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Abstract 

 

Due to the ubiquity of mobile devices nowadays, the diffusion of route planning mechanisms 
such as Global Positioning System (GPS) and the public’s demand for information, a way to 
optimize traffic flow is needed. In order to study this issue, we will look at a city as a complex 
system and to each driver as an individual agent. The main objective of this dissertation is to 
influence the behavior of each driver by using an Ant Colony algorithm, in order to achieve 
maximum throughput in the road network and to minimize road congestion. We use the 
inherent selfishness of drivers to actually make everyone contribute to the greater good by 
constantly spreading updated network information which will distribute drivers more uniformly 
throughout the network. In this study we analyze different algorithms (such as an inverted Ant 
Colony Optimization) to try to achieve the proposed goal. Also, in order to achieve a more 
realistic driving behavior we introduce a set of features that are able to reproduce several aspects 
of a driver personality. The results, obtained on artificial and also real road networks, provided 
by a road traffic simulator (SUMO), show that it is indeed possible to improve a network's 
efficiency. 
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Chapter 1 
Introduction 

In the last few years we have observed a substantial expansion of the mobile devices market. 
Alongside with this growth, the diffusion of route planning mechanisms such as Global 
Positioning System (GPS) was a natural development. The increasing demand from the public 
for faster access to more detailed information will eventually lead to these mechanisms becoming 
ubiquitous and as necessary as the steering wheel itself. In terms of traffic, the selfishness that is 
inherent to driving is a known fact: people always want to get as fast as possible to their 
destination. This, allied with the growing importance of traffic jams due to the increase of CO2 
emissions makes this an issue that needs to be dealt with. 

The main objective of this dissertation is to study how influencing the behavior of each driver 
would allow us to improve a network’s efficiency - achieving maximum throughput in the road 
network and minimizing road congestion. Therefore, in order to study this issue and to perform 
simulations, we will look at the city as a complex system and to each driver as an individual 
agent. 

By combining GPS systems with real time traffic information we have a means to distribute 
information about traffic amongst virtually all drivers. But how to avoid the previously referred 
selfishness and make everyone contribute to the greater good? The idea is to constantly spread 
updated network information to the drivers and to actually use their selfishness in order to 
distribute them more uniformly throughout the network. In this paper we will analyze different 
algorithms to try to achieve the proposed goal with special emphasis on the developed Ant 
Colony algorithm - Inverted Ant Colony. The results, provided by a road traffic simulator that 
reproduces the individual behavior of the agents, shows that a network's efficiency can be greatly 
improved by the use of this algorithm. 

Another interesting aspect is the individual modeling of drivers. Current microscopic traffic 
simulators allows for an agent-based simulation, enabling us to control/influence their behavior. 
These tools already include important driving behaviors such as car following, overtaking and 
lane changing.  However there is still room for improvement, especially regarding personality. 
Personality traits and emotions influence the way drivers behave and can consequently have an 
impact in the entire system in which the driver is involved. In order to achieve a more realistic 
portrayal of real life traffic we propose studying a set of personality features (such as distraction, 
stubbornness, irregularity and aggressiveness) that enable us to reproduce several aspects of a 
driver’s personality by evaluating the impact that these personal features have on city transit. 

In the previous year, a basis for this system was developed: a structure was built to communicate 
with the simulator and a few route planning algorithms were created. However it had efficiency 
limitations and was poorly tested.  

In terms of structure, this dissertation is organized as follows: Chapter 2 consists of the State of 
the Art - a review of the literature that contributed to the developed work, in fields such as 
Traffic management systems, Ant colony optimization, Drivers' Personality and Traffic 
simulation. In Chapter 3 we will discuss Cosmo Platform Development process, which 
comprises the exploration of the SUMO simulator, understanding current platform, different 
testing phases, the implementation of Ant Colony Optimization algorithm and also the 
development of real life maps and traffic demand. Chapter 4 describes the experimental setup 
and shows the results, which will be analyzed in Chapter 5. Finally, Chapter 6 will give a final 
overview of the project and the developed work.  
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1.1 Planning 

This chapter shows the planning referring to the past semester and the expected plan for the 
following semester. In Appendix A, there are Gantt charts referent to each semester’s planning. 

 

First Semester 

The plan for the first semester was the following: 

Task Duration 

State of the art 1 month 

Understanding and experimenting with SUMO 1 month 

Understanding and experimenting with simulation platform 1 month 

Implementation of first collaborative routing algorithm 1 month 

Experimentation 0.5 months 

Improvement of first algorithm 0.5 months 

Intermediate report 1 month 

 

Second Semester 

The plan for the second semester is the following: 

Task Duration 

Pheromone variation history mechanism 1 month 

Experimentation 0.5 months 

Measuring CO2 emissions 0.25 months 

Improve route generation  1 month 

Differentiated information for users 1 month 

Personality parameters 1 month 

Experimentation in real city map 1 month 

Final report 1 month 

 

The "Differentiated information for users" task appears struck through because it was not executed. It 
was initially more of an idea than an actual task and was not thoroughly discussed with the 
advisors for that reason. Given the various issues that surfaced while using the simulator with a 
real city map (which will be further explained in Chapter 3) there was not enough time to explore 
this idea, which was considered secondary, and therefore we decided not to carry out this task. 
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Chapter 2 
State of  the Art 

Given that our goal is to study how influencing the behavior of each driver would allow us to 
improve a network’s efficiency we needed firstly to understand which traffic management 
systems already existed. Then, an understanding of the original Ant Colony algorithm and the 
subsequent Ant Colony algorithms resulting from various modifications was required in order to 
develop an interesting and innovative Ant Colony algorithm. Also, since we intended to study the 
individual modeling of drivers, we needed to understand the most relevant features regarding 
driver personality. Finally, in order to put our plans into practice, it was necessary to evaluate 
current traffic simulation tools and to choose the most suitable option. 

 

2.1 Traffic management systems 

A car navigation system that provides all users with the same traffic information simultaneously 
will lead to an increase of the congestion in specific routes. Yamashita [1] developed a traffic 
flow model to predict future traffic load and in order to do so they divided roads into blocks, in 
order to measure car density in each of them. To search for the optimal path, drivers can use one 
of the following route choice mechanisms:  

- Shortest distance (does not take congestion levels into consideration) 

- Shortest time (based on current levels of congestion) 

- Route information sharing (RIS): each time a driver reaches an intersection, his current position, 
destination and route to destination is transmitted to the route information server. The server 
then estimates future traffic congestion and sends the information regarding those estimations 
back to the drivers. Each vehicle analyzes that information and re-plans its route accordingly. 
This cycle is continuously repeated. 

Their results show that the RIS has a greater performance than the Shortest distance or Shortest 
time algorithms and that it’s efficiency increases with the percentage of drivers that use that 
system. 

- In this paper they claim to have achieved a good performance but they rely on personal 
information from the drivers. This will not be taken into account in the Cosmo system 
given the fact that having access to this information might raise privacy issues, which 
some users of the system might not be comfortable with. Also, due to their system being 
based on cycles, there is a possibility for repetitive cycles in which each driver’s change of 
plans affects other drivers’ plans, which in turn affect the first one, and the cycle could go 
on indefinitely. 

 

Adler [2] developed the CTMRGS (Cooperative Traffic Management and Route Guidance 
System), a cooperative, distributed multi-agent system that uses principled negotiation to 
improve dynamic routing and traffic management. Their goal was to achieve an “efficient 
reallocation of network capacity over time and space without seriously violating any individual 
user’s preferences”.  

To measure driver’s satisfaction they used a linear normalized weighted utility maximization 
model and they assumed that every vehicle has the ability and the equipment to learn, define and 
calibrate their route plans.  
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There are three different types of agents with independent goals and decision-making strategies 
in their system: the Agents-IRANS (who represent drivers that have a set of weights across the 
goals and a set of anchor points to define the normalization curve), the Agents-ISP (information 
service providers), the Agents-TMC (system operators). Given that this process is based on 
negotiations, there is a need to identify the boundaries of the negotiation space of each Agent-
IRANS and for that purpose there were created two threshold parameters: path utility 
indifference threshold (paths with the same utility are equally preferable) and weight change 
tolerance threshold (boundaries over which the agent will allow his set of weights to be 
adjusted). These parameters will model their resistance to change paths during negotiations. 

The Agent-TMC keeps track of the network status and with the data it collects it has the ability to 
predict the length of queues and departure rates. If the simulator supports traffic signals, it can 
choose to use a fixed-time phase control strategy or a dynamic phase control strategy. The Agent-
ISP collects network information from the Agent-TMC and acts as a mediator for negotiations 
with Agent-IRANS, with the objective of maximizing the throughput of the network. 

The negotiation process is as follows: 

1) Pre-trip analysis and proposal by Agent-IRANS – the Agent-IRANS contacts Agent-ISP to 
schedule a route assignment and submits his set of preferred routes; 

2) Agent-ISP analysis - Agent-ISP assesses the received data and determines whether to accept 
the route proposal or to make a counter-offer. 

3) Agent-ISP counter-proposal - If the Agent-ISP rejects the initial route offer, it generates an 
alternative route choice; 

4) Agent-IRANS’ evaluation of the counter-proposal - If an agreement cannot be reached 
(choices do not satisfy its option space) the Agent-IRANS will leave route choice at the 
discretion of the driver. 

They came to the conclusion that the CTMRGS negotiation process allocates drivers more 
evenly over the network (improving performance) without compromising drivers’ satisfaction.  

- In this work, they developed an interesting negotiation system that enhanced the 
efficiency of the network. On the other hand, they admit that the utilized model may be 
too simplistic and that further testing should be executed. 

 

Paruchuri [3] intended to show the viability of applying multi-agent simulation for unorganized 
traffic, by modeling the behavior of drivers to mimic human behavior. Each driver is given a set 
of characteristics, like free will speed or free will braking power, which will model their behavior 
as being cautious, normal, and aggressive. 

Their model consists of a centralized agent and a blackboard concept. The roads can be thought 
of as a blackboard where each agent continuously updates it. Every sector and junction is 
modeled as an agent who senses the vehicles passing through. Each driver has a set of macro 
(final destination) and micro goals (decision at each point of time) but the best micro goals might 
not lead to the macro goal’s optimal plan. 

An interesting feature of their work is the existence of overtaking, which is influenced by 
confidence and rush factors. The confidence factor is a function that takes into account the 
current speed of the vehicle, the free will speed and the expected speeds of the other vehicles 
involved in the overtake. The rush factor represents the urgency to achieve a goal. 

There is also the occurrence of the flow phenomena, in which a flow of vehicles follows the 
direction of the dominating vehicle until another dominating vehicle, whose goal is interrupted 
because of this flow of vehicles, interrupts it and establishes a flow in its own direction. 
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They managed to achieve a realistic behavior resulting from agent interactions. Another result 
achieved was the fact that, as aggressiveness increases beyond certain percentage, the number of 
overtakes in general decreases. They believe the reason for this fact is that as drivers become 
more aggressive, not only does their tendency to overtake increase, but also the tendency to 
allow other vehicles to perform an overtake decreases. 

- Here they developed a system that gives drivers a personality, having different 
characteristics among them, and also implemented an overtaking system. This allowed 
them to achieve a more realistic interaction between agents. However, the computational 
costs involved in this simulation are not very clear in their paper. 

 

Oh [4] proposed a dynamic route search algorithm that is based on genetic algorithms and that is 
able to dynamically find alternative routes in unexpected events of system malfunctioning or 
traffic slow-downs due to accidents.  

In their system, every vehicle communicates traffic data with neighboring navigation terminals in 
order to update its traffic database. After receiving updated information, it is constantly 
interested in finding better partial routes and to do so it re-evaluates its route by applying the 
Genetic Algorithm (GA). 

In the implemented algorithm, named Alternative Route Search (ARS), chromosomes have variable 
length and each gene represents a specific point in the map. Their crossover operator exchanges 
partial chromosomes by choosing two crossover points. The mutation operator changes random 
sub-paths within the current path. This may result in invalid chromosomes, so they developed a 
repair function to fix these faulty chromosomes. 

Each vehicle has two weight lists: one consisting of original weights (based on the observed 
average travel time) and one with newly observed weights, the updated list. By constantly 
checking if there are new messages concerning the commuting time of the links, it constructs its 
updated list ordered by timestamps and trimmed to N most recent elements due to memory 
capacity issues. Each vehicle collects data on commuting time and transmits it to others every 
time it passes them by. Rerouting is only performed at specific time intervals to avoid the 
deterioration of the service quality. 

To experiment their algorithm they built virtual roads and three-way and four-way intersections. 
In addition, they used traffic control signals with proper settings. They also defined a degree of 
saturation (the number of vehicles divided by the maximum number of vehicles on a link) that 
will cause the reduction of the overall traffic speed with the increase in vehicle density. They 
compared the results of their system to those of simply applying the algorithm Dijkstra to find 
the shortest route and to a pseudo Transport Protocol Experts Group (TPEG) algorithm where the 
data on entire roads is updated every five minutes. They also took into consideration two factors: 
adaptability (by creating accidents) and the survivability (by disabling vehicles and by observing 
how each system affects the others) of each algorithm. 

The results show that despite not being very efficient at the beginning of the simulation (since 
there is little information propagated among systems) the ARS obtained a better performance 
than other algorithms as the simulation continues in terms of route finding capability and also in 
terms of adaptability and survivability.  

- In this paper, they developed an ingenious decentralized way to communicate 
information among drivers combined with genetic algorithms and achieved good results. 
However the authors assume access to data regarding average commute time for every 
link on the map and that all the data is pre-computed before the beginning of the 
simulation. 
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Sadek [5] created a discrete time, nonlinear, non-convex, dynamic assignment model that does 
not explicitly impose capacity constraints on the arcs' flow. 

Using nonlinear regression analysis, they define a relationship between the flow (in vehicles per 
hour per lane) and the density (in vehicles per mile per lane). They also define the objective 
function and its constraints: state equations, conservation equations, initial conditions, upper 
bounds, and non-negativity. 

In terms of the Genetic Algorithm (GA), they state that “real-world problems cannot be handled 
with binary representations and binary operators” and so they make use of appropriate data 
structures (such as floating point representations) and specific genetic operators. Regarding 
constraint handling, they followed a hybrid approach combining features from the following 
three approaches:  

- creation of a feasible population by using appropriate data structures and specially designed 
genetic operators; 

- use of a penalty function approach (fitness function results are decreased if a violation of 
constraints occurs); 

- use of repair algorithms that restores the legality of an individual. 

The developed GA uses a real-value vector representation for each chromosome. A potential 
solution would be: u = (u1, u2, u3, u4, ..., u45), corresponding to the control variables, (d0,1, d0,3, d0,4, 
d1,1, d1,3, ..., d14,4). To initialize the population they determine the upper and lower bounds for 
each control variable (calculated by means of a combination of the values assigned to the control 
variables in previous time intervals) and then attribute a random number within these bounds to 
that variable. The constraints that are part of the control vector are treated as a feasible 
population, while the other constraints were handled using a penalty function approach. As a 
selection method they used the roulette wheel process. The mutation operator makes sure that 
the values of solution vector are always within a dynamic range. The crossover operator is a 
linear combination of two vectors that also checks the validity of that chromosome and repairs it 
in case it is illegal.  

Their results show that their GA algorithm allows the relaxation of many of the assumptions that 
were needed to solve the problem analytically, that it achieves good solution quality in a 
reasonable amount of execution time even in large problems and that in comparison to 
Microsoft Excel Solver, an NLP tool, their program was much faster and achieved comparable 
results. However, it is necessary to run a set of experiments beforehand in order to obtain 
appropriate values for the control parameters. It also showed that no significant improvement 
was achieved beyond 300 generations.  

- This paper describes an interesting use of genetic algorithms in dynamic traffic 
assignment, achieving good results in a reasonable amount of time. However their 
solution has a minor limitation, which was the simplicity of the network, given that all 
links were assumed to consist of two lanes per direction. 

 

The works described in this sub-chapter allow a deeper understanding of traffic route searching 
and planning and show various perspectives that might be taken into consideration on how to 
tackle this issue. 
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2.2 Ant colony optimization 

Dorigo [6] proposed a definition for the Ant Colony Optimization (ACO) meta-heuristic. ACO 
algorithms consists of using a population of ants to collectively solve an optimization problem 
and can be used to discover minimum cost paths through a certain graph, while respecting 
specific constraints. 

Let G = (C, L) be the graph related to a certain optimization problem. C represents the set of 
components that exist in the graph and L is the set of connections between these components. 
The solutions to that optimization problem can be defined as feasible paths on the graph G. 
While searching for the shortest path, ants deposit pheromone in the traversed route. This leaves 
pheromone trails that encode a long-term memory regarding the search process. The arcs of the 
graph might also have a heuristic value that results from a priori information or from run-time 
feedback. 

They define the properties that the ants of the colony should have such as a memory (to evaluate 
the current solution or to retrace the path backward), termination conditions and being able to 
move in its feasible neighborhood. The ants’ probabilistic decision rule depends on its memory, 
the problem’s constraints and also the ant-routing table (a local data structure with pheromone 
trails and heuristic values). There are two types of pheromone updates: online step-by-step 
update (updated by the ant when it moves through an arc) and online delayed update (updating 
the pheromone trails after finding a solution and retracing the path backwards). 

Additionally there are two other processes of updating pheromone trails: daemon actions and 
pheromone evaporation. Daemon actions are optional and might be used to perform actions that 
individual ants cannot do. Pheromone evaporation consists of decreasing the intensity of the 
pheromone trails over time in order to avoid convergence to sub-optimal areas and to explore 
new areas of the graph. 

In this paper they applied this ACO meta-heuristic to two specific problems: the traveling salesman 
problem (TSP) and adaptive routing in communications networks. In order to solve the TSP 
problem they applied an Ant System (AS), which consists of a number M of ants positioned in 
parallel on m cities. When all ants have completed a tour (this happens synchronously because 
during each iteration each ant adds a new city to the path that is being constructed) they re-trace 
the tour backwards and increase the intensity of the pheromone trail using their memory, which 
is also used to avoid visiting the same city twice. In AS, pheromone evaporation occurs when all 
the ants have completed their tours and no daemon actions are performed. The amount of 
pheromone deposited is proportional to the quality of the produced solutions. The probability of 
choosing a certain connection depends on the heuristic value of that connection. Finally there 
are two parameters α and β that are used in the ant-routing table and that determine the 
importance given to distance and pheromone values. If α = 0, the closest cities are more likely to 
be selected and if on the contrary, β = 0, paths with higher pheromone values will be chosen, 
which may lead to the rapid emergence of a stagnation. 

The problem of routing in communications networks is building and using routing tables to 
direct data traffic and maximize network performance. The ant-routing tables are bi-dimensional 
given that the node to which a data packet entering a generic node should be forwarded depends 
on the packet destination node. They developed the AntNet algorithm to solve this problem. In 
this algorithm the heuristic value of an arc is a function of the length of the queue of the link 
connecting two neighboring nodes. The other aspects are similar to those of the previous 
algorithm. 

There are no results in this paper given that it consists of a formal description of the Ant Colony 
Optimization meta-heuristic and the class of problems to which it can be applied. In the next sub-
chapters we will review some of the practical applications that this algorithm has had. 
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Vehicle Routing Problem  

There have been several works and different approaches addressing the Vehicle Routing Problem 
(VRP). It can be defined as the problem of minimizing time and costs of the distribution of 
goods performed by a fleet of vehicles, from a depot to a set of customers. 

Yu [7] proposed a strategy to update pheromone levels, called ant-weight strategy. In the ant-weight 
strategy, the quantity of the global pheromone increment of each route is related to the total 
length of the solution. On the other hand, local pheromone increment in each link is based on 
the contribution of that link to the solution. They also make use of mutation operator that 
performs random customer exchanges. 

Bell [8] suggested two modifications to the ACO in order to allow the search of the multiple 
routes of the VRP: use of local exchange and of a candidate list. The local exchange procedure 
uses the 2-opt heuristic (in which all possible pairwise exchanges of visited locations are tested) 
in order to improve individual routes. The other improvement strategy is the use of a candidate 
list for selecting the next location in a vehicle route. Each location is allocated to a candidate list 
based on the distance to all the other elements in the location set. In terms of pheromones, they 
simulate natural evaporation through reducing the amount of pheromone on all visited arcs 
(local updating). Global updating consists on adding pheromone to all of the arcs included in the 
best route solution. Negulescu [9] present a somewhat similar idea by introducing an Elitist Ant 
System (EAS) in which each ant that finds a better solution has the chance to deposit more 
pheromone. 

Donati [10] addressed the Time Dependent Vehicle Routing Problem by suggesting new time 
dependent local search procedures (such as Customer Relocation, Customer Exchange or 
Branch Exchange) and the use of two Ant colony systems (ACS): ACS-TIME – a colony that 
has the objective of minimizing the total length of the solution; ACS-VEI – a colony that 
attempts to find a feasible solution with a lower number of tours than the best solution found so 
far. They also claim that, in order to attain a faster construction of the solution, it is useful to 
introduce a set of neighbors for each customer given that in an optimized solution there will 
never be trips between distant locations. 

Gambardella [11] made use of two ant colonies: one colony minimizes the number of vehicles 
and the other minimizes the traveled distances. The cooperation between colonies is executed by 
the exchange of information through pheromone updating. This approach makes the vehicle 
routing problem closer to the traditional traveling salesman problem. 

Zabala [12] proposed the use of the Ant Colony System with a Local Search algorithm to solve the 
Vehicle Routing Problem with Capacity and Time Windows, in order to minimize the cost (traveled 
distance) of the delivery routes. In the beginning, ants are placed in the central depot and start 
moving to unvisited nodes by applying exploitation and exploration, without violating the 
capacity restriction and time windows. Global and local pheromone updates are performed along 
the tours. Choosing the next state is determined by a function that depends on pheromone 
levels, distance and also two random variables that determine the relative importance of 
pheromone vs. the distance and exploitation vs. exploration. To improve the solutions, a local 
search procedure is implemented using the CROSS-exchange operator (that interchanges 
consecutive customer segments between two different routes) after all the solutions were 
generated. The solutions that are within a percentage above the best solution found, form part of 
the Local Search process. They also used the Variance Analysis (ANOVA) statistical test (which 
is used to study the relationship between a dependent variable and independent variables) in 
order to reach more reliable conclusions. In terms of parameters, they came to the conclusion 
that the best results are obtained when the pheromone level and the distance between nodes 
have the same level of importance, there is a medium global pheromone evaporation level and 
there is low local evaporation during the construction of the routes. Also, when finalizing the 
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construction of the routes, a higher evaporation level should be applied in order to avoid being 
trapped in local optimums.  

These works are focused on a problem somewhat different from the one which we tackle in this 
paper but their solutions use interesting modifications to the ACO algorithm and allowed for a 
better understanding of the Ant Colony mechanisms and how important the tuning of 
parameters is in order to achieve a greater performance. 

Traffic Signal Timings  

The ACO algorithm has also been used to optimize traffic signal timings. Bullnheimer [13] 
makes use of ACO to manage signal setting parameters like number of phases, cycle length or 
effective green times. The results achieved by He [14] show that ACA is a simple and feasible 
method for signal timing optimization problems. 

Once again, these papers focus on a different problem from the one that we will tackle but still it 
demonstrates the wide range of usefulness of the ACO algorithm. 

Traffic Prediction  

Claes [15] used a combination of the ACO algorithm with link travel time predictions (based on 
current traffic situations, historic data and real-time information provided by vehicles) to find 
routes that reduce travel times. Also they present a new parameter, heuristic importance, that 
balances heuristic and pheromone values. The introduced algorithm does not require global 
pheromone updates and assumes that pheromones from different vehicles do not interact. 
Instead, they only use local updates performed by exploration or primer ants. To create solutions 
each primer ant is sent out over each route before exploration ants and will locally increase the 
pheromone level of all edges. This pheromone increase will guide the exploration ants to the 
statistically optimal solution. 

Ando [16] proposed a traffic prediction method that employs a pheromone mechanism and in 
which each car is regarded as a social insect that deposits multi-semantics of pheromone on the 
basis of sensed traffic information. They use the idea of alarm pheromone: a leading bee informs 
the subsequent bees of any danger using alarm pheromone so that other bees can avoid it. They 
suggest the combination of three different pheromone flavors: a Basic Traffic Pheromone in which 
speed represents congestion rate; a Braking Pheromone in which the deposited amount depends on 
the number of times its brakes are applied; a Distance Pheromone that unlike the previous two this 
acts as a pheromone of attraction and that informs following vehicles about the possibility of a 
decrease in congestion. This pheromone flavor however assumes that vehicles are “equipped 
with a millimeter-wave radar”. As transition functions they make use of a common evaporation 
mechanism (pheromone levels decreases over time) and implemented a new mechanism to 
represent pheromone propagation that represents the characteristic of pheromone trails 
spreading throughout the surrounding environment. The results of their experiments (which 
used real traffic data) confirm the applicability of their method to short-term traffic prediction. 
However, their implementations use an Intelligent Transportation Systems (ITS) infrastructure 
called the probe-car system that only exists in Japan. 

Our aim is to create a cooperative system that could be used in real-time. Claes [15] assumed 
access to historic data in order to make travel time predictions. Also, their proposed use of 
primer and exploration ants means that for each route, the path will be traversed twice. Finally, 
their system is not cooperative given that pheromones from different vehicles don’t interact and 
consequently the other vehicles in the network do not benefit from the information brought 
back by that particular ant. Ando [16] propose a cooperative system that makes short-term 
predictions of traffic. There are some similarities between their concept and ours but we do not 
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intend to actually predict traffic. Traffic prediction is a very complex process given the instability 
of traffic: even a short-term prediction can be rendered useless if, per example, an accident 
occurs. So we decided that our focus was mainly dealing with real time information. 

Other approaches 

Another known problem is the Railroad Blocking Problem (RBP), which is addressed by Yue [17], 
which consists in minimizing “the total operating costs of delivering the traffic on the railway 
network while satisfying the resource and capacity constraints at the stations and the priority 
constraints for shipments”. In this paper they apply the ACO algorithm in a similar fashion to 
how they would solve the TSP problem. 

Another application is to create routing algorithms for mobile ad-hoc networks (MANET) which 
are a collection of mobile nodes that communicate over radio. Gunes [18] propose a new ACO 
algorithm called Ant colony based Routing Algorithm (ARA) that consists of three phases: the route 
discovery phase (use of a forward ant and a backward ant to create new routes), the route maintenance 
phase (responsible for route improvement during communication) and the route failure handling 
phase (routing failures are very common in mobile ad-hoc networks). 

Another cooperative ACO approached is explored by Claes [19]. The ACO procedure allows the 
knowledge of previous found solutions to be embedded into the graph. Other ants then use this 
knowledge to guide them. This indirect means of communication and coordination is called 
stigmergy and is explored in that paper. The most desirable routes are those that lead to locations 
that are near their destination. To achieve this, locations are grouped based on the region they 
are in. However, maintaining the additional data needed for the region specific information 
presents an overhead compared to the original algorithm.  

Garro [20] proposed evolving some parameters of the ACO algorithm through a genetic 
algorithm (ACO-GA). They introduce a new transition rule that overcomes the limitation of 
knowing the distance between two cities that is based on the fact that real ants choose a path 
solely based in the levels of pheromone. So, they use a GAS to evolve the parameters α, β and γ 
from the transition rule. In terms of the genetic algorithm they make use of a fitness function 
and a crossover operator. The fitness function is based on two kinds of ants (workers and 
explorers). A worker ant reaches its destination and is carrying food. The best ant worker is that 
one that has more food. An explorer ant does not possess food and is searching for its 
destination. The crossover operator randomly combines the α, β and γ parameters of the best 
workers to generate new offspring. 

Robinson [21] explored Pharaoh’s ant colony that comprises two types of trail pheromones: 
attractive and repellent. Experiments have previously shown that Pharaoh’s ants use both types of 
pheromone. Their results show that with low traffic flow, pheromone decay overwhelms 
pheromone deposition indicating that small colonies of Pharaoh’s ants cannot establish 
organized foraging trails. On the other hand, their model also predicts that above a certain 
threshold, increasing the ant flow will not increase foraging success. 

These papers offer some interesting concepts such as worker and explorer ants, forward and 
backward ants and the use of attractive and repellent pheromones. 
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2.3 Drivers' Personality 

As previously stated, current state-of-art simulation frameworks either do not model the driver's 
particular behavior or have a somewhat simplistic approach regarding its modeling. The 
following papers study some of the most relevant features needed in order to reproduce a more 
realistic driver personality.  

The work of Vaa [24] is focused on the lack of understanding of human cognition in the current 
state of the art and the need for a deeper understanding of risk compensation. Older theories 
affirm that drivers have a “target level of risk”. However, the author of this paper believes that 
this concept does not grasp the varied dynamics of thinking and feeling and should not be 
regarded as a number, but as a feeling. So it should be replaced with “target feeling” concept. In 
conclusion they state that by combining risk monitoring and target feeling «the development of driver 
behaviour models can be put back “on the right track”». 

Simulating driver behavior 

Ehlert [25] proposed a model based on reactive driving agents that can control a simulated 
vehicle and perform tactical-level driving. They utilized the SHIVA (Simulated Highways for 
Intelligent Vehicle Algorithms) simulator that models highway traffic. The developed agents combine 
traditional and reactive methods to execute their tasks but the emphasis is on the latter given that 
the response time is important. For every agent, sensor information is stored in the memory and 
models a temporary representation of the world. Each agent follows behavior rules that range 
from road following to respecting traffic lights and to performing a car-following behavior. All 
the behavior rules are influenced by the subsequent behavior parameters: speed, gap acceptance 
and rate of acceleration or deceleration. They experimented with a careful driver (with a low 
preferred speed, reasonably large gap acceptance, and a low preferred rate of deceleration) and a 
young aggressive driver in order to show that their driving agents exhibits human-like driving 
behavior and are capable of modeling different driving styles. 

Demir [26] suggested a model to create a realistic urban traffic environment with hazardous 
situations in order to allow novice drivers to practice in a realistic environment. The tool they 
used was the TRAFIKENT driving simulator, which is used for driver training. They 
implemented different driving styles to create categories of urban drivers (e.g. private car, taxi, 
bus driver; slow, normal or fast driver) and for each of those drivers they implemented a 
behavior model that consists of two abstraction layers: Decision Making Layer (tactical level tasks 
such as determining right of way or lane changing) and Decision Implementation (operational level 
tasks such as car following or speed adaptation). They have also implemented a mechanism to 
simulate driver errors and violations such as following too closely (tailgating) or mistakes in 
yielding right of way. They present results that validate their behavioral model being able to 
emulate various driving styles for different categories of drivers. 

Aggressiveness 

Tasca [27] performed a review of existing literature on aggressive driving and suggests that «a 
more precise definition of aggressive driving would focus on deliberate and willful driving behaviors that while not 
intended to physically harm another road user shows disregard for their safety and well-being.» and that such 
behaviors «are motivated by impatience, annoyance, hostility and/or an attempt to save time». They state that 
in attitudes and behaviors the gender effects are negligible but there are substantial age-related 
differences. The conclusions they present are that the following factors appear to influence the 
likelihood of aggressive driving behavior: being young, male, in a traffic situation that confers 
anonymity, generally disposed to sensation-seeking, in an angry mood (likely due to events 
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unrelated to traffic situation), having the belief that one possesses superior driving skills and 
finally, unexpected traffic congestions.  

Laagland [28] describes how aggressive driver behavior can be modeled. They acknowledge that 
in current driver behavior models there is an important factor missing: emotion. The most 
influential emotion is aggression which can be defined with this formal description: «A driving 
behaviour is aggressive if it is deliberate, likely to increase the risk of collision and is motivated by impatience, 
annoyance, hostility and/or an attempt to save time». They present a series of aggressive behaviors 
(cutting, tailgating, etc) and categories that contribute to aggressive driving: situational and/or 
environmental conditions, personality or dispositional factors and demographic variables. Also, 
according to a study they state that driving in rush-hour traffic did not correlate with driver 
aggression and that aggressive driving only occurred if the congestion was unexpected. They 
propose that the aggressiveness of vehicles can be represented by attributing weights for 
personality parameters (stressful drivers, high and low aggression drivers etc), and by varying the 
age factors and the anonymity levels. 

Compliance with traffic guidance 

Dia [29] intended to study the individual driver behavior under the influence of real-time traffic 
information. In order to do that they used the data from a behavioral survey of drivers, 
conducted on a congested commuting corridor, to define for each individual driver a set of 
preferences, perceptions, goals and personal characteristics. Using a Belief Desire Intention (BDI) 
agent framework and microscopic traffic simulation model (Quadstone), they developed cognitive 
agents that possess a mental state composed by the following mental elements: beliefs 
(representation of current state of the agent’s internal and external world), capabilities (executing 
actions), commitments (agreement to attempt a particular action at a particular time if the necessary 
pre-conditions are verified) and behavioral rules (which match the set of possible responses against 
the current environment). In this model, each driver is assigned aggressiveness, awareness, 
gender, age and familiarity with network. 

Gao [30] explored the driver's route choice behavior under guidance information with a 
combination of decision field theory (DFT) and Bayesian theory and developed a model that 
describes a driver’s propensity to comply with received guidance information. They state that in 
human's decision-making process there is a threshold parameter that regulates the trade-off 
between the decision-making speed and quality (cautious drivers tend to use higher thresholds 
and impetuous drivers use lower values - leading to shorter deliberation times that result in 
insufficient data processing). They also state that route criteria can attribute more importance to 
total distance or total time required to complete that route. In conclusion, they suggest that the 
following factors critically affect drivers’ response to guidance information: the confidence level 
of guidance information, travel experience, inherent route preference, decision-making 
speed/quality and route choice criteria. 

 

2.4 Traffic simulation 

Simulators are part of the category of analytical tools that are used to analyze various types of 
data, such as traffic flows, financial transactions or pathogens spreading disease through a 
population. They make it possible to assess the effects of various changes to the environment 
without altering the real world making a cheap and safe way to predict the effectiveness of the 
proposed modifications.  

The sort of simulation in which we are interested in this project is the traffic microscopic 
simulation that represents the process of creating a model of a certain network, observing and 
executing interactions between the agents of the system, which as previously referred, are an 
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autonomous entity with individual characteristics, goals and decision making mechanisms that 
can greatly vary within a population. 

Chen and Cheng [22] analyzed a wide range of agent-based traffic simulations systems and 
divided them into five different categories:  

-  agent-based traffic control and management system architecture and platforms;  

-  agent-based systems for roadway transportation;  

-  agent-based systems for air-traffic control and management;  

-  agent-based systems for railway transportation;  

-  multi-agent traffic modeling and simulation. 

Given the characteristics of this project, the adequate category is the multi-agent traffic modeling 
and simulation. In this paper they refer two open source agent-based traffic simulators: 

-  Multi-Agent Transport Simulation Toolkit (MATSIM), a toolbox for the implementation of large-
scale agent-based transport simulations and is composed of several individual modules that can 
be combined or used stand-alone. It allows for demand-modeling, traffic flow simulation and to 
iteratively run simulations.  

- Simulation of Urban Mobility (SUMO), a portable microscopic road traffic-simulation package 
that offers the possibility to simulate how a given traffic demand moves through large road 
networks.  

MATSIM   

During the previous year, this tool was analyzed and it was concluded that it did not fulfill the 
needs of Cosmo given that both its daily plan based simulation and its iterative demand 
optimization process added unnecessary complexity. In this project we need a simulator that 
allows us to improve individual trips, where agents can make decisions in real time and not 
through a process of trial and error. 

SUMO     

Simulation of Urban MObility (SUMO) is an open source, portable, microscopic road traffic 
simulator conceived to deal with large road networks and it was developed by employees of the 
Institute of Transportation Systems at the German Aerospace Center. 

It was studied in detail by Krajzewicz [23] who describe it as multi-modal, meaning that there can 
be various types of transportation vehicles besides passenger cars. It is space continuous and 
time discrete in which every time step has the duration of one second. Also, in each step the 
vehicle’s speed is adapted to the speed of the leading vehicle in a way that yields to a collision-
free system. It also offers support for traffic lights implementation. 

 
 

In conclusion, this review shows that traffic simulation is an area that has been studied 
thoroughly and that can be approached by multiple perspectives. The presented works illustrate 
different approaches on how to tackle the traffic route searching and planning subject. Also, the 
ACO sub-chapter offers some interesting variations of this algorithm. We believe that by 
combining some of the different aspects of these works we can create a distributed algorithm 
that pro-actively tries to disperse traffic in real-time city, while avoiding privacy concerns. 
Regarding driver personality, there is still much room for improvement concerning the modeling 
of drivers' particular behavior.   
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Chapter 3 
Cosmo Platform Development 

Having completed an initial literature survey it was time to initiate the development process. In 
this section we will describe the different stages of the development process of the Cosmo 
platform. 

 

3.1 Exploration of SUMO 

The first step of the process was to understand the traffic simulator SUMO (on which the 
COSMO platform was built on) and its structure. There are three main modules in the SUMO 
package: 

- SUMO, which reads the input information, processes the simulation, gathers results and 
produces output files. It also has an optional graphical interface called SUMO-GUI; 

- NETCONVERT, a tool to simplify the creation of SUMO networks that can be made, using 
this module, from a list of edges. It reads the input data, computes the input for SUMO and 
writes the results into various output formats, such as XML, CSV or VISUM-networks. It is 
also responsible for creating traffic light phases; 

- DUAROUTER, a command line application that, given the departure time, origin and 
destination, computes the routes through the network itself using the Dijkstra routing 
algorithm. 

As input data, SUMO needs three main files: “rou.xml”, “nod.xml” and “edg.xml”. The file 
“rou.xml” represents the traffic demand and includes information about all the agents involved 
in this simulation and their characteristics (departing time, maximum acceleration, maximum 
deceleration, driving skill, vehicle length and color) and route (list of edges). 

In terms of outputs, there are different types available such as: 

- a raw output that contains all the edges and all the lanes along with the vehicles driving on 
them for every time step, which results in a considerable large amount of data; 

- log-files created by simulated detectors (a simulation of induct loops with the ability to 
compute the flow, average velocity on the lane, among other  values) are written using  the CSV 
format. This data can be aggregated for specified time intervals which may be configured by the 
user. 

This tool also possesses a Traffic Control Interface (TraCI) that uses a TCP based client/server 
architecture to provide access to SUMO, which acts as a server that is started with additional 
command-line options. After connecting to a specific TCP port it is possible to send messages 
that may contain instructions to influence the behavior of the system or may receive information 
about the ongoing simulation. 

Finally, this simulator offers a way to measure pollutant emission based on the Handbook of 
Emission Factors for Road Transport (HBEFA) database. According to HBEFA's website[31], it was 
"originally developed on behalf of the Environmental Protection Agencies of Germany, Switzerland and Austria" 
and is now also supported by Sweden, Norway, France and the JRC (European Research Center of 
the European Commission). It provides emission factors per traffic activity, i.e., it offers a way of 
measuring CO2 emissions and fuel consumption, among other pollutant factors, for various 
vehicle categories (such as, passenger cars, light duty vehicles, heavy duty vehicles, buses, coaches 
and motorcycles - in this work, only passenger cars will be taken into account), being suitable for 
a wide variety of traffic situations. 
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3.2 Understanding basic traffic definitions 

We will now present a few definitions of some basic traffic concepts. 

According to the Free Dictionary [32], traffic congestion “is a condition on road networks that 
occurs as use increases, and is characterized by slower speeds, longer trip times, and increased 
vehicular queuing. (…) When traffic demand is great enough that the interaction between 
vehicles slows the speed of the traffic stream, congestion is incurred. As demand approaches the 
capacity of a road (or of the intersections along the road), extreme traffic congestion sets in. 
When vehicles are fully stopped for periods of time, this is colloquially known as a traffic jam.” 
Another important definition is traffic flow: “Flow rates are collected directly through point 
measurements, and by definition require measurement over time.” 

In order to measure traffic congestion there are two alternatives: by calculating density or by 
calculating occupancy. Also according to [32], density is “the average number of vehicles that 
occupy one mile or one kilometer of road space, expressed in vehicles per mile or per 
kilometer.” According to the Transportation Research Board Special Report on Traffic Flow 
Theory [33] “occupancy can be measured only over a short section (…), with presence detectors, 
and does not make sense over a long section.”. 

In one of the algorithms developed in the previous year, as a measure of an edge’s congestion we 
considered the occupancy value returned by SUMO for each edge. According to the SUMO user 
documentation [34], this value consists of the percentage of time a detector (generated by 
SUMO) was occupied by a vehicle. However, according to [33] “density can be measured only 
along a length. If only point measurements are available, density needs to be calculated, either 
from occupancy or from speed and flow. Speeds within a lane are relatively constant during 
uncongested flow. Hence the estimation of density from occupancy measurements is probably 
reasonable during those traffic conditions, but not during congested conditions. ”. 

In conclusion, according to these sources, the occupancy factor alone will not be a realistic 
measure of congestion. This topic will be further discussed in section 3.6 - Implementation of 
Ant Colony Optimization algorithm. 

 

3.3 Understanding current platform 

There are five main modules in the platform developed in the previous year: 

- cosmoAgent: contains all the information and actions relative to each individual agent; 
- cosmoConstants: contains global constants that are used by the other modules; 
- cosmoController: is the main class. It is responsible for parsing the network file, creating the 

network and the population, communicating with SUMO and saving the simulation 
results to file; 

- cosmoNetwork: contains the relevant information of the network in question: the layout, 
the distances and time step occupancies; 

- cosmoPopulation: serves as an intermediate between the Controller and the Agents and is 
responsible for creating the agents, parsing the route files and attributing routes to the 
agents and for communicating. 

As previously said, the communication with SUMO is made through its Traffic Control Interface 
(TraCI). The following figure shows the communication process: 
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Figure 1 - Communication Process 

Regarding algorithms, two relevant algorithms were developed: 

- Shortest Path: using the Dijkstra algorithm, the shortest path was calculated using solely 
distance values; 

- Shortest Time: using a variation of the Dijkstra algorithm, the shortest path was calculated 
using distance values but also takes into account the occupancy values of the previous time 
step in each edge. 

Another two algorithms were developed: an Error Insertion algorithm that randomly introduced 
error into the weights of the edges and a Road Blocking algorithm which made edges, that were 
occupied beyond a pre-defined percentage, unavailable to drivers.  

The Error Insertion mechanism combined the one developed in the Shortest Time algorithm with a 
random tweaking of the occupancy parameters. It used the actual occupancy status but inserted a 
random value into that percentage in order to distribute traffic more evenly. This would make 
traffic in non-congested zones more chaotic given that routes will be constantly changing even if 
there was no significant change in traffic and would lead drivers to traverse longer distances and 
not the optimal paths. This would create dissatisfaction among drivers and would eventually lead 
them to no longer trust this system and therefore quit using it.  

The Road Blocking mechanism was not a realistic approach given that the basis for this 
mechanism was prohibiting vehicles to choose a determined road that in real life could not be 
physically achieved: roads could not be blocked by the developed system. Also, it could make 
routes impossible if there was only one possible path and it was blocked. 

In conclusion, after analyzing the concept of the algorithms and results obtained in the last year, 
we decided not to further pursue the development of these algorithms. 

Finally, a mechanism to simulate accidents was developed in the previous year but it was not 
taken into account in the work developed. Nevertheless, it may be included in further 
developments in order to portray a more realistic traffic environment. 

 

3.4 First Testing Phase 
 

One of the flaws of the work done in the previous year was the lack of extensive testing. Due to 
this, it was concluded that the system and the developed algorithms did not achieve significant 
improvement over the default behavior.  

Our experiments, executed with larger traffic loads (five and ten thousand vehicles), show that 
the developed system achieves indeed a considerable improvement over the default behavior. 
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One of the major difficulties during this initial testing phase of the simulation process was its 
execution time. Through a few optimizations, like caching path values and minimizing route 
calculation by only allowing re-calculation near intersections, an improvement was achieved but, 
given that a continuous communication with SUMO is not very scalable, it was a minor 
improvement. 

Testing with heavier traffic loads was performed and the results obtained with the Shortest Time 
were very good regarding the duration of the trips. However, the values of mean distance 
traveled were lower than those of the default behavior which made them incompatible with the 
other results, given that this algorithm will make vehicles avoid congested edges and choose 
longer but less occupied edges, likely resulting in longer paths. The results obtained with the 
Shortest Path were poorer but this “mean distance traveled phenomena” did not occur. 

 

3.5 Second Testing Phase 
 

After some research, we came to the conclusion that the reason for the faulty results was the fact 
that SUMO only accounted for the length of the vehicle’s final route state. Given that the 
network status is constantly updated during a simulation, each vehicle’s route might be re-
calculated several times. In the Shortest Time algorithm, each vehicle’s route is likely to be altered, 
which greatly diminishes the mean distance traveled results, given that the final route will 
correspond to the partial route defined by the last re-calculation.  

For example, initially, a vehicle has the following route: X1, X2, X3, X4, X5. But, when this 
vehicle arrives in location X3, his route re-calculation tells him that the best path to get to X5 is: 
X3, X6, X5. The vehicle’s route is then updated in SUMO with only the X3, X6, X5, causing loss 
of information about its actual traveled route. 

In order to obtain the actual results of the traveled distance, the traveled route is stored in each 
agent and at the end of the simulation the traveled distance values are calculated according to 
that route and not to the values returned by SUMO. 

 

3.6 Implementation of Ant Colony Optimization algorithm 
 

The main problem with the Shortest Time algorithm is the fact that it assumes a very simplistic 
model and is not accurate in predicting traffic congestion. In order to more effectively spread 
vehicles throughout the network, the idea to implement an Ant Colony Optimization (ACO) 
algorithm emerged.  

This well-known algorithm is used to find optimal paths in a graph: each ant lays down 
pheromone trails and other ants are likely to follow the trail (instead of travelling at random) 
reinforcing it. Over time, pheromone trails starts to evaporate, thus reducing its attractive force.  

But our goal is not to find the shortest distance path to a destination but a shortest time path. So 
our implementation will reverse the ACO logic and will make pheromone trails repel incoming 
vehicles. 

This algorithm has an important advantage over the Shortest Time algorithm: it also takes into 
account the speed at which the vehicles move through a certain edge. Given that, in each time 
step vehicles deposit pheromone in the current edge, if they traverse it fast they will deposit less 
pheromone. On the other hand, if there is congestion in that edge it will take much longer to 
traverse, greatly increasing the pheromone trail. The occupancy factor in itself is not a realistic 
indication of the existence of congestion given that an edge can have an occupancy of 50%, but 
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if all the vehicles in it are moving at a high speed then there is little or no congestion. The 
inverted ACO combines occupancy and speed factors, giving a better portray of the real 
congestion status of the network. 

 

3.7 Initial ACO Testing Phase 
 

After having completed the implementation of the first inverted ACO algorithm prototype, in 
order to adjust the pheromone parameters (global and local evaporation and pheromone deposit) 
accordingly, experimentation was needed.  

The initial phase of this testing process was composed basically by trial and error experiments 
with the referred parameters. Afterwards, there was experimentation with only global 
evaporation and the results were not very satisfactory.  

To improve performance, local evaporation was added to the algorithm. This local evaporation 
consists on each vehicle withdrawing pheromone after leaving a certain edge. This withdrawal 
corresponds to the minimum amount that a vehicle would deposit if traveling through that edge 
at full speed. This way, if there is no congestion in a given edge, the vehicle will be able to go 
through it rapidly and will erase it’s presence after leaving the edge, therefore updating 
pheromones to a more realistic level. On the other hand, if there is already congestion and the 
vehicle is forced to slowly travel through that edge, the amount deposited will be far superior to 
the minimum amount deposit, leaving a trail of its presence there. In short, here is a piece of 
pseudocode that illustrates this local evaporation process: 

if agent.willLeaveEdge(edge):  

    edge.withdrawPheromone(edge.getMinimumTravelTime()*PHEROMONE_AMOUNT) 
else: 

    edge.depositPheromone(PHEROMONE_AMOUNT) 

Another important factor in evaluating current congestion is understanding the pheromone 
variation trend: if the pheromone level in one edge decreased in the last N time steps, than it is 
likely that the number of cars in that edge has diminished and consequently so has the 
congestion; on the other hand, an edge might currently have a low pheromone level although the 
tendency of the last N time steps might indicate an increasing demand for that edge. In order to 
take that information into account, we also added a pheromone variation history mechanism that 
adds a short history of pheromone levels in each edge, allowing a better understanding of the 
variation of traffic volume and a more efficient evaluation of traffic congestion. 

 

3.8 Real Map ACO Testing Phase 

The previous testing phase refers to a proof of concept, in which we ran experiments in two 
different simple traffic networks, Lattice and Radial and Ring maps (which will be presented in the 
next chapter). Prompted by these results, we intended to conduct a series of experiments using a 
real city map and realistic traffic information.  

In order to be able to run tests in a real city, we firstly needed to obtain the map of a city, 
compatible with SUMO. So, we began searching for suitable solutions. The SUMO module 
Netconvert offers a way to import digital road networks from various sources (such as VISUM, 
OpenDrive or OpenStreetMap (OMS)) and creates networks usable by the other SUMO modules. 

The search for VISUM or OpenDrive networks was unsuccessful given that only basic sample 
networks were found. On the other hand, to obtain maps in the OMS format we just needed to 
access the OMS website and export the network. So, we opted for the OMS format. However, 
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the conversion process of an OMS map to a SUMO network presents its challenges given that 
the conversion is sometimes faulty. We will return to this subject in the next sections. 

Given the results of this search process, there were three available solutions: the city of Cologne, 
the city of Eichstäett, or importing a network. The city of Cologne offered thorough but massive 
network and route information, making it impossible to experiment with it in a reasonable 
amount of time. The city of Eichstäett offered a more lightweight network to experiment with. 
Finally, through OpenStreetMap we created a network of the city of Coimbra. The usage of the 
Eichstäett and Coimbra maps will be explored in the following sections. 

Eichstäett map  

According to the user documentation [35], the available map of the german city of Eichstäett 
(already in a SUMO format) was converted from the OpenStreetMap format and all unnecessary 
details filtered out. They also state that "All roads were verified to have the right highway type, speed limit 
and one-way attribute. All traffic lights of cars (not all pedestrian lights) were also verified." so it was ready to 
be used in SUMO simulations. 

 
Figure 2 - Eichstäett map 

A set of routes, of approximately 10.000 drivers, was created and experimented with. However 
these routes present a serious fault: they were randomly generated and did not offer a realistic 
portray of the traffic in that city. It's useless to experiment with a realistic map if no realistic 
traffic will traverse it so it was necessary to obtain real traffic information. Fortunately, an 
Origin-Destination matrix regarding the city of Coimbra was available. 

Coimbra Map 

In order to be able to run tests in Coimbra, we firstly needed to obtain a map of the city, 
compatible with SUMO. The SUMO module Netconvert offers a way to import digital road 
networks from various sources (such as VISUM or OpenStreetMap) and creates networks usable 
by the other SUMO modules. 

As previously referred, no VISUM or OpenDrive networks of Coimbra were found so we opted 
for the OpenStreetMap format. By accessing the OpenStreetMap website we can search for the 
desired city and easily export that data into an XML file. 

http://sumo.sourceforge.net/doc/current/docs/userdoc/OpenStreetMap_file.html
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Figure 3 - OpenStreetMap website 

With the resulting XML file (with an .osm file extension) we can convert it into a SUMO 
network (with the .net.xml file extension) with the following command: 

netconvert --osm map.osm  -o map.net.xml 

After this process, we experimented with the generated network in order to evaluate the 
outcome of this conversion. We found out that there were some errors in the generated SUMO 
network such as the conversion of pedestrian roads into vehicle roads. In order to filter out the 
pedestrian roads, and also to correct some other minor errors, the JOSM tool was used, which is 
an OpenStreetMap editor written in Java. The current version of SUMO offers the option of 
filtering out certain types of roads while converting a map, but at the time this option was 
unavailable. Another problem that we found, and corrected, was that the Netconvert module, by 
default, adds a turnaround possibility for almost every edge, making the network map unrealistic 
and somewhat confusing: 

 
Figure 4 - Edges with unrealistic turnarounds 

Then we created a route set and using the SUMO GUI we identified the zones responsible for 
creating the more relevant bottlenecks. These areas contained several problems that range from 
an incorrect number of lanes to faulty connections between edges.  

Having corrected the previously referred faults, we believed the map to be ready for the testing 
process. 

Coimbra Routes 

With a corrected version of the map, it was time to generate the correspondent traffic demand. 
To complement the real city map we needed realistic traffic information. The work by Dr. 
Álvaro Seco and Nuno Norte Pinto [36] provided this information in the shape of an Origin-
Destination (OD) matrix regarding the city of Coimbra. An OD matrix consists of a table that 
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matches trips’ origins and destinations and also displays the number of trips going from each 
origin to each destination. 

In order to create the traffic demand based on this OD matrix, we first needed to analyze its 
data. This matrix was divided into several zones as can be seen in Figure 5 and these zones 
referred to inner and outer city traffic.  

 
Figure 5 - Coimbra OD matrix zones 

There were numerous zones referred to outer city traffic so, given that in this project we were  
mostly interested in studying traffic within a city, we decided to group these several outer city 
zones into 7 zones, which match the existing city entrances: North (IC2), Northeast, East, 
Southeast, Southwest (Europa Bridge), West (Santa Clara Bridge) and Northwest (Açude Bridge). 

 
Figure 6 - Coimbra city entrances 

The data in this matrix comprises 60.000 trips and corresponds to the morning period (7h30 to 
10h30) with the duration of three hours. To make the testing process feasible, given the 
considerable map size, we decided to use 10.000 trips with an insertion period of one hour, i.e., 
vehicles are inserted at uniform time intervals during one hour. To make simulation environment 
more realistic, we inserted 2.000 vehicles at the beginning of the simulation (in the first time 
step) while the rest of the vehicles were inserted during the simulation. 
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In SUMO, route definitions are as follows: 

<vehicle id = "0" type = "type1" depart = "0" color = "1,0,0"> 

 <route edges = "id_beginning id_middle id_end"/> 

</vehicle> 

This means that each trip is defined as a collection of the id of the edges that comprise that trip. 
The main difficulty was establishing the match between the OD matrix's zones and the ids 
present in the SUMO network. Firstly we experimented with two id values per zones but as a 
result the entrance of cars in the network was very slow. This is due to the fact that SUMO 
inserts vehicles in a pre-determined position in each edge and does not insert another vehicle 
unless there is space for that insertion. This means that the simulator would have to wait until 
there was enough room to insert each new vehicle, greatly increasing the simulation time. It also 
means that it would not be possible to achieve the desired effect given that this fact significantly 
delayed the insertion of vehicles and making it impossible for some vehicles to be inserted within 
the previously defined time slots. 

In order to overcome this limitation, more id values were added to the trip generation process. It 
was not possible to define a constant number of ids per zone given that the number of roads in 
each zone was not uniform. However an average amount of approximately 7 id values was 
defined per zone. 

This id search process lead to significant time consumption given that most zones defined in the 
OD matrix do not exactly match street names and so these id values were manually defined. 
However, it allowed for a much smoother insertion of vehicles. 

Coimbra Map Problems 

After experimenting with the OD routes we concluded that the results were still not satisfactory. 
An experiment with 10.000 vehicles lasted 27.000 seconds, i.e., approximately 7 hours, which is a 
very large and unrealistic amount of time.  

We came to the conclusion that this was due to problems with the simulator and also with the 
utilized network. So, we started to study how to further improve the quality of the network in 
order to obtain more realistic results. The following figures show some of the problems we 
encountered: 

 
Figure 7 - Hesitation situations 

In the leftmost image of Figure 7 we show an example of halted vehicles, each queue apparently 
blocking each other. In the rightmost image we see the red vehicles giving total priority to the 
blue vehicles, waiting until there was no blue vehicle left in order to advance. It appears that 
SUMO has some issues when it comes to detecting whether or not the leader is occupying the 
junction and therefore blocking the passage. In Figure 8 we can see that, although the vehicle on 
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the right lane (highlighted in green) wants to go forward and there does not seem to be any 
obstacle in front of him, it does not advance. However it considers that the other vehicle is in its 
way and therefore will only move once the other vehicle has also moved, causing an unrealistic 
and unnecessary queue. 

 
Figure 8 - Junction problems 

We noticed that some of these zones lacked traffic lights - that were somehow lost in the 
conversion. Therefore, with the intent of reducing the “hesitation” that appears to occur in 
Figure 7, we added traffic lights in the areas that were most affected by congestion: Portagem, 
Avenida Fernão de Magalhães and Casa do Sal. The addition of traffic lights appears to improve 
the ordering of traffic, reducing the hesitation phenomena. However, while solving one problem 
it creates another - due to the addition of traffic lights in some junctions, vehicles are often 
stopped at intersections: 

 
Figure 9 - Traffic light problems 

SUMO is a collision-free simulator and therefore security is paramount. So its vehicles require a 
large gap to competing vehicles in order to decide to move forward as a few experimentations 
demonstrated. But this highly defensive attitude does not justify all the problems that we 
encountered. Some situations, like vehicles only using one lane when two or more lanes are 
available, may be justified with map errors and the consequent flaws in the way vehicles perceive 
the network. 
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Figure 10 - Inadequate use of lanes 

 

Finally, we tried to communicate with SUMO's developers in order to understand the cause of 
these situations. Firstly we informed them of one of those hesitation situations which was 
acknowledged by them as a probable bug. However SUMO is an open-source project and the 
feedback was not immediate. So, while we did not receive feedback, in order to understand the 
nature of the previously referred errors we analyzed the simulator source code. However, the 
code is extensive (several thousands of code lines) so we narrowed down the search to the part 
that affects edge/lane priority and defined the right of way. In a section of the code relative to 
checking "traffic on next junctions" we found an error - a conditional expression in which the code 
is equal to both the if and else clauses. We informed the SUMO developers about this bug in the 
hope that it would solve the hesitation phenomena. 

In conclusion, we consider there to be three main problems with the current state of the 
simulator: 

- Map conversion: leads to inadequate use of lanes; 

- Definition of the right of way: in proximity to junctions it requires a large space between 
vehicles in order to advance; 

- Entering junctions: vehicles sometimes get stuck on a junction if the target lane is full, 
causing widespread jams and thus increasing the average travel time. 
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As we are dealing with heavy traffic, these problems create a domino effect that generates 
enormous queues. The encountered problems have been reported and some were acknowledged 
as bugs, which they will try to solve in the next version of the simulator. 

Given that certain issues, such as the occurrence of vehicles being stopped at intersections, 
obstructing the passage of other vehicles, appear to be more common in the most recent 
versions of SUMO, we opted for using a previous version of SUMO in which that bug is not as 
significant. 

 

 

3.9 Personality features 

The SUMO simulator already has the following aspects hard-coded: stopping at traffic lights, 
switching lanes, overtaking and applying traffic rules. So these driving parameters will not be 
tampered with. Also, SUMO uses a collision-free model so no traffic accidents will be considered 
in this work. 

The implementation of the following features intended to create a more realistic portrayal of the 
diversity of driver behaviors in a given city. These features can be divided into two groups: the 
stubbornness feature assumes the existence of an information service that provides drivers with 
information about traffic congestion; the aggressiveness, distraction and irregularity features do 
not make that assumption. 

Distraction 

This feature represents situations in which a person is not experienced/familiar with the 
environment or is dealing with a high cognitive load (talking on a cell phone for example), 
therefore being distracted, and consequently takes one or many wrong turns along its proposed 
route. 

The familiarity of a driver with the network in which he is traveling in obviously affects the 
amount of wrong turns that one can perform along a certain path. A person who is very familiar 
with a certain route is much less prone to make a mistake along the way than a person who is 
traveling through that path for the first time.  

According to the World Health Organization (WHO) [37] a percentage between 1% and 7% of 
drivers have been observed using mobile phones in several European countries while driving. 
They also report that in the United Kingdom "45% of drivers reported text messaging while driving" and 
that in the United States "27% of American adults report having sent or read text messages while driving". 
One of the obvious implications of this are driving accidents: WHO [37] refers that "in Spain, an 
estimated 37% of road traffic crashes in 2008 were related to driver distraction". In this paper, as previously 
referred, we will not tackle the driving accidents problem but this statistic shows the importance 
of driver distraction. The influence of distraction, combined with familiarity with the network, 
will be studied in a route selection point of view: how distraction levels contribute to making 
mistakes along a certain route. 

Stubbornness 

This trait refers to the unwillingness of an agent to accept the proposed route. The rejection of 
this proposal might be caused by having little confidence on the system or a driver’s belief to be 
able to better understand the current state of traffic and therefore to being capable of defining a 
more suitable route. 
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Gao [30] suggests that aggressive drivers were less prone to act in accordance with received 
guidance information. However, no significant proof of this correlation was found so we will 
assume that stubbornness and aggression are independent. 

 

Irregularity 

The concept of Driver imperfection refers to the inability of a driver to maintain a constant velocity, 
causing fluctuations in speed that affect the vehicles that are following him. The car-following 
model used in SUMO was developed by Krauß [38]. In it, each driver computes a safe velocity, 
in order to being able to brake fast enough and not colliding with the leader. Also, there is a 
"randomization step" in which a random amount that is uniformly distributed between 0 and 
σ*accel (where σ refers to driver imperfection and accel refers to a vehicle’s acceleration) is subtracted 
to that safe velocity. 

 

Aggressiveness 

Dukes [39] claims that aggressive driving is a growing concern. They state that "64% of 
Americans believed that drivers were driving much less courteously and safely than five years 
ago." thus being an important aspect of driving behavior.  

The implemented feature refers to the definition of various types of drivers according to age, 
gender and temper. The work of Tasca [27] initially suggests that "gender effects are negligible 
but there are substantial age-related differences". Afterwards they state that the factors that 
increase the probability of aggressive behavior are "being young, male, in a traffic situation which confers 
anonymity, generally disposed to sensation-seeking, being in an angry mood (likely due to events unrelated to traffic 
situation), the belief that one possesses superior driving skills and finally unexpected traffic congestions.". From 
these stated parameters, we will not consider the anonymity factor nor the occurrence of 
unexpected traffic congestions.  

According to Wickens [40], driver aggression is greater for males (38.5%) than for females 
(32.9%). Younger drivers (from 18 to 34 years of age) reported the highest occurrence of 
perpetrated driver aggression (47.3% for females, 54.5% for males), while the oldest drivers 
(above 55 years of age) reported the lowest rates of driver aggression: 15.1% for females and 
20.9% for males. 

With the previously stated data in mind we decided to create the following driver types: 

- courteous young male, courteous young female, aggressive young male, aggressive young 
female, courteous middle-aged male, courteous middle-aged female, aggressive middle-aged 
male, aggressive middle-aged female, courteous elder male, courteous elder female, 
aggressive elder male and aggressive elder female. 

Each driver type will be assigned a specific value for minimum gap acceptance, driver's reaction 
time, acceleration and deceleration rates and desired speed. The minimum gap acceptance 
parameter allows us to simulate the tailgating behavior (following someone too closely) by 
defining low gap acceptance values. The tailgating phenomena is, according to Björklund [41], 
the driving situation that provokes most irritation. 

According to Holland [42] one of the personality factors that influence driver behavior is Locus of 
control (LOC). Drivers with internal LOC "perceive outcomes to be dependent on their own skill, efforts or 
behaviour" that enables them to be more responsive than externally oriented drivers, which take 
fewer precautions to prevent road accidents. One consequence of internal LOC might be a more 
risky driving style, caused by the driver’s belief in being able to avoid an accident using their own 
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skills. Given this information, the driver's reaction time will be used to simulate the influence of 
LOC and also to simulate elderly people's slower reaction capability. However, there does not 
seem to be a consensus as to what are the actual values of driver reaction time given that it 
depends on various factor such as gender, age, alertness or driving experience. Davis [43], 
Mehmood [44], McGehee [45] and Triggs [46] present different values, ranging approximately 
from 0.7 seconds to 2.3 seconds. Mehmood [44] also states that reaction time increases with age 
and that females have larger reaction times. The reaction time values used in this experiment take 
this data into account. Both acceleration and deceleration rates and desired speed will be a result 
of the aggressiveness of the driver and also of his responsiveness. 

Tasca [27] considers gender effects to be almost negligible. On the other hand, Holland [42] 
affirms that "women have more external LOC than men". Our belief regarding this matter is closer to 
the opinion presented by Tasca [27], so, we considered gender effects to be almost negligible by 
only slightly altering parameters between male and female drivers, attributing somewhat more 
aggressive parameters to male drivers.  

Regarding age, in young drivers we defined a greater percentage of aggressive drivers, in middle-
aged drivers a more balanced percentage and in elderly drivers a small percentage of aggressive 
drivers. Being disposed to sensation-seeking and believing to possess superior driving skills are 
also implicitly taken into account in the cautious/aggressive driver ratio. 

SUMO's standard parameters' values are based on the work of Krauß [38] and are defined as 
follows:  

accel="2.6" decel="4.5" minGap="2.5" maxSpeed="70" tau="1.0" 

(where "accel" corresponds to the vehicle's acceleration, "decel" refers  to the vehicle's acceleration, 
"minGap" corresponds to the minimum gap acceptance, "maxSpeed" refers to the vehicle's 
maximum speed and "tau" corresponds to a driver's reaction time). 

Based on this, in order to simulate the previously referred driver types, we altered the parameters 
in the following manner: 

 

type 
acceleration 

(m2/s) 
deceleration 

(m2/s) 
sigma 

maxSpeed 
(m/s) 

minGap (m) tau (s) 

Young 

courteous male 2,5 4,5 0,5 23 2,5 1 

courteous female 2,4 4,4 0,5 23 2,5 1 

aggressive male 3,1 5,5 0,4 33 1,2 1 

aggressive female 3 5,4 0,4 33 1,3 1 

Middle-aged 

courteous male 2,4 4,1 0,6 21 2,5 1,5 

courteous female 2,3 4 0,6 21 2,5 1,5 

aggressive male 2,9 5 0,5 28 1,6 1,3 

aggressive female 2,7 4,9 0,5 28 1,7 1,4 

Elder  

courteous male 2,3 3,8 0,7 19 2,5 1,9 

courteous female 2,2 3,7 0,7 19 2,5 2 

aggressive male 2,6 4,5 0,6 25 2 1,7 

aggressive female 2,4 4,4 0,6 25 2,1 1,8 

Table 1 – Aggressiveness: driver types 

It should be noted that these are merely tentative values - more attention was given to the 
difference of parameter values between driver types than to the parameter values themselves. 

However, the fact that the minGap parameter is only configurable in the most recent versions of 
SUMO (which currently have that previously referred bug regarding the entering of vehicles into 
junctions) causes widespread jams and produces unrealistic results. So, as previously stated, we 
opted for using a previous version of SUMO that does not offer the configuration of the minGap 
parameter but in which that bug is not present. 
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Chapter 4 
Results and Discussion 

In this chapter we will present and analyze the experimental results. The objectives of these 
experiments are to evaluate the performance of the proposed algorithms and to assess the 
influence of the personality parameters in a network's performance. In order to achieve those 
goals, the tests were executed in artificial and real life maps. 

The first part of the testing process used the already existing algorithms of Shortest Distance and 
Shortest Time and consisted in the simulation of two sets of routes, for 5.000 and 10.000 drivers. 
These routes were executed in two different networks: Lattice and Radial and ring. These networks 
are illustrated in the following figures: 

 
Figure 11 - Lattice network 

 
Figure 12 - Radial and Ring network

For each amount of drivers, 5.000 and 10.000, we generated 5 drivers per step/second. Also, for 
each of those amounts, we varied the percentage of active users of our system, testing with the 
following percentages: 0%, 25%, 75%. Each of these variations was simulated 10 times in order 
to enable averaging of the results and consequently the production of reliable data.. 

 

The second part of the testing process compared the already existing algorithm Shortest Time with 
the implemented inverted ACO algorithm. The simulation process is similar to that of the first 
part being executed with the same variations in total driver amounts and generated drivers per 
second in the same networks (Lattice and Radial and ring).  

There are two main differences from the previous part of the testing process: 

- to study the initial viability and appeal of the system, more attention was given to lower 
percentages of users: in order to be attractive and to convince people to adhere to it, the system 
should offer advantages even with low usage percentage. So we executed experiments with the 
following user percentages: 0%, 10%, 25%, 75% and 100% - each of these variations was 
simulated 30 times. 

- testing with a real life map (Coimbra network) with real traffic data: these tests were executed 
only 10 times, due to the project's time restrictions.  

 
Figure 13 - Coimbra network 



Cosmo 

29 
 

 

The third part of the testing process is dedicated to studying the effects of the personality 
features and consists of experiments executed in Lattice, Radial and ring and Coimbra networks. 
The tests referred to in this last testing part were simulated 10 times. 

The numerical results of all experiments are available in Appendix B. 

 

 

4.1 Shortest Distance vs Shortest Time 

Firstly we will compare the Shortest Distance (SD) and Shortest Time (ST) algorithms on the Radial 
and Ring and Lattice maps and we will analyze the results of each algorithm in terms of average trip 
duration and average route length. 

Please note that in all the presented line charts, the dotted lines refer to average values plus and 
minus the standard deviation. 

 

Radial and Ring 

We will firstly present results regarding experiments with 5000 vehicles and afterwards with 
10000 vehicles. 

   

 

Figure 14 – Radial and Ring (5000 vehicles): average trip duration 

In Figure 14 we can observe that the SD does not manage to reduce trip duration and actually 
achieves worse performance compared to the default behavior. The lack of improvement is 
caused by the trip generation process already attributing optimal or quasi-optimal paths. The 
performance deterioration can be explained by the surplus of vehicles whose optimized route 
goes through the center of the map, leaving the outer edges unoccupied. However, the 
performance did not deteriorate as much as expected given that this map’s topology creates the 
conditions for the occurrence of congestion in the core of the map. On the other hand, ST 
algorithm is able to reduce the average duration of trips. By distributing the vehicles using the ST 
algorithm around the network it also allows the default vehicles to shorten their trip duration, 
greatly improving the network’s performance as a whole.  
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Figure 15 – Radial and Ring (5000 vehicles): effect on route length  

 

In terms of distance (Figure 15), the amount traveled by the vehicles using the ST algorithm is 
considerably higher than of those using the SD algorithm. The reason for this is that the ST 
vehicles will have the tendency to avoid the shortest paths because those will be more used and 
consequently more congested. 

 
Figure 16 – Radial and Ring (10000 vehicles):  effect on trip duration  

 

In Figure 16 we observe that the differences in average trip duration are maintained with the 
increase in number of vehicles. Regarding traveled distance, it is roughly equivalent to the results 
obtained with 5.000 vehicles: vehicles using the ST algorithm traverse a longer path than the 
ones using the SD algorithm, as seen in Figure 17. 
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Figure 17 – Radial and Ring (10000 vehicles): effect on traveled route length 
 

With these results, we can conclude that in this map, significant average travel duration reduction 
can be achieved using the Shortest Time algorithm, given that it distributes traffic throughout the 
network more evenly. We also conclude that the Shortest Distance is not adequate for this map’s 
topology. 
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Lattice 

In the previous section, the results showed that, for the Radial and Ring map, the Shortest Time 
algorithm distributes traffic throughout the network more evenly, achieving greater performance. 
We also conclude that the Shortest Distance is not an adequate solution for that map’s topology. 
Now, we will present results regarding the Lattice map, which has a different topology: 

 

 
Figure 18 – Lattice (5000 vehicles): effect on trip duration 

 

In Figure 18 we can observe that the SD algorithm achieves no significant reduction of the 
duration of trips given that there may be various paths with equal distance to a certain 
destination. On the other hand, ST algorithm manages to reduce the average duration of trips. 
As in the Radial and Ring map, this reduction also allows the default vehicles to shorten their trip 
duration, greatly increasing the network’s performance as a whole. However, in this map, we can 
observe the duration of the trips of the ST users does not decrease as the user percentage 
increases. This may be due to the fact that the distribution of vehicles in the network stabilized 
and could not be optimized beyond that point. 

 
 

 

Figure 19 – Lattice (5000 vehicles): effect on traveled route length 
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In terms of distance (Figure 19), the results are also similar to those obtained in Radial and Ring 
map, which means that the amount traveled by the vehicles using the ST algorithm is 
considerably higher than of those using the SD algorithm. We can observe in the chart referent 
to "Cosmo vehicles", the same phenomenon that occurred in the Radial and Ring map. As the 
user percentage increases, the vehicles are more evenly distributed and are not so obliged to 
going through the outer paths of the map. 
 

 
 

Figure 20 – Lattice (10000 vehicles): effect on trip duration 
 

Figure 20 shows that the differences in average trip duration are accentuated with the increase in 
number of vehicles and that the SD algorithm’s performance deteriorates greatly, achieving 
worse results than those of the default vehicles. This may be caused by attributing to various 
vehicles the same path, increasing congestion. Given that there may be several equally optimal 
paths to a destination, the Dijkstra will consistently choose the same path. In accordance to what 
we have seen in the chart referent to "Cosmo vehicles", we can observe that the duration of the 
trips of the ST users does not decrease as the user percentage increases - initially it decreases nut 
after reaching a 25% user percentage it tends to stagnate. This may indicate that the network is 
saturated and cannot be optimized beyond that point. 

Regarding traveled distance, it is roughly equivalent to results obtained with 5000 vehicles, as 
seen below in Figure 21: with the rise of user percentage, ST vehicles’ route length tends to 
stabilize. 

 

500

1500

2500

3500

4500

5500

6500

0  0.25  0.75

s

e

c

o

n

d

s

 

User percentage 

Default vehicles 

500

1500

2500

3500

4500

5500

6500

0  0.25  0.75

User percentage 

Cosmo vehicles 

No algorithm   SD   ST

500

1500

2500

3500

4500

5500

6500

0  0.25  0.75

User percentage 

Whole system 



Cosmo 

34 
 

 

Figure 21 – Lattice (10000 vehicles): effect on traveled route length 

By analyzing these results, we can conclude that in this map, significant average travel duration 
reduction can be achieved using the Shortest Time algorithm given that it distributes traffic 
throughout the network more evenly. We also conclude that the Shortest Distance is not adequate 
for this map’s topology. 
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4.2 Shortest Time vs Ant Colony Optimization 

As expected, Shortest Time (ST) obtained better results in the previous section. So, next we will 
compare the ST and Inverted Ant Colony Optimization (IACO) algorithms on the Radial and Ring and 
Lattice maps and we will analyze the results of each algorithm in terms of average trip duration, 
average route length and pollutant emissions. 

 

Radial and Ring 

Like in the previous section, we will firstly present results regarding experiments with 5000 
vehicles and afterwards with 10000 vehicles. 

 
Figure 22 – Radial and Ring (5000 vehicles): effect on trip duration  

 

 

Figure 23 – Radial and Ring (5000 vehicles): effect on traveled route length 

In Figures 22 and 23 we can observe that the IACO has a slow start in terms of trip duration 
performance, which is due to the lack of pheromone information that occurs with low user 
percentages. However, as the user percentage increases it achieves better results than the ST 
algorithm, always managing to maintain a significantly smaller route length. On the other hand, 
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with a 100% user percentage, IACO's trip duration efficiency appears to deteriorate, achieving a 
roughly equivalent performance to the ST algorithm. 
 

 

Figure 24 – Radial and Ring (5000 vehicles): CO2 emissions and fuel consumption 

Regarding pollutant emissions (Figure 24), we can observe that IACO attains lower fuel 
consumption, and consequently lower CO2 emissions, for all tested user percentages. This also 
indicates that the IACO obtains a better equilibrium between trip duration and route length. 

Given that "Fuel consumption" and "CO2 emissions" charts are proportional, it should be noted 
that from now on we will only show the charts concerning the latter. 

With a higher traffic load (Figures 25 and 26) IACO appears to improve and it achieves better 
performance in duration and route length, even for a 25% user percentage. This might be due to 
the fact that, even with a low user percentage, it detects heavy traffic in the center of the map 
and manages to avoid it. Once again, with very high user percentages, IACO's performance 
seems to stagnate in terms of trip duration. 

 

   
Figure 25 – Radial and Ring (10000 vehicles): effect on trip duration  
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Figure 26 – Radial and Ring (10000 vehicles): effect on traveled route length  

 

Figure 27 – Radial and Ring (10000 vehicles): CO2 emissions  

Regarding pollutant emissions (Figure 27), we can observe that for low user percentages, IACO, 
despite obtaining better performance in duration and route length, causes the emission of more 
CO2 than the ST algorithm. However, as user percentage rises it reaches a better performance in 
terms of CO2 emissions. With a high user percentage, we can also observe that the performance 
of both algorithms worsens, suggesting again that, for this map, the system becomes saturated 
for a very large percentage of users. 

With these results, we can conclude that in this map, significant average travel duration reduction 
can be achieved using the Inverted Ant Colony Optimization algorithm, being an adequate alternative 
for this map’s topology. 
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Lattice 

In the previous section the results showed that for the Radial and Ring map the Inverted Ant Colony 
Optimization algorithm is an adequate option for that map’s topology, achieving a greater average 
travel duration reduction than the ST algorithm. Now, we will present results regarding the 
Lattice map, which has a different topology: 

 

 
Figure 28 – Lattice (5000 vehicles): effect on trip duration 

 

Figure 29 – Lattice (5000 vehicles): effect on traveled route length 

Figures 28 and 29 show that the IACO algorithm has a slower start than the ST algorithm, but it 
achieves greater trip duration reduction for high user percentages, managing to do so in shorter 
trip distances. 
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Figure 30 – Lattice (5000 vehicles): CO2 emissions 

Concerning CO2 emissions, the results show that IACO attains lower fuel consumption, and 
consequently lower CO2 emissions, with the exception of the 10% user percentage. This 
indicates that IACO distributes traffic more efficiently, attaining shorter trip durations and route 
lengths than its ST counterpart. 

In Figures 31 and 32, we can observe that with the increase in total number of vehicles the 
IACO algorithm has a slower start and only manages to surpass the ST algorithm when the user 
percentage reaches a high level. This may be due to the fact that, unlike in the Radial and Ring 
map, there is no central point in the network and so pheromone information is more disperse. 

 
Figure 31 – Lattice (10000 vehicles): effect on trip duration  
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Figure 32 – Lattice (10000 vehicles): effect on traveled route length  

 

Figure 33 – Lattice (10000 vehicles): CO2 emissions 

With regard to CO2 emissions, we can observe that for low user percentages, IACO obtains 
worse performance in CO2 emissions than the ST algorithm - similarly to what happens 
regarding trip duration and route length results. However, as user percentage rises it manages to 
reach a higher reduction of CO2 emissions. 

By analyzing these results, we can conclude that in this map, significant average travel duration 
reduction can be achieved using the Inverted Ant Colony Optimization algorithm, being an adequate 
alternative for this map’s topology. 
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Coimbra 

In the previous sections we displayed results for Radial and Ring and Lattice map. Those results 
demonstrate that, for high user percentages, the Inverted Ant Colony Optimization algorithm 
achieves a greater performance (concerning average trip duration, average route length and pollutant 
emissions) than its ST counterpart.  

Having executed experiments in the artificial maps, we will now present results regarding a real 
life map - Coimbra map - that provides a more realistic topology. The following figures refer to 
experiments with 10.000 vehicles: 

 

 

Figure 34 – Coimbra (10000 vehicles): effect on trip duration  

 

Figure 35 – Coimbra (10000 vehicles): effect on average traveled distance  

Figures 34 and 35 show that the IACO algorithm has, as expected due to the lack of pheromone 
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algorithm already offers significant advantage in trip duration. 

0

1000

2000

3000

4000

5000

6000

0 0.1  0.25  0.75 1

s

e

c

o

n

d

s

 

User percentage 

Default vehicles 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1  0.25  0.75 1

User percentage 

Cosmo system 

default   IACO   ST

0

1000

2000

3000

4000

5000

6000

0 0.1  0.25  0.75 1

User percentage 

Whole system 

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 0.1  0.25  0.75 1

s

e

c

o

n

d

s

 

User percentage 

Default vehicles 

2000

3000

4000

5000

6000

7000

8000

0 0.1  0.25  0.75 1

User percentage 

Cosmo system 

default   IACO   ST

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 0.1  0.25  0.75 1

User percentage 

Whole system 



Cosmo 

42 
 

As the user percentage increases, so does the performance of each of the algorithms. However, 
as the IACO algorithm reaches a 25% user percentage it already achieves a greater duration 
reduction than the ST counterpart, and continues to do so for greater user percentages. In terms 
of distance, IACO manages to maintain a shorter route length than the ST algorithm for every 
user percentage tested, suggesting that the IACO algorithm manages to attain a more precise 
vision of the actual state of the network. 

The following figure displays the pollutant emissions referent to this experiment: 

 
Figure 36 – Coimbra (10000 vehicles): pollutant emissions  

Figure 36 demonstrates that both algorithms can attain a major decrease in pollutant emissions. 
Moreover, the IACO algorithm is capable of achieving a 50% reduction on CO2 emissions and 
fuel consumption. 

 

 

In conclusion, the IACO algorithm is based on a collaborative approach and tries to disperse 
traffic in real-time in order to enhance a network's traffic throughput. It relies heavily on the 
information provided by the users, i.e., the pheromone that they deposit.  

Given its nature, with low user percentages, the information that is available about the state of 
the network in the IACO algorithm is somewhat fuzzy and incomplete and therefore, its 
performance is worse than that of the ST algorithm. However, even with low user percentage it 
is still advantageous given that it offers a considerable reduction in trip duration. This benefit 
should be appealing enough in order to convince people to adhere to the IACO system. 

With the rise of the user percentage, the data regarding the network's state becomes more 
accurate and complete, leading to a greater performance than its ST counterpart. As a side effect 
(and one which we consider important) of this improvement in the network's efficiency, it is 
possible to obtain a significant decrease in pollutant emissions. 
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4.3 Personality features 

In the previous sections we analyzed the performance of the IACO and ST algorithms for 
different networks. Now, we will analyze the effects that the proposed personality features have 
on those networks and also how they may affect the different algorithms. 

Given that our aim to study the overall effects that these features will have in city traffic, the 
results shown in the following sections refer to the average travel time in the given scenario. For 
example, we do not intend to study the number of wrong turns that a distracted user makes 
along the way but rather the effects that those wrong turns will produce in the overall traffic. 

We will compare the results obtained with the developed personality features to those of a 
default SUMO population (i.e. a collection of vehicles with standard values) on the Lattice, Radial 
and Ring and Coimbra maps. We experimented with 5.000 vehicles and 10.000 vehicles to enable 
the occurrence of some congestion on the referred networks. The developed features were at 
first tested separately and afterwards tested simultaneously. 

Distraction 

Before beginning the simulation, we attributed a random value to each driver to represent the 
distraction and familiarity parameters. These random values follow a Gaussian distribution with 
mean value μ = 1 and variance σ2 = 0,25. A distracted user who is also unfamiliar with the 
network will have a have a distorted view of the network - we simulate this distorted view by 
tampering with each driver's perception of the network, altering the weights that a driver 
associates with each edge. The rejection process is done by defining a threshold value for each of 
these parameters: 
 

if (distraction > distractionThreshold) and (familiarity < familiarityThreshold): 

   for edge in graph: 

      for sucessor in graph[edge]: 

  distance = graph[edge][sucessor] 

  graph[edge][sucessor] = distance + random.uniform(-distance, distance) 

 

These random values follow a Gaussian distribution with mean value μ = 1 and variance σ2 = 

0,25 so: 

 value < 1 corresponds to a 50% probability 

 value > 0.75 corresponds to a 84,4% probability 

 value > 1 corresponds to a 50% probability 

 value > 1.25 corresponds to a 15,6% probability 

Given this, we decided to experiment with three different values for distraction threshold and one 

for the familiarity threshold: 

 high distraction: distractionThreshold > 0.75 and familiarityThreshold < 1 

 medium distraction: distractionThreshold > 1 and familiarityThreshold < 1 

 low distraction: distractionThreshold > 1.25 and familiarityThreshold < 1 

We decided to only allow drivers who are not very familiar with the network to take a wrong 

path, and therefore only 50% at most can make wrong decisions. Then we varied the 

distractionThreshold to simulate different amounts of distracted drivers. In terms of percentages, 

the three scenarios present the following probabilities:  

 high distraction: 42,2% 

 medium distraction: 25% 

 low distraction: 7,8% 
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The following two figures refer to experiments with these three scenarios and the assumption 

that every driver uses the IACO system: 

  
Figure 37 – Distraction: effect on trip duration with IACO algorithm (Lattice map) 

 

  
Figure 38 – Distraction: IACO algorithm with different user percentages (Radial and Ring map)  

In Figure 37 we observe that in the Lattice map, distraction is always harmful to overall network 
performance. However, in Figure 38 we can observe that in the Radial and Ring map - which is 
more prone to congestion occurrence given its topology - when heavy congestion occurs, a 
medium distraction is the least harmful of the three levels in terms of average travel time. 

We also experimented varying the user percentage in the Lattice scenarios, in which the 
distraction effects seem to be more consistent: 

  
Figure 39 – Distraction: effect on trip duration with IACO algorithm (Radial and Ring map) 
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therefore not always choosing the correct path, greatly diminishing the system's accuracy. 
However, as user percentage rises, this effect seems to be mitigated. 

 

The distraction parameter can only have negative effects on the network's performance given 
that a distracted user who is also unfamiliar with the network will have a distorted view of the 
network. Therefore individual trips will be longer, unnecessarily increasing the amount of 
vehicles on the road at any given time. The results show that distraction is always harmful to 
overall network performance. However, when heavy traffic traverses a more congestion prone 
map, the fact that some drivers do not take the optimal route might disperse traffic and improve 
performance. 

 

 

Stubbornness 

The work of Bonsall [47] suggests that there are numerous factors that affect the credibility of 
received guidance information, including "the extent  to  which  it  is corroborated  by,  or  in 
conflict with,  local evidence  about  the  alternatives",  a "drivers' familiarity with  the  local  
network" and a "the drivers' predisposition to accept advice". Given this information we defined 
the following driver parameters: 

• experience: the drivers' familiarity with the local network 

• stubbornness: the drivers' predisposition to accept advice 

Similarly to the distraction feature, prior to the start of simulation, we attributed random values 
to each driver to represent the stubbornness and experience parameters. Bonsall [47] also states 
that experienced drivers are more likely to reject advice. These random values follow a Gaussian 
distribution with mean value μ = 1 and variance σ2 = 0,25. We simulate the rejection process by 
defining a threshold value for each of these parameters: 
 

if stubbornness < stubbornnessThreshold and experience < experienceThreshold:  

 route = newRoute 

 

Chen [48] introduces another factor that influences route choice: the effects of a subjects’ 
experience - an estimation of system accuracy by their temporal and spatial experiences. 
However, these parameters result from a sequence of travels along the same path that will enable 
drivers to gain knowledge about how the network operates. Our work does not support this 
evolution given that it pertains to a single run in which driver's choices are modified in real time. 

These random values follow a Gaussian distribution with mean value μ = 1 and variance σ2 = 
0,25. So we defined three different acceptance values: 

• high acceptance: stubbornnessThreshold < 1.25 and experienceThreshold < 1.25  

• medium acceptance: stubbornnessThreshold < 1and experienceThreshold < 1 

• low acceptance: stubbornnessThreshold < 0.75 and experienceThreshold < 0.75 

These acceptance values have the following probabilities:  

• high acceptance: 71,2% 

• medium acceptance: 25% 

• low acceptance: 2,4% 
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Figures 40 and 41 refer to experiments with these three scenarios: 
 

 

 

Figure 40 – Stubbornness: effect on trip duration with IACO algorithm (Lattice map) 

 

Figure 41 – Stubbornness: effect on trip duration with IACO algorithm (Radial and Ring map) 

In Figure 40 we observe that in the Lattice map, as the acceptance levels increase, so does the 
system's performance. However, Figure 41 shows that in the Radial and Ring map (more prone to 
congestion), when heavy congestion occurs, the rejection of some of the proposed routes might 
even be advantageous in terms of average travel time. 

 
Figure 42 – Stubbornness: effect on trip duration with IACO algorithm (Coimbra map) 

In Figure 42, the results of experiments in the Coimbra map show similarity to those with the 
Lattice map - there is no specific bottleneck location in the map, unlike in the Radial and Ring 
map, so disregarding the proposed route does not appear to be a beneficial option. 

The previous experiments were executed using the IACO algorithm. We decided to also 
experiment the ST algorithm in these same scenarios, in order to analyze if the effects of the 
stubbornness feature were similar: 
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Figure 43 – Stubbornness: effect on trip duration with ST algorithm (Lattice map) 

 
Figure 44 – Stubbornness: effect on trip duration with ST algorithm (Radial and Ring map) 

 

In Figures 43 and 44, the results confirm that there is a similarity between the performance of 
the IACO algorithm (Figure 40 and 41) and the ST algorithm regarding the stubbornness 
parameter. The main difference is the fact that the rejection of some of the proposed routes 
appears never to be advantageous in terms of average travel time, not even in the Radial and Ring 
map with heavy congestion. 

 

We also experimented varying the user percentage in these scenarios: 

 
Figure 45 – Stubbornness: effect on trip duration with IACO algorithm (Lattice map) 
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Figure 46 – Stubbornness: effect on trip duration with ST algorithm (Lattice map) 

 

Figures 45 and 46 demonstrate that, in both algorithms, the overall performance of the network 
increases with the acceptance level of the system. They also show that, for both algorithms, the 
efficiency deteriorates for high user percentages - it seems to stagnate in most cases.  

 

The stubbornness parameter can produce a negative impact on the network's performance given 
that rejecting the service provider's proposed route is essentially the same as not using the 
system, making individual trips longer and consequently deteriorating the network's throughput. 
The results show precisely that, demonstrating how the overall performance of the network 
increases with the acceptance level. However, and similarly to what happens with the distraction 
parameter, when heavy traffic traverses a more congestion prone map, the fact that some drivers 
reject the proposed route might disperse traffic and improve performance. 

 

Irregularity 

According to Krauß [38], the structure of the model dynamics, such as overreactions (where 
drivers deliberately slow down to velocities lower than necessary) or reduced outflow from jams, 
"is mediated exclusively by the fluctuations that are introduced ad hoc through the 
randomization step. If these fluctuations are eliminated, none of the properties of traffic flow is 
modeled correctly anymore.". 
Experimentations were performed for high (σ = 0,8), default (σ = 0,5),  and low (σ = 0,2) values 
of σ  and are shown in the following figure: 

 
Figure 47 – Effects of irregularity 
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As we can observe in Figure 47, a greater driver imperfection leads to a worse performance in terms 
of travel time. On the other hand, a low value of driver imperfection allows for a significant decrease 
in the average travel time. 

Regarding the irregularity parameter, we can observe in Figure 47 that this parameter greatly 
influences the average travel time. However, and as previously referred, significant modifications 
to these values produce an unrealistic vehicle behavior. So, it was decided to only slightly alter 
this parameter’s values. We also decided to incorporate this parameter into the definition of the 
driver population in order to differentiate precise drivers from those who are more error prone, 
while maintaining the validity of the properties of the traffic flow model. 
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Aggressiveness 

To experiment the created driver types we executed separate simulations for each age group. A 
study by the United States Department of Transportation [49] based on data from 2007, shows 
that there are no significant differences in driver population as far as gender is concerned. So, we 
established the following population distributions: 
 

 
Probability 

Type Young Population 
Middle-aged 
Population 

Elder  Population 

courteous male 20% 30% 40% 

courteous female 25% 35% 45% 

aggressive male 30% 20% 10% 

aggressive female 25% 15% 5% 

Table 2 – Driver populations: type distribution 

 

The study by the United States Department of Transportation [48] also reveals that, on a 
population of over two hundred million American drivers, the age distribution is approximately 
as presented next: 

 from 16 to 39 years of age: ~=42% 

 from 40 to 64 years of age: ~=45% 

 above 64 years of age: ~=13% 

We believe that the distribution of this population is somewhat universal and therefore it can be 
used to portray the Portuguese driving population. Therefore, and in order to perform the next 
testing phase (experimenting all the driver types simultaneously), we established the following 
population distribution: 
 

 
Probability 

Type Young Middle-aged Elder Total 

courteous male 8% 12% 8% 28% 

courteous female 10% 14% 9% 33% 

aggressive male 12% 8% 2% 22% 

aggressive female 10% 6% 1% 17% 

Total 40% 40% 20% 100% 

Table 3 – Aggressiveness: mixed population distribution 
 

The following figures show a comparison between population containing these age groups and a 
default SUMO population for 5.000 and 10.000 vehicles: 

 

 

Figure 48 – Aggressiveness: effect on trip duration (Lattice map)  
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Figure 49 – Aggressiveness: effect on trip duration (Radial and Ring map) 

In Figures 48 and 49 we can observe that the faster and more aggressive driving style performed 
by young drivers achieves a better performance that other alternatives, in both maps. The groups 
that integrate middle-aged or elderly drivers in its population obtain worse results due to their 
poorer acceleration capabilities, lower maximum speed and higher reaction time. The elderly 
group attains the worst results for both maps, given their slower approach. As the traffic load 
increases the difference in performance shortens, although young drivers still achieve better 
results than other population alternatives. 

Regarding the Lattice map, we can observe that for a smaller traffic load, the young population 
achieves a slightly better performance that the default population. However, when the traffic 
load increases its performance deteriorates, obtaining poorer results than its default counterpart. 
This might be due to the fact that the more aggressive driving style performed by young drivers 
only makes them reach the congested areas sooner, consequently increasing congestion and 
waiting times. 

In relation to Radial and Ring map, and similarly to the Lattice map, we can observe that for a 
smaller traffic load, the young population achieves a slightly better performance that the default 
population. With the increase in vehicles in the network, young driver's higher speed and 
acceleration do not seem to make any difference, suggesting that congestion is so great that there 
is not enough space available for these parameters to have a positive influence. On the other 
hand, the other driver populations approximately maintain their performance. 

 
Figure 50 – Aggressiveness: effect on trip duration (Coimbra map)  

We also experimented with the Coimbra map, and as we can see in Figure 50, the results are 
similar to those obtained with the artificial networks, Lattice and Radial and Ring maps. However, 
the difference between the performance of driver types is not so pronounced, except for the 
elderly group. 
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The following figures show a comparison between the same populations as before but now using 
the IACO algorithm: 

 
Figure 51 – Aggressiveness: effect on trip duration with IACO algorithm (Lattice map)  

 
Figure 52 – Aggressiveness: effect on trip duration with IACO algorithm (Radial and Ring map) 

In Figures 51 and 52 we can observe that, similarly to the previous experiments, the young 
drivers achieve a better performance than other alternatives in both maps and that the elderly 
group attains the worst results in both maps.  

The main difference resides in the fact that in Radial and Ring map, the young population obtains 
a slightly better performance that the default population, especially with a higher traffic load. 
This suggests that now, unlike in the previous scenario, there is enough space available for these 
parameters to have a positive influence. Given that the IACO distributes vehicles more evenly 
through the network, congestion is diminished and therefore there is room for greater 
acceleration and speed. Also in the Radial and Ring map, it should be noted that there seems to be 
an irregularity regarding the middle-aged group - with 5000 vehicles, its performance is similar to 
that of the young group and with 10000 vehicles it is very similar to the elderly group. We believe 
that with further testing, the results obtained in this map would become more normalized. 

Regarding the Lattice map, we can also observe a great improvement in the performance of the 
young population with a high traffic load - it now achieves results equivalent to the default 
population, while previously it had achieved inferior performance. 

In Figure 53 we can observe that, similarly to the previous experiments with artificial networks, 
in the Coimbra map young drivers achieve a better performance than other alternatives in both 
maps and that the elderly group attains the worst results in both maps.  
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Figure 53 – Aggressiveness: effect on trip duration with IACO algorithm (Coimbra map)  

The aggressiveness feature shows the influence of differentiating between age groups in the 
network performance and how it must be taken into account to develop a more realistic driver 
population within a simulation.  
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Chapter 5 
Conclusions 

This document consists on a description of the development process of traffic flow optimization 
algorithms and the analysis of their consequences and individual performance. These algorithms 
were applied to a road traffic micro-simulator named SUMO, which served as a test bed for this 
multi-agent system, allowing real-time communication with a given simulation. 

The testing results show that there are benefits in using whether the Shortest Time or the Inverted 
Ant Colony Optimization. Average trip duration is globally reduced, benefiting not only the users of 
the developed algorithms but also for those vehicles who do not make use of the system. Both 
algorithms attempt to disperse traffic in real-time in order to enhance a network's traffic 
throughput. Consequently, fuel consumption and pollutant emissions are greatly reduced. 

Analyzing the Shortest Time and the Inverted Ant Colony Optimization usage results more closely, we 
can observe that both algorithms achieve fairly similar results. However, being a collaborative 
algorithm in nature, the Inverted Ant Colony Optimization algorithm relies heavily on the pheromone 
data provided by the users. As the user percentage increases, the data regarding the network's 
state becomes more accurate and complete and so its best results are attained when the user 
percentage is higher, managing to outperform Shortest Time algorithm in that situation. 

 

We developed features to simulate various driving factors such as driver distraction (that can, per 
example, be caused by mobile phones), driver aggressiveness (which depends on age, gender and 
temper) and driver irregularity (that allows us to differentiate good from bad drivers). Also, with 
the growing demand and diffusion of route planning mechanisms such as Global Positioning 
System, we developed a feature that simulates a driver's stubbornness, i.e., his/hers unwillingness 
to accept the proposed route. 

In order to achieve a more credible model that substantiated the obtained results, we 
experimented the developed set of personality parameters in a real life map with real traffic 
information, along with the developed algorithms. However, due to the current state of the used 
simulator and its previously referred issues, the degree of realism obtained in the presented 
results is not totally clear. On the other hand, in this process we found solace in the hope that 
that the problems we found (which have been reported to the simulator's developers) will be 
corrected in the future version. 

 

In short, our main contributions are: 

 - comprehensive review of fields such as: existing traffic management systems; various uses 
and different implementations of the Ant colony optimization algorithm; the development of 
drivers' personality; 

 - implementation and experimentation of a distributed Inverted Ant Colony algorithm that pro-
actively tries to distribute possible routes for real-time city demand - the experimentation was 
supported by real traffic data from an OD matrix; 

 - introduction of a set of features that are able to reproduce several aspects of a driver’s 
personality and the study of the impact that these personal features have on city transit. 

As a result of this work, we submitted the abstracts of two articles for the World Conference on 
Transport Research 2013 Rio conference. 



Cosmo 

55 
 

Regarding future work, there are various possibilities such as: further improving the quality of 
the real-world network and calibrating real-life scenarios; improving the existing algorithms by 
fine-tuning their parameters or by designing new ones; development of a more accurate driver 
personality modeling. 

In conclusion, the developed work allowed us to achieve a greater degree of realism, both in 
terms of driver behavior and experimentation with real-life scenarios. Also, the developed 
algorithms, which would combine GPS systems with real time traffic information, would be able 
to disperse traffic in real-time and enhance a network's traffic throughput, further improving the 
GPS usefulness. This leads to a significant reduction of fuel consumption and CO2 emissions, 
meaning that the use of these algorithms allows drivers to save money in fuel and is also eco-
friendly. 
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Appendix A 

First Semester Chart: 

 

Figure 54 – First Semester Gantt Chart 
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Second Semester Chart (prediction): 

 

Figure 55 – Second Semester Gantt Chart (prediction) 
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Second Semester Chart (actual chart): 

Figure 56 – Second Semester Gantt Chart (actual chart) 
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Appendix B 

duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
stdDevs 

duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
stdDevs 

total 1144 2312 13 0 total 4771 2330 756 4 

cosmo 1145 2319 19 11 cosmo 4764 2334 768 18 

default 1146 2310 12 4 default 4773 2329 753 6 

total 924 2546 20 99 total 1777 2522 112 34 

cosmo 673 3289 20 332 cosmo 1366 3135 123 148 

default 1008 2311 23 10 default 1914 2318 116 5 

total 1145 2312 6 1 total 4664 2329 726 3 

cosmo 1146 2309 10 6 cosmo 4658 2327 727 7 

default 1142 2320 22 18 default 4683 2337 732 21 

total 738 2923 26 345 total 1532 3073 237 362 

cosmo 694 3128 30 464 cosmo 1424 3344 217 491 

default 868 2310 21 22 default 1855 2318 298 18 

total 1147 2312 - - total 3761 2325 - - 

 
Table 4 – Shortest Distance vs Shortest Time: Lattice map results 
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duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
stdDevs 

duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
stdDevs 

total 1351 1861 121 0 total 3490 1865 238 10 

cosmo 1350 1857 124 11 cosmo 3492 1861 256 14 

default 1357 1863 119 4 default 3477 1863 249 8 

total 1149 2131 136 73 total 3162 2047 1048 118 

cosmo 1100 2999 130 324 cosmo 2900 2615 830 470 

default 1166 1861 139 8 default 3249 1858 1128 3 

total 1368 1861 50 1 total 3543 1860 475 1 

cosmo 1371 1861 50 6 cosmo 3527 1855 471 5 

default 1366 1859 66 16 default 3592 1873 489 12 

total 947 2841 57 360 total 2440 2678 180 299 

cosmo 935 3191 55 467 cosmo 2437 3097 174 400 

default 985 1853 77 14 default 2448 1851 200 14 

total 1320 1862 - - total 3497 1860 - - 

 
Table 5 – Shortest Distance vs Shortest Time: Radial and ring map results 
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duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
StdDevs 

duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
StdDevs 

total 3735 2392 485 7 total 1061 2363 39 6 

cosmo 3085 2992 415 77 cosmo 884 2826 35 66 

default 3807 2325 497 8 default 1086 2312 29 5 

total 2913 2581 402 7 total 1042 2598 15 9 

cosmo 1847 4810 246 80 cosmo 691 5162 22 110 

default 3023 2333 420 3 default 1080 2313 16 5 

total 2453 2482 577 26 total 963 2473 15 16 

cosmo 2092 2962 453 103 cosmo 786 2844 53 51 

default 2573 2322 623 11 default 1031 2329 14 8 

total 1720 2963 112 42 total 921 2969 20 57 

cosmo 1309 4890 123 177 cosmo 671 4940 20 225 

default 1857 2320 116 5 default 1004 2312 23 10 

total 1225 2777 243 523 total 653 2782 124 522 

cosmo 1121 2945 227 558 cosmo 598 2959 116 559 

default 1535 2271 310 440 default 819 2254 154 419 

total 1474 4326 237 82 total 730 4385 26 392 

cosmo 1381 4995 217 108 cosmo 689 5078 30 520 

default 1754 2318 298 18 default 853 2305 21 22 

total 1119 3157 46 222 total 637 3237 15 34 

cosmo 1119 3157 46 222 cosmo 637 3237 15 34 

default 1119 3157 46 222 default 637 3237 15 34 

total 1238 4983 34 159 total 683 4800 10 79 

cosmo 1238 4983 34 159 cosmo 683 4800 10 79 

default 1238 4983 34 159 default 683 4800 10 79 

total 3761 2325     total 1147 2313     

 

Table 6 – Shortest Time vs Ant Colony Optimization: Radial and ring map results 
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duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
StdDevs 

duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
StdDevs 

total 3330 1941 402 5 total 1293 1937 108 22 

cosmo 3129 2714 358 56 cosmo 1174 2682 100 59 

default 3352 1859 407 2 default 1306 1861 109 5 

total 2804 2074 274 9 total 1158 2121 55 11 

cosmo 2544 3995 233 89 cosmo 1006 4456 60 96 

default 2833 1861 282 3 default 1175 1861 56 4 

total 2583 2061 250 12 total 1167 2104 85 16 

cosmo 2415 2675 245 46 cosmo 1061 2789 97 59 

default 2646 1857 261 4 default 1202 1885 83 4 

total 2798 2350 1039 95 total 1042 2462 136 78 

cosmo 2741 3825 888 378 cosmo 988 4404 130 309 

default 2986 1859 1095 5 default 1060 1815 139 8 

total 2045 2392 450 480 total 824 2450 163 467 

cosmo 1993 2593 433 527 cosmo 790 2665 157 510 

default 2164 1791 478 351 default 926 1806 185 342 

total 2460 2913 180 168 total 925 3530 57 328 

cosmo 2456 3265 174 224 cosmo 917 4088 55 437 

default 2473 1855 200 14 default 947 1855 77 14 

total 1943 2823 192 74 total 840 2928 29 16 

cosmo 1940 2830 183 38 cosmo 840 2928 29 16 

default 1951 2800 221 194 default 840 2928 29 16 

total 2120 3805 55 40 total 847 4107 12 96 

cosmo 2120 3805 55 40 cosmo 847 4107 12 96 

default 2120 3805 55 40 default 847 4107 12 96 

total 3497 1860     total 1320 1862     

 

Table 7 – Shortest Time vs Ant Colony Optimization: Lattice map results 
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duration 
avg (s) 

routeLength 
avg (m) 

duration 
stdDev 

routeLength 
StdDevs 

total 4099 4194 670 12 

cosmo 2554 6029 278 144 

default 4276 3990 716 7 

total 4064 4309 469 21 

cosmo 2087 7134 247 210 

default 4283 3996 505 7 

total 2856 4285 342 546 

cosmo 1952 6398 231 58 

default 3156 3978 384 19 

total 2982 4834 279 64 

cosmo 1867 7365 115 272 

default 3354 3991 338 13 

total 1093 5604 158 56 

cosmo 1005 6145 133 81 

default 1356 3983 234 38 

total 1416 6031 65 145 

cosmo 1230 6713 44 197 

default 1979 3985 159 58 

total 727 6066 34 47 

  727 6066 34 47 

  727 6066 34 47 

total 1074 6568 68 36 

  1074 6568 68 36 

  1074 6568 68 36 

total 4709 3992     

 

Table 8 – Shortest Time vs Ant Colony Optimization: Coimbra map results  
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Algorithm 

CO2 
emissions 

avg (g) 

fuel 
consumption 

avg (ml) 

CO2 
emissions 

stdDev 

fuel 
consumption 

stdDev 

CO2 
emissions 

avg (g) 

fuel 
consumption 

avg (ml) 

CO2 
emissions 

stdDev 

fuel 
consumption 

stdDev 

5286 2108 24 10 24801 9888 3380 1348 

4974 1983 34 14 17014 6780 2281 909 

4333 1728 24 10 11791 4699 151 60 

4370 1743 37641 15 10928 4344 96710 19 

5270 2107 51 11 22196 8849 3276 1307 

5234 2087 35 14 14442 5755 259 103 

5267 2100 56 22 14004 5594 244 92 

5255 2092 30750 29 13306 5357 120388 55 

5459 2177 - - 34637 13813 - - 

5533 2206 237 93 22559 8993 2760 1101 

5251 2094 191 76 18248 7261 1302 518 

4597 1833 78 31 16060 6399 1016 404 

4769 1884 62147 4 17075 6860 195717 68 

5416 2168 133 55 19913 7938 2005 799 

5296 2112 119 47 18237 7269 1440 574 

5533 2206 88 35 17498 6975 849 337 

5439 2174 52703 28 17372 7043 487022 175 

5618 2240 - - 27750 11066 - - 

- - - - 30473 12155 11092 1088 

- - - - 25252 10050 9711 601 

- - - - 18369 7316 6551 341 

- - - - 16782 6676 308853 121 

- - - - 30478 12143 10928 11067 

- - - - 25887 10382 9149 490 

- - - - 20550 8147 7762 103 

- - - - 19209 7796 314703 114 

- - - - 33227 13253 - - 

 

Table 9 – Shortest Time vs Ant Colony Optimization: CO2 emissions  
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map Lattice 

number of vehicles 5.000 10.000 

user percentage 0,25 0,75 1 0,25 0,75 1 

average time (s) 959 690 634 2660 1404 1106 

average distance 
(m) 

2970 3140 3109 2899 3135 3193 

stddev time 11,11 8,26 17,65 166,96 22,58 32,97 

stddev distance 49,03 27,41 77,38 416,46 21,94 43,99 

average time (s) 981 760 675 2875 1461 1279 

average distance 
(m) 

3016 3097 3142 3035 3142 3209 

stddev time 7,69 13,23 12,34 182,65 36,95 31,95 

stddev distance 39,72 70,25 60,80 15,81 16,08 34,83 

average time (s) 996 782 738 3192 1574 1424 

average distance 
(m) 

2968 3112 3132 3041 3147 3192 

stddev time 11,01 30,89 9,64 315,07 149,92 46,58 

stddev distance 61,64 23,97 50,13 12,16 29,84 38,85 

time (m) 968 659 602 2354 1253 1053 

distance (s) 2945 2907 2957 2959 2905 2924 
 

Table 10 – Distraction feature: IACO with different user percentages in Lattice map  
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  map Lattice Radial and Ring 

number of vehicles 5000 10000 5000 10000 

average time (s) 634 1106 850 2410 

average distance (m) 3109 3195 2873 2714 

stddev time 17,65 18,44 39,86 164,50 

stddev distance 77,38 37,98 45,94 44,76 

average time (s) 675 1279 885 2398 

average distance (m) 3142 3209 2881 2739 

stddev time 12,34 31,95 20,10 209,83 

stddev distance 60,80 34,83 41,82 39,92 

average time (s) 738 1424 1010 2534 

average distance (m) 3132 3192 2889 2743 

stddev time 9,64 46,58 28,61 265,55 

stddev distance 50,13 38,85 34,01 49,17 

time (m) 602 1053 829 2223 

distance (s) 3157 3224 2811 2677 

 

Table 11 – Distraction feature: effect in different maps  
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  map Lattice Radial and Ring Coimbra Lattice Radial and Ring Coimbra 

number of vehicles 5000 10000 5000 10000 10000 5000 10000 5000 10000 10000 

average time (s) 581 1020 759 1724 734 1052 4865 1238 3482 4803 

average distance (m) 2192 2236 1933 2029 6061 2310 2331 1861 1860 3992 

stddev time 8,84 27,34 9,32 63,04 48,26 9,14 783,57 65,23 496,28 49,45 

stddev distance 2,26 8,35 5,17 5,75 1,62 0,16 3,32 0,41 1,99 0,34 

average time (s) 818 1578 1030 2698 877 1533 6592 1568 4474 5080 

average distance (m) 2199 2244 1941 1974 6042 2309 2336 1861 1860 3991 

stddev time 12,50 39,55 20,51 271,29 39,64 62,75 607,05 63,12 446,79 91,91 

stddev distance 6,88 2,38 3,56 27,57 35,01 0,43 3,55 0,31 1,09 0,11 

average time (s) 1098 2417 1382 3369 1582 2348 7790 1950 5136 6835 

average distance (m) 2230 2253 1953 1971 6075 2313 2341 1861 1861 3991 

stddev time 363,08 109,97 21,61 246,09 311,76 2659,22 971,86 145,45 517,45 576,64 

stddev distance 23,48 4,23 21,61 32,18 41,73 13,98 4,66 145,45 1,50 0,14 

average time (s) 765 1567 1009 2858 943 1466 6427 1596 4288 5164 

average distance (m) 2181 2241 1940 1983 6065 2309 2337 1861 1861 3991 

stddev time 374,33 40,75 12,38 293,59 53,00 2539,28 730,12 85,55 547,03 342,87 

stddev distance 19,93 4,66 3,67 24,09 27,67 13,63 3,60 0,49 1,74 0,26 

time (m) 602 1053 829 2223 698 1147 3761 1320 3497 4709 

distance (s) 2457 2524 1811 1677 6040 2312 2325 1862 1860 3992 
 

Table 12 – Aggressiveness feature results 
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Inverted Ant Colony algorithm Shortest Time algorithm 

map Lattice 
number of vehicles 5.000 10.000 5.000 10.000 

user percentage 0,25 0,75 1 0,25 0,75 1 0,25 0,75 1 0,25 0,75 1 

average time (s) 1114 936 927 5229 3641 1820 1125 1009 1004 4009 3617 2358 

average distance (m) 2277 2143 2181 2302 2215 2050 2358 2389 2458 2346 2360 2397 

stddev time 28,38 53,35 100,43 674,13 1520,50 30,86 55,12 96,52 99,43 1281,36 1485,10 1032,22 

stddev distance 33,33 14,95 92,87 43,74 136,98 22,83 53,88 70,09 64,03 8,89 49,75 73,91 

average time (s) 1047 845 810 3157 1661 1623 978 886 903 2255 1639 1665 

average distance (m) 2259 2007 2220 2266 2224 2285 2356 2411 2408 2352 2258 2380 

stddev time 31,52 20,93 35,21 22,80 22,80 214,78 14,30 51,02 45,58 47,73 47,73 591,84 

stddev distance 8,90 190,61 31,94 99,45 99,45 93,43 12,46 45,15 41,24 118,30 118,30 52,67 

average time (s) 980 758 659 2525 1469 1278 972 787 752 1865 1530 1402 

average distance (m) 2257 2283 2367 2337 2395 2426 2365 2397 2413 2365 2423 2399 

stddev time 17,11 23,87 15,94 74,29 26,83 55,87 25,82 19,22 41,10 62,40 54,37 733,89 

stddev distance 26,27 28,87 36,07 21,73 12,23 32,52 8,77 18,56 32,02 10,01 14,00 53,74 

time (m) 968 659 602 2354 1253 1053 921 729 679 1777 1532 1230 

distance (s) 2445 2907 2457 2459 2905 2524 2411 2425 2419 2522 3073 2399 
 

Table 13 – Stubbornness feature: IACO and ST with different user percentages in Lattice map 
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Inverted Ant Colony algorithm Shortest Time algorithm 
map Lattice Radial and Ring Coimbra Lattice Radial and Ring 

number of vehicles 5000 10000 5000 10000 10000 5000 10000 5000 10000 

average time (s) 927 1820 1127 3417 3675 1004 2225 1083 3448 

average distance (m) 2181 2050 1778 1801 5656 2458 2413 1931 1833 

stddev time 100,43 30,86 129,40 775,86 146,82 99,43 942,54 60,55 493,66 

stddev distance 92,87 22,83 64,12 69,16 19,73 64,03 54,64 29,27 33,92 

average time (s) 810 1623 984 2178 2855 910 1664 1044 2348 

average distance (m) 2220 2285 1838 1767 5755 2404 2385 1915 1870 

stddev time 35,21 214,78 64,38 139,95 83,82 36,75 167,89 60,15 101,25 

stddev distance 31,94 93,43 31,92 10,96 55,34 41,08 19,45 21,47 31,41 

average time (s) 659 1278 828 2195 1325 742 1405 888 2274 

average distance (m) 2367 2426 1969 1915 6065 2401 2389 1848 1707 

stddev time 15,94 55,87 21,21 181,09 42,60 39,15 42,98 22,19 30,09 

stddev distance 36,07 32,52 43,51 24,72 5,15 15,19 29,61 5,90 20,16 

time (m) 602 1053 829 2223 698 602 1053 829 2223 

distance (s) 2457 2524 1811 1677 6040 2457 2524 1811 1677 

 

Table 14 – Stubbornness feature: IACO and ST in different maps  

 


