Communications Summit, 2007. 16th IST

(july 2007), pp. 1 –5.

[61] Keller, F., and Wendt, S. Fmc: an approach towards architecture-centric

system development. In Engineering of Computer-Based Systems, 2003. Pro-

ceedings. 10th IEEE International Conference and Workshop on the (april

2003), pp. 173 – 182.

[62] Kim, H., Lee, S., Kim, H., and Kim, H. Implementing home energy man-

agement system with upnp and mobile applications. Computer Communica-

tions (2012).

[63] Kim, W., Lee, S., and Hwang, J. Real-time energy monitoring and con-

trolling system based on zigbee sensor networks. Procedia Computer Science

5 (2011), 794–797.

[64] Klusch, M. Semantic web service description. In CASCOM: Intelligent Ser-

vice Coordination in the Semantic Web, M. Schumacher, H. Schuldt, H. Helin,

M. Walliser, S. Brantschen, M. Calisti, and T. Hempfling, Eds., Whitestein

Series in Software Agent Technologies and Autonomic Computing. Birkhäuser

Basel, 2008, pp. 31–57.

[65] Knöpfel, A., Gröne, B., and Tabeling, P. Fundamental modeling con-

cepts. Wiley, West Sussex UK, 2005.

[66] Knublauch, H. The Object-Oriented Semantic Web with SPIN.

http://composing-the-semantic-web.blogspot.pt/2009/01/

224

http://ec.europa.eu/information_society/activities/cloudcomputing/docs/quantitative_estimates.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/quantitative_estimates.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/quantitative_estimates.pdf
http://composing-the-semantic-web.blogspot.pt/2009/01/object-oriented-semantic-web-with-spin.html
http://composing-the-semantic-web.blogspot.pt/2009/01/object-oriented-semantic-web-with-spin.html

BIBLIOGRAPHY

object-oriented-semantic-web-with-spin.html. Accessed:

21/5/2013.

[67] Knublauch, H. Spin - SPARQL Inferencing Notation. http://spinrdf.

org/. Accessed: 21/5/2013.

[68] Knublauch, H. Spin - SPARQL Syntax. http://www.w3.org/

Submission/spin-sparql/. Accessed: 21/5/2013.

[69] Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. Sawsdl: Se-

mantic annotations for wsdl and xml schema. Internet Computing, IEEE 11,

6 (nov.-dec. 2007), 60 –67.

[70] Krasner, G. E., Pope, S. T., et al. A description of the model-view-

controller user interface paradigm in the smalltalk-80 system. Journal of object

oriented programming 1, 3 (1988), 26–49.

[71] Lara, R., Lausen, H., Arroyo, S., Bruijn, J. D., Fensel, D., and

Innsbruck, U. Semantic web services: description requirements and current

technologies. In In Proceedings of the International Workshop on Electronic

Commerce, Agents, and Semantic Web Services held in conjunction with the

Fifth International Conference on Electronic Commerce (ICEC 2003 (2003).

[72] Lawler, C. M. Cloud service broker. http://

www.hitachiconsulting.com/files/pdfRepository/

Cloud-Service-Broker-Presentation-Green-IT-Cloud-Summit-2012.

pdf. Accessed: 19/6/2013.

[73] Lee, B. S., Yan, S., Ma, D., and Zhao, G. Aggregating iaas service. In

SRII Global Conference (SRII), 2011 Annual (2011), IEEE, pp. 335–338.

[74] Lenk, A., Klems, M., Nimis, J., Tai, S., and Sandholm, T. Whats inside

the cloud? an architectural map of the cloud landscape. In Proceedings of the

2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing

(Washington, DC, USA, 2009), CLOUD ’09, IEEE Computer Society, pp. 23–

31.

[75] Lheureux, B., Petrov, P., and Thurai, A. The

rise of cloud service brokerage featuring gartner and

bcbs. http://www.slideshare.net/Intel-ASIP/

the-rise-of-cloud-service-brokerage-featuring-gartner-and-bcbs,

2012. Accessed: 19/6/2013.

[76] Liu, D., Li, N., Pedrinaci, C., Kopecký, J., Maleshkova, M., and

Domingue, J. An approach to construct dynamic service mashups using

lightweight semantics. In Current Trends in Web Engineering, A. Harth and

N. Koch, Eds., vol. 7059 of Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2012, pp. 13–24.

225

http://composing-the-semantic-web.blogspot.pt/2009/01/object-oriented-semantic-web-with-spin.html
http://composing-the-semantic-web.blogspot.pt/2009/01/object-oriented-semantic-web-with-spin.html
http://spinrdf.org/
http://spinrdf.org/
http://www.w3.org/Submission/spin-sparql/
http://www.w3.org/Submission/spin-sparql/
http://www.hitachiconsulting.com/files/pdfRepository/Cloud-Service-Broker-Presentation-Green-IT-Cloud-Summit-2012.pdf
http://www.hitachiconsulting.com/files/pdfRepository/Cloud-Service-Broker-Presentation-Green-IT-Cloud-Summit-2012.pdf
http://www.hitachiconsulting.com/files/pdfRepository/Cloud-Service-Broker-Presentation-Green-IT-Cloud-Summit-2012.pdf
http://www.hitachiconsulting.com/files/pdfRepository/Cloud-Service-Broker-Presentation-Green-IT-Cloud-Summit-2012.pdf
http://www.slideshare.net/Intel-ASIP/the-rise-of-cloud-service-brokerage-featuring-gartner-and-bcbs
http://www.slideshare.net/Intel-ASIP/the-rise-of-cloud-service-brokerage-featuring-gartner-and-bcbs

BIBLIOGRAPHY

[77] Manifesto, O. C. Open cloud manifesto. Availabe online: www. opencloud-

manifesto. org/Open 20 (2009).

[78] Markowitz, H. Portfolio selection*. The Journal of Finance 7, 1 (1952),

77–91.

[79] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T.,

et al. Owl-s: Semantic markup for web services. W3C Member submission

22 (2004), 2007–04.

[80] Martin, J. Rapid application development. Macmillan Publishing Co., Inc.,

Indianapolis, IN, USA, 1991.

[81] Marton, A., Piccinelli, G., and Turfin, C. Service provision and compo-

sition in virtual business communities. In Reliable Distributed Systems, 1999.

Proceedings of the 18th IEEE Symposium on (1999), pp. 336 –341.

[82] McGuinness, D., Van Harmelen, F., et al. Owl web ontology language

overview. W3C recommendation 10, 2004-03 (2004), 10.

[83] Mcilraith, S. Adapting golog for composition of semantic web services.

pp. 482–493.

[84] Mell, P., and Grance, T. The nist definition of cloud computing (draft).

NIST special publication 800 (2011), 145.

[85] Meyer, P., and Bigaret, S. Diviz: a software for modeling, processing and

sharing algorithmic workflows in mcda. Intelligent Decision Technologies: an

International Journal (2011).

[86] Milanovic, N., and Malek, M. Current solutions for web service compo-

sition. Internet Computing, IEEE 8, 6 (nov.-dec. 2004), 51 – 59.

[87] Morge, M. Jahp - java analytic hierarchy process. http://www.di.

unipi.it/˜morge/software/JAHP.html. Accessed: 3/3/2013.

[88] Mortensen, D. T., and Pissarides, C. A. Job creation and job destruction

in the theory of unemployment. The Review of Economic Studies 61, 3 (1994),

397–415.

[89] Moscato, F., Aversa, R., Di Martino, B., Fortis, T., and Munteanu,

V. An analysis of mosaic ontology for cloud resources annotation. In Computer

Science and Information Systems (FedCSIS), 2011 Federated Conference on

(2011), IEEE, pp. 973–980.

[90] Nair, S., Porwal, S., Dimitrakos, T., Ferrer, A., Tordsson, J.,

Sharif, T., Sheridan, C., Rajarajan, M., and Khan, A. Towards se-

cure cloud bursting, brokerage and aggregation. In Web Services (ECOWS),

2010 IEEE 8th European Conference on (2010), pp. 189–196.

226

http://www.di.unipi.it/~morge/software/JAHP.html
http://www.di.unipi.it/~morge/software/JAHP.html

BIBLIOGRAPHY

[91] Narayanan, S., and McIlraith, S. A. Simulation, verification and auto-

mated composition of web services. In Proceedings of the 11th international

conference on World Wide Web (New York, NY, USA, 2002), WWW ’02,

ACM, pp. 77–88.

[92] Nguyen, D., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.,

and van den Heuvel, W.-J. Blueprint template support for engineering

cloud-based services. In Towards a Service-Based Internet, W. Abramowicz,

I. Llorente, M. Surridge, A. Zisman, and J. Vayssière, Eds., vol. 6994 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2011, pp. 26–37.

[93] Nguyen, D. K., Lelli, F., Papazoglou, M., and van den Heuvel,

W.-J. Issue in automatic combination of cloud services. In Parallel and Dis-

tributed Processing with Applications (ISPA), 2012 IEEE 10th International

Symposium on (july 2012), pp. 487 –493.

[94] OpenCrowd. Cloud taxonomy. http://cloudtaxonomy.opencrowd.

com/taxonomy/. Accessed: 20/03/2013.

[95] Orriëns, B., Yang, J., and Papazoglou, M. Model driven service compo-

sition. In Service-Oriented Computing - ICSOC 2003, M. Orlowska, S. Weer-

awarana, M. Papazoglou, and J. Yang, Eds., vol. 2910 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2003, pp. 75–90.

[96] O’Sullivan, J., Edmond, D., and ter Hofstede, A. Formal descrip-

tion of non-functional service properties. Centre for Information Technology,

Queensland University of Technology, Tech. Rep (2005).

[97] Pedrinaci, C., da Silva, C. F., Araújo, J., Cardoso, J., and

Leidig, T. Linked USDL Pricing Repository. https://github.com/

linked-usdl/usdl-price. Accessed: 21/5/2013.

[98] Pedrinaci, C., and Domingue, J. Toward the next wave of services: linked

services for the web of data. Journal of Universal Computer Science 16, 13

(2010), 1694–1719.

[99] Pedrinaci, C., Kopeckỳ, J., Maleshkova, M., Liu, D., Li, N., and

Domingue, J. Unified lightweight semantic descriptions of web apis and web

services.

[100] Pedrinaci, C., and Leidig, T. Linked usdl core. http://linked-usdl.

org/ns/usdl-core. Accessed: 5/05/2013.

[101] Pedrinaci, C., and Leidig, T. Linked-usdl homepage. http://www.

linked-usdl.org/. Accessed: 19/11/2012.

[102] Pedrinaci, C., Leidig, T., Cardoso, J., and Araújo, J. Linked usdl

pricing repository. https://github.com/linked-usdl/usdl-price/

blob/master/usdl-price_v2.ttl. Accessed: 28/5/2013.

227

http://cloudtaxonomy.opencrowd.com/taxonomy/
http://cloudtaxonomy.opencrowd.com/taxonomy/
https://github.com/linked-usdl/usdl-price
https://github.com/linked-usdl/usdl-price
http://linked-usdl.org/ns/usdl-core
http://linked-usdl.org/ns/usdl-core
http://www.linked-usdl.org/
http://www.linked-usdl.org/
https://github.com/linked-usdl/usdl-price/blob/master/usdl-price_v2.ttl
https://github.com/linked-usdl/usdl-price/blob/master/usdl-price_v2.ttl

BIBLIOGRAPHY

[103] Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J.,

and Domingue, J. iserve: a linked services publishing platform. In CEUR

Workshop Proceedings (2010), vol. 596.

[104] Prud’hommeaux, E., and Seaborne, A. SPARQL Query Language for

RDF. Tech. rep.

[105] Rahm, E., and Bernstein, P. A. A survey of approaches to automatic

schema matching. The VLDB Journal 10, 4 (Dec. 2001), 334–350.

[106] Rao, J., and Su, X. A survey of automated web service composition meth-

ods. In Semantic Web Services and Web Process Composition, J. Cardoso

and A. Sheth, Eds., vol. 3387 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2005, pp. 43–54.

[107] Reiter, R. On closed world data bases. In Logic and Data Bases, H. Gallaire

and J. Minker, Eds. Springer US, 1978, pp. 55–76.

[108] Reseach, S. Internet of services - service delivery framework.

http://www.internet-of-services.com/index.php?id=265&L=

0&tx_ttnews[backpid]=475&tx_ttnews[tt_news]=236&tx_

ttnews[pointer]=1. Accessed: 19/6/2013.

[109] Rimal, B. P., Choi, E., and Lumb, I. A taxonomy and survey of cloud

computing systems. In INC, IMS and IDC, 2009. NCM’09. Fifth International

Joint Conference on (2009), Ieee, pp. 44–51.

[110] Robbins, S., Judge, T., et al. Organizational behaviour, 1996.

[111] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stoll-

berg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D., et al.

Web service modeling ontology. Applied Ontology 1, 1 (2005), 77–106.

[112] Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., and Dust-

dar, S. An end-to-end approach for qos-aware service composition. In En-

terprise Distributed Object Computing Conference, 2009. EDOC ’09. IEEE

International (sept. 2009), pp. 151 –160.

[113] Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., and Dust-

dar, S. Towards composition as a service - a quality of service driven ap-

proach. In Data Engineering, 2009. ICDE ’09. IEEE 25th International Con-

ference on (29 2009-april 2 2009), pp. 1733 –1740.

[114] Saaty, T. L. How to make a decision: The analytic hierarchy process. Eu-

ropean Journal of Operational Research 48, 1 (1990), 9 – 26. ¡ce:title¿Desicion

making by the analytic hierarchy process: Theory and applications¡/ce:title¿.

[115] Schroth, C., and Janner, T. Web 2.0 and soa: Converging concepts

enabling the internet of services. IT Professional 9, 3 (may-june 2007), 36

–41.

228

http://www.internet-of-services.com/index.php?id=265&L=0&tx_ttnews[backpid]=475&tx_ttnews[tt_news]=236&tx_ttnews[pointer]=1
http://www.internet-of-services.com/index.php?id=265&L=0&tx_ttnews[backpid]=475&tx_ttnews[tt_news]=236&tx_ttnews[pointer]=1
http://www.internet-of-services.com/index.php?id=265&L=0&tx_ttnews[backpid]=475&tx_ttnews[tt_news]=236&tx_ttnews[pointer]=1

BIBLIOGRAPHY

[116] Schwaber, K. Agile project management with Scrum. Microsoft Press, 2004.

[117] September, A. Ieee standard glossary of software engineering terminology,

1990.

[118] Sharpe, W. A simplified model for portfolio analysis. Management science

9, 2 (1963), 277–293.

[119] Shin, J., and Hwang, J. Intelligent energy information service based on a

multi-home environment. Procedia Computer Science 10 (2012), 197–204.

[120] Sirin, E., Hendler, J., and Parsia, B. Semi-automatic composition of

web services using semantic descriptions. In In Web Services: Modeling, Ar-

chitecture and Infrastructure workshop in ICEIS 2003 (2002), pp. 17–24.

[121] Spohrer, J., Maglio, P. P., Bailey, J., and Gruhl, D. Steps toward a

science of service systems. Computer 40, 1 (jan. 2007), 71 –77.

[122] Spohrer, J., Vargo, S., Caswell, N., and Maglio, P. The service

system is the basic abstraction of service science. In Hawaii International

Conference on System Sciences, Proceedings of the 41st Annual (jan. 2008),

p. 104.

[123] Srivastava, B., and Koehler, J. Web service composition-current solu-

tions and open problems. In ICAPS 2003 Workshop on Planning for Web

Services (2003), vol. 35.

[124] Sun, H., Wang, X., Zhou, B., and Zou, P. Research and implementation

of dynamic web services composition. In Advanced Parallel Processing Tech-

nologies, X. Zhou, M. Xu, S. Jähnichen, and J. Cao, Eds., vol. 2834 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2003, pp. 457–466.

[125] Toma, I., Roman, D., Fensel, D., Sapkota, B., and Gomez, J. A multi-

criteria service ranking approach based on non-functional properties rules eval-

uation. In Service-Oriented Computing – ICSOC 2007, B. Krämer, K.-J. Lin,

and P. Narasimhan, Eds., vol. 4749 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2007, pp. 435–441.

[126] Tran, V., and Tsuji, H. A survey of fuzzy-based approaches for web service

ranking. International Journal of Web Services Practices 3, 3-4 (2008), 121–

128.

[127] Triantaphyllou, E., Shu, B., Sanchez, S. N., and Ray, T. Multi-

criteria decision making: an operations research approach. Encyclopedia of

electrical and electronics engineering 15 (1998), 175–186.

[128] Tut, M., and Edmond, D. The use of patterns in service composition.

In Web Services, E-Business, and the Semantic Web, C. Bussler, R. Hull,

S. McIlraith, M. Orlowska, B. Pernici, and J. Yang, Eds., vol. 2512 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2002, pp. 28–40.

229

BIBLIOGRAPHY

[129] Vitvar, T., Kopecky, J., Zaremba, M., and Fensel, D. Wsmo-lite:

lightweight semantic descriptions for services on the web. In Web Services,

2007. ECOWS ’07. Fifth European Conference on (nov. 2007), pp. 77 –86.

[130] Wright, P., Sun, Y. L., Harmer, T., Keenan, A., Stewart, A., and

Perrott, R. A constraints-based resource discovery model for multi-provider

cloud environments. Journal of Cloud Computing 1, 1 (2012), 1–14.

[131] Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. Automating

daml-s web services composition using shop2. In The Semantic Web - ISWC

2003, D. Fensel, K. Sycara, and J. Mylopoulos, Eds., vol. 2870 of Lecture Notes

in Computer Science. Springer Berlin / Heidelberg, 2003, pp. 195–210.

[132] www.fmc modeling.org. Fundamental modeling concepts homepagel.

http://www.fmc-modeling.org/home. Accessed: 5/5/2012.

[133] Xie, X., and Chen, K. An ahp-based evaluation model for service com-

position. In Computational Science and Its Applications - ICCSA 2006,

M. Gavrilova, O. Gervasi, V. Kumar, C. Tan, D. Taniar, A. Laganá, Y. Mun,

and H. Choo, Eds., vol. 3983 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2006, pp. 756–766.

[134] Youseff, L., Butrico, M., and Da Silva, D. Toward a unified ontology of

cloud computing. In Grid Computing Environments Workshop, 2008. GCE’08

(2008), IEEE, pp. 1–10.

[135] Yu, H. Q., Liu, D., Dietze, S., and Domingue, J. Developing rdf-based

web services for supporting runtime matchmaking and invocation. In Next

Generation Web Services Practices (NWeSP), 2011 7th International Confer-

ence on (oct. 2011), pp. 392 –397.

[136] Yu, T., Zhang, Y., and Lin, K.-J. Efficient algorithms for web services

selection with end-to-end qos constraints. ACM Trans. Web 1, 1 (May 2007).

[137] Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., and

Chang, H. Qos-aware middleware for web services composition. Software

Engineering, IEEE Transactions on 30, 5 (may 2004), 311 – 327.

230

http://www.fmc-modeling.org/home

List of Tables

6.1 CloudAid Prototype: User Interface Requests Controller Codes . . . 95

6.2 CloudAid Prototype: XMCDA Methods and the Tags Used 108

6.3 CloudAid Prototype: Decision Methods Differences in Application

Execution . 115

7.1 CloudAid: Functional Requirements List 122

7.2 Search Performance . 129

7.3 Search Performance . 129

7.4 Algorithm Performance . 134

7.5 Tests Data Inputs for the Algorithm Comparison (Simplified) 135

C.1 CloudAid: Functional Requirements List 176

C.2 CloudAid: Usability Requirements List 182

C.3 CloudAid: Reliability Requirements List 183

C.4 CloudAid: Performance Requirements List 184

C.5 CloudAid: Supportability Requirements List 185

C.6 CloudAid: Design Requirements List 186

C.7 CloudAid: Implementation Requirements List 187

C.8 CloudAid: Interface Requirements List 188

G.1 Use Case Example . 206

i

List of Figures

1.1 XaaS Service Models Dependencies 3

1.2 Service Composition Life-Cycle: The three stages highlighted are the

focus of this thesis. (Adapted from [106]). 5

1.3 Steps for defining a composite service solution. The steps our work

addresses are highlighted. 12

1.4 Summary of the topics addressed in this thesis mapped to the six

steps for defining a composite Service solution. 20

1.5 Project Initial Planning (September 24th) 22

1.6 Project Intermediate Planning (December 20th) 22

1.7 Project Final Planning (March 15th) 22

2.1 OWL-S service description elements. From [64] 27

2.2 Web services composition models [41]. 31

3.1 Steps for contracting a composite service solution. 41

4.1 Software Lifecycle [3] . 46

4.2 CloudAid High Level Architecture 48

4.3 CloudAid Project Architecture . 50

4.4 CloudAid Architecture . 51

4.5 Steps for defining a composite service solution 52

4.6 CloudAid Architecture: Search Engine Module 53

4.7 CloudAid Architecture: Decision Engine Module 55

4.8 CloudAid Architecture: Aggregation Engine Module 57

4.9 CloudAid Architecture: Use Case Diagram 58

4.10 CloudAid Architecture: CSA Data Model 61

4.11 CloudAid Architecture: Service Data Model 64

5.1 Cloud Service Characteristics mOSAIC Comparison 76

5.2 Linked USDL Pricing Module . 81

6.1 CloudAid Prototype: CSA Menu . 87

6.2 CloudAid Prototype: Service Template Menu 87

6.3 CloudAid Prototype: Insert new Service Template 88

6.4 CloudAid Prototype: Insert new Requirement and Criterion 88

6.5 CloudAid Prototype: Insert a Qualitative Value Requirement 89

6.6 CloudAid Prototype: User Preferences Example 91

LIST OF FIGURES

6.7 CloudAid Prototype: Application startup and Decision Method Choice

Question . 93

6.8 CloudAid Prototype: Communication between CloudAid and Exter-

nal Decision Methods . 110

6.9 JAHP: Example of AHP Decision Process 113

6.10 JAHP: Example of AHP Criterion Comparison 114

6.11 JAHP: Example of AHP Alternative Performances 114

7.1 Test Case: TFR1 . 125

7.2 Test Case: TFR5 . 126

7.3 Search Time for Each Service Template in the Use Case depending

on the Triple Store Size . 130

7.4 Search Time Depending on the Number of Requirements and Triple

Store Size . 131

7.5 Algorithm Testing Scenario and Expected Results (no incomparabil-

ity support) . 133

7.6 Algorithm Testing Scenario and Expected Results (with incompara-

bility support) . 133

7.7 Comparison between Number of Visited Nodes with different Algo-

rithm Variations . 136

7.8 Comparison between Number of Admissible Aggregated Solutions

with different Algorithm Variations 138

7.9 Comparison between Execution Time with different Algorithm Vari-

ations . 140

7.10 Average Times for Delta = 0.5 and less than 10000 Visited Nodes . 141

7.11 Average Times for Delta = 0.5 and more than 10000 Visited Nodes . 142

7.12 Average Times for No Incomparability and more than 10000 Visited

Nodes . 142

7.13 Average Times for No Incomparability and more than 10000 Visited

Nodes . 142

B.1 Steps for contracting a composite service solution. 170

B.2 EMES architecture model . 175

D.1 Model View Controller State and Message Sending. From [70] 189

F.1 Cloud Taxonomy: Top Level . 197

F.2 Cloud Taxonomy: Property . 197

F.3 Cloud Taxonomy: Functional Properties 198

F.4 Cloud Taxonomy: Computing Properties 199

F.5 Cloud Taxonomy: Data Properties 201

F.6 Cloud Taxonomy: Network Properties 202

F.7 Cloud Taxonomy: Platform Properties 202

F.8 Cloud Taxonomy: Interfaces . 203

F.9 Cloud Taxonomy: Non-Functional Properties 203

F.10 Cloud Taxonomy: Support Properties 204

iii

LIST OF FIGURES

G.1 CloudAid Example: Service Set Startup 206

G.2 CloudAid Example: Inserting criteria weights (SAW method) 206

G.3 CloudAid Example: Inserting criteria preference direction (AHP method)207

G.4 CloudAid Example: Service Templates and Criteria weights normal-

ization . 208

G.5 CloudAid Example: Exclusive requirements and alternatives found . 208

G.6 CloudAid Example: Alternative Data 210

G.7 CloudAid Example: Insert preferable value and attribute normaliza-

tion process . 211

G.8 CloudAid Example: Insert data about a non-numerical attribute . . 211

G.9 CloudAid Example: Decision Problem Data 212

G.10 JAHP Interface: Comparing criteria of the use case scenarios database

Service Template . 213

G.11 JAHP Interface: Comparing alternatives of the Use Case Scenarios

Database Service Template regarding the StorageCapacity criterion . 214

G.12 CloudAid Example: Decision Results extracted from the Decision

Method . 215

G.13 JAHP Interface: Comparing Service Templates of the Use Case Scenario216

G.14 CloudAid Example: Aggregation Results with Global Price limit of

AC5000 (SAW method) . 217

G.15 CloudAid Example: Sorted Ranked Lists for each Service Template

(SAW method) . 218

G.16 CloudAid Example: Aggregation Results with Global Price limit of

AC1000 (SAW method) . 219

G.17 CloudAid Example: Aggregation Results with Global Price limit of

AC1000 (AHP method) . 219

iv

List of Acronyms

AI Artificial Intelligence

AHP Analytic Hierarchy Process

CaaS Composition as a Service

CSA Composite Service Architecture

DMTF Distributed Management Task Force

EMES Energy Monitoring and Efficiency System

IaaS Infrastructure as a Service

IoS internet of Services

MCDA Multi-Criteria Decision Aiding

MCDM Multi-Criteria Decision Making

NIST National Institute of Standards and Technology

OWL-S Semantic Markup for Web Services

PaaS Platform as a Service

QoS Quality of Service

RDF Resource Description Framework

SaaS Software as a Service

SAW Simple Additive Weighting

SOA Service Oriented Architecture

SOC Service Oriented Computing

SPARQL SPARQL Protocol and RDF Query Language

SWSF Semantic Web Service Framework

SWSL Semantic Web Service Language

SWSO Semantic Web Service Ontology

UML Unified Modeling Language

USDL Unified Service Description Language

WSDL Web Service Description Language

WSMF The Web Service Modeling Framework

v

LIST OF FIGURES

WSML The Web Service Modeling Language

WSMO Web Service Modeling Ontology

XaaS Anything as a Service

vi

Listings

6.1 Heroku Use Case Query Example . 102

A.1 Vocabulary Prefixes . 153

A.2 Linked-USDL BIME Instance . 153

A.3 SaaS Concept . 154

A.4 BIME Provider . 154

A.5 BIME Pricing . 155

A.6 BIME Offering . 155

A.7 BIME Enterprise Pack Example: Price Plan 156

A.8 BIME Enterprise Pack Example: Price Component (Part 1) 156

A.9 BIME Enterprise Pack Example: Price Component (Part 2: General

Features) . 156

A.10 BIME Service Features: General Features 157

A.11 BIME Service Features: On Premise or Cloud Storage 157

A.12 BIME Enterprise Pack Example: Price Component (Part 3: Security

Features) . 157

A.13 BIME Service Features: Security Features 158

A.14 BIME Service Features: Encripted Connections 158

A.15 BIME Enterprise Pack Example: Price Component (Part 4: Cus-

tomer Support) . 158

A.16 BIME Service Features: Customer Support 158

A.17 BIME Service Features: Product Manual 159

A.18 BIME Enterprise Pack Example: Price Component (Part 5: Dashboard)159

A.19 BIME Service Features: Dashboard 159

A.20 BIME Enterprise Pack Example: Price Component (Part 6: Connector)160

A.21 BIME Service Features: Connector 160

A.22 BIME Enterprise Pack Example: Price Component (Part 7: Key

Features) . 160

A.23 BIME Service Features: Key Features 161

A.24 BIME Enterprise Pack Example: Price Component (Part 8: Price) . 161

A.25 General Features Concept . 162

A.26 On Premise or Cloud Data Storage Concept 162

G.1 Command to run the CloudAid Prototype with this example setup . 205

vii

List of Algorithms

1 CloudAid Prototype Execution Flow 94

2 Admissible Solution Algorithm: Without Incomparability 118

3 Admissible Solution Algorithm: With Incomparability 119

	Abstract
	Acknowledgements
	Introduction
	Background
	Services
	Cloud Services
	Service Composition
	Decision Aid

	Concepts Definitions
	Motivation
	Problem Description
	Objectives and Challenges
	Expressing the Composite Service Architecture
	Uniform Remote Access to Service Description
	Complex Decision Making

	Approach
	Composite Service Architecture Modeling
	Linked-USDL Service Description
	Multi-Criteria Decision Making

	Scheduling
	Document Structure

	Related Work
	Service Description
	Our Scope Regarding Service Description
	Web Service Description Language
	Unified Service Description Language
	Semantic Approaches
	Linked Services
	Service Description Pricing Component

	Service Composition
	Our Scope Regarding Service Composition
	Automatic Composition
	Quality of Service and Model Based Composition
	Semantic Service Composition
	Software as a Service Blueprinting Composition

	Service Aggregation
	Our Scope Regarding Service Aggregation
	Cloud Service Aggregation

	Decision Aid
	Our Scope Regarding Decision Aid
	Portfolio Analysis and Matching
	Multi-Criteria Decision Making
	MCDM Approaches

	Use Case
	Problem Description
	System Usage
	Contracting a Composite Service Solution

	Analysis and Specification
	Requirements Analysis
	Requirements Elicitation
	Requirements Prioritization and Categorization
	Top Level Objectives

	CloudAid Architecture
	Diagram Notation
	Overall Architecture
	Application Use Case
	Data Models
	Languages, Frameworks and Tools

	Test Plan
	Testing Environment
	Functional Requirements
	Usability Requirements
	Reliability Requirements
	Performance Requirements
	Supportability Requirements
	Design, Implementation and Interface Requirements
	Integration Tests

	Semantic Models
	Cloud Taxonomy
	Objective
	Methodology
	Cloud Ontologies

	Pricing Model
	Motivation
	Challenges
	Methodology
	Model
	Final Remarks

	CloudAid Prototype
	Methodology
	User Data Capture
	Mappings Between Linked USDL Service Descriptions and the Application Prototype
	Controller
	CSA Evaluator
	Generalization process

	Search Engine
	Service Set
	Jena Engine
	Resource Converter

	Decision Engine
	Normalization Process
	XMCDA Standard
	External Methods Communication
	Decision Methods

	Aggregation Engine
	Admissible Solutions Algorithms

	Test Results
	Functional Tests
	Overall Reliability Tests
	Search Engine Tests
	Decision Methods
	Admissible Solutions Algorithm Tests
	Integration Tests
	Final Test Conclusions

	Conclusions
	Summary
	Findings
	Implications for Society
	Future Work

	Appendices
	Linked-USDL Service Modeling
	Technologies Used
	Why BIME?
	Methodology
	Linked-USDL Service Modeling
	Prefixes
	Service Instance
	Legal
	SLA
	Pricing

	Service Vocabulary
	Product Editions
	General Features
	Key Features
	Security Features
	Customer Support
	Connector
	Dashboard
	Extra Considerations

	Use Case (Full)
	Problem Description
	System Usage
	Contracting a Composite Service Solution
	Requirements
	Functional Requirements
	Non-Functional Requirements

	System Model
	Sensor Module
	Building Gateway
	Presentation Module

	Requirements List
	Functional Requirements
	Non-Functional Requirements
	Usability Requirements
	Reliability Requirements
	Performance Requirements
	Supportability Requirements
	Design Requirements
	Implementation Requirements
	Interface Requirements

	Model-View-Controller Overview
	Simulation Scenarios
	Cloud Taxonomy
	Top Level Concepts
	Property
	FunctionalProperty
	Interface
	NonFunctionalProperty
	SupportProperties

	Application Example
	Bibliography
	List of Tables
	List of Figures
	List of Acronyms
	List of Code Listings
	List of Algorithms

