

PulseViews: A Solution
for Pulse Dashboarding
Luís Filipe Alves Cardoso
lfac@student.dei.uc.pt

Supervisors:

Eng. Olga Filipova

Prof. Tiago Baptista

20 of September of 2012

Master in Informatics Engineering
Internship
Final Report

PulseViews: A Solution for Pulse Dashboarding

 i

Abstract

Today most Business Intelligence solutions are still far from being real-time. FeedZai is a
technological spin-off from the University of Coimbra which develops FeedZai Pulse. Pulse
processes large amounts of data in real-time to help business users make better decisions.
The objective of this work was to enhance the capabilities of Pulse, more specifically to
improve the quality and ease of implementation of the dashboards that the users will interact
with. This was accomplished by creating Pulse Views. Pulse Views is an easy to use web
graphical interface to create Pulse Applications and web dashboards empowering business
users. Pulse Views has been deployed as part of Pulse, version 12.1.0 in July 2012.

Keywords

“Dashboard” “FeedZai Pulse” “HTML5” “JavaScript” “BAM”

Nomenclature

BAM Business activity monitoring

BI Business Intelligence

CSS Cascading Style Sheets

DOM Document Object Model

HTML HyperText Markup Language

IT Information technology

KPI Key performance indicator

OS Operating system

UI User interface

SQL Structured Query Language

SVG Scalable Vector Graphics

WDO Widget Definition Object

PulseViews: A Solution for Pulse Dashboarding

 ii

Acknowledgments

I would like to thank my family, especially my parents, for giving me the support to get here.

I would like to thank my mentors, for all their advice, counsel and motivational speeches.

I would like to thank FeedZai, for giving me the opportunities that I was looking for.

I would like to thank my friends, for all the help and good moments.

You are all great!

PulseViews: A Solution for Pulse Dashboarding

 iii

Table of Contents

Chapter 1 - Introduction ... 1

1.1 Purpose ...1

1.2 Vision ..1

1.3 Contributions ...2

1.4 Document Organization ..2

1.5 Annexes ..2

Chapter 2 - State of the Art .. 3

2.1 Introduction ...3

2.2 Generic Structure of a Dashboard ...4

2.3 Existing Dashboard Building Tools ...5

2.3.1 Introduction .. 5

2.3.2 Comparison ... 6

2.3.3 Lessons Learned ... 7

2.4 FeedZai Pulse...8

2.4.1 Introduction .. 8

2.4.2 Architecture .. 8

2.4.3 Concepts .. 9

Chapter 3 - Views: a Dashboarding Solution for Pulse ... 10

3.1 Introduction .. 10

3.2 Requirements .. 11

3.3 Approach ... 13

3.3.1 Overview .. 13

3.3.2 Architecture ... 14

Chapter 4 – Implementation .. 22

4.1 Introduction .. 22

4.2 Technologies and Libraries ... 24

4.3 A Quick Introduction to Backbone .. 26

4.4 Metadata API .. 26

4.4.1 Introduction ... 26

4.4.2 Dashboard Configuration Data Model ... 27

4.4.3 Dashboard Permissions Model .. 27

4.5 Widget Definition Object ... 27

PulseViews: A Solution for Pulse Dashboarding

 iv

4.6 Layout Manager .. 28

4.6.1 Introduction ... 28

4.6.2 Abstract Layout Model .. 29

4.6.3 Implementation ... 31

4.7 Widget Options .. 32

4.7.1 Introduction ... 32

4.7.2 Defining Options Declaratively ... 32

4.7.3 Rendering Declaratively Created Options .. 33

4.7.4 Custom Option View ... 35

4.8 Widget Events .. 36

4.9 Embeddable Dashboards .. 37

4.10 Plugins ... 38

4.11 Drill Widget .. 39

4.12 iOS Support ... 40

4.12.1 Introduction ... 40

4.12.2 Requirements ... 40

4.12.3 Results ... 41

Chapter 5 - Results .. 43

5.1 Introduction .. 43

5.2 Examples ... 43

5.2.1 Dashboards .. 43

5.2.2 Widgets ... 44

5.2 Tests ... 48

5.2.1 Introduction ... 48

5.2.2 Unit .. 48

5.2.3 UI ... 49

5.2.4 Compatibility ... 49

5.3 Documentation ... 49

Chapter 6 - Work Plan and Methodology .. 50

6.1 Introduction .. 50

6.2 First Semester ... 50

6.2.1 High Level Planning ... 50

6.2.2 Operational Planning ... 50

6.3 Second Semester ... 51

PulseViews: A Solution for Pulse Dashboarding

 v

6.3.1 High Level Planning ... 51

6.3.2 Operational Planning ... 51

6.4 Methodology ... 53

6.4.1 Scrum .. 53

6.4.2 Roles .. 54

6.4.3 Events ... 54

6.4.4 Artifacts .. 54

6.5 Version Control System .. 55

Chapter 7 - Conclusions and Future Work .. 56

References ... 57

PulseViews: A Solution for Pulse Dashboarding

 vi

List of Tables

Table 1. Dashboard building tools overview. .. 7

Table 2. Main libraries used by Pulse Views. ... 26

Table 3. Reference of the most relevant Metadata API resources. .. 26

Table 4. Reference of the layout manager modules. ... 31

Table 5. Custom Options View interface. .. 35

Table 6. Reference of the generic custom option views. ... 36

Table 7. Requirements for adapting jPulse components to iOS ... 41

Table 9. Sprints calendar for the first semester. .. 51

Table 10. Sprints calendar for the second semester.. 52

Table 11. The roles, events and artifacts of Scrum. .. 54

PulseViews: A Solution for Pulse Dashboarding

 vii

List of Figures

Figure 1. A dashboard that utilizes jPulse. ... 1

Figure 2. Example of a dashboard. ... 3

Figure 3. Example of an analytical dashboard built with Pulse. ... 4

Figure 4. Dashboard elements. .. 5

Figure 5. Java BoxLayout layout manager. ... 5

Figure 6. How Pulse handles the past, present and future.. .. 8

Figure 8. Simple dashboard built manually. ... 10

Figure 9. Overview of Pulse Views from a use case perspective. ... 11

Figure 10. Pulse Views architecture on a conceptual level. ... 13

Figure 11. Static perspective of the Widget API. .. 15

Figure 12. Static perspective of the Viewer.. .. 16

Figure 13. Static perspective of the Embeddable. ... 17

Figure 14. Static perspective of the Builder. .. 17

Figure 15. Dynamic perspective of the Widget API. .. 19

Figure 16. Dynamic perspective of the Viewer. .. 20

Figure 17. Dynamic perspective of the Builder. .. 21

Figure 18. Dashboard list screen in the Builder. ... 22

Figure 19. Dashboard edit metadata screen in the Builder. ... 22

Figure 20. The dashboard preview screen in the Builder. ... 23

Figure 21. The dashboard layout authoring screen in the Builder. ... 23

Figure 22. The widget options editor in the Builder. .. 24

Figure 23. The Viewer. .. 24

Figure 24. Dashboard in preview mode in the Builder. ... 28

Figure 25. Dashboard in layout authoring mode in the Builder. .. 29

Figure 26. Example of the stack based rendering of containers. .. 29

Figure 27. Example of stacking in a column. .. 30

Figure 28. Options of the plot widget. ... 32

Figure 29. Example of declarative options configuration. ... 33

Figure 30. Example of an options tab with the KPI flag enabled. ... 34

PulseViews: A Solution for Pulse Dashboarding

 viii

Figure 31. Example of the add KPI screen. ... 34

Figure 32. Events configuration tab. ... 36

Figure 33. The options screen of a dashboard. ... 38

Figure 34. Example of the usage of the drill widget. .. 39

Figure 35. jPulse Plot chart before adaptation. ... 41

Figure 36. jPulse Plot chart after adaptation. ... 41

Figure 37. jPulse Drill Down Table before the adaptations. ... 42

Figure 38. jPulse Drill Down Table after the adaptations. .. 42

Figure 39. Banking demo dashboard image. .. 43

Figure 40. Telco demo dashboard image. .. 44

Figure 41. Example of an instance of the plot widget showing real time data. 44

Figure 42. Example of the gauge widget. ... 45

Figure 43. Example of multiple gauges in the same widget. ... 45

Figure 44. Example of the bullet widget with multiples. ... 45

Figure 45. Example of the text widget. ... 46

Figure 46. Example of the tabs widget. .. 46

Figure 47. Example of the map widget... 47

Figure 48. Different types of legends for the map widget. .. 47

Figure 49. The original work plan. .. 50

Figure 50. High level view of how the work progressed. .. 50

Figure 51. The work plan revised to include Pulse Views. .. 51

Figure 52. The Scrum Process. .. 54

Figure 53. Git branching model.. ... 55

PulseViews: A Solution for Pulse Dashboarding

 ix

PulseViews: A Solution for Pulse Dashboarding

 1

Chapter 1 - Introduction

1.1 Purpose

This document describes the design and implementation of Pulse Views. Pulse Views is a
dashboarding solution developed for the product FeedZai Pulse as a part of the thesis of the
Master in Informatics Engineering of the University of Coimbra.

This project took place during the academic year of 2011/2012 and was hosted by FeedZai
at Instituto Pedro Nunes.

1.2 Vision

One of the toughest problems companies face today is "how to make decisions that matter".
Moreover, those decisions have to be made quickly and accurately – in real-time.
Unfortunately, more and more, a huge amount of data is flooding through the organization’s
data processing systems and companies are unable to access the information they so vitally
need. And, while current database systems do allow storing large amounts of data, being able
to act in real time over that data is an enormous challenge. FeedZai is a technological spin-
off of the University of Coimbra. FeedZai develops a product --FeedZai Pulse-- that closes
that gap. It allows the processing of very large amounts of data, before the data is even
stored, producing real-time, actionable, business intelligence.

Pulse has, besides its data processing and integration components, a JavaScript toolkit:
jPulse. jPulse allows developers to add real-time dashboarding widgets to web dashboards.
For creating a dashboard a developer needs to code a HTML page with snippets that call
this Pulse library that enables to retrieve and show updates in real time using several
components (e.g., series charts, bullets and others).

See Figure 1 for an example of a web page containing several jPulse widgets.

Figure 1. A dashboard that utilizes jPulse.

A major downside of the jPulse toolkit is that developers must use it and integrate its
components by writing code. This can be a tedious, error prone and a costly process; even
more if you want to deploy to various platforms (e.g., web, iOS, Android). To improve
productivity a more visual and easy to use approach is needed. Pulse Views aims to do just

PulseViews: A Solution for Pulse Dashboarding

 2

that: it allows creating, updating and viewing dashboards as well as controlling almost any
aspect of Pulse Server. All of this is made available via a web browser as soon as the user
finishes installing FeedZai Pulse so that they can create and share dashboards right away.

1.3 Contributions

In particular, the following contributions were made:

 Pulse Views dashboard builder, which allows creating and editing dashboards.

 Pulse Views dashboard viewer, which allows viewing dashboards.

 Pulse Views embeddable dashboards, which allows embedding Pulse Views

dashboards in external HTML pages.

 Pulse Views Widget API, which renders and allows authoring of widgets.

 Several Pulse Views Widgets.

 Implemented support for iOS in jPulse components.

Overall, the results of the internship were very positive. The objectives set forward were
accomplished and the contributions of the project were integrated into Pulse 12.1.0 which is
now being used by several FeedZai clients.

1.4 Document Organization
This document is organized as follows:

 Chapter 2, “State of the Art”, explains the concepts behind dashboards, compares

four existing dashboard building solutions and describes FeedZai Pulse.

 Chapter 3, “Views: a Dashboarding Solution for Pulse”, gives an overview of Pulse

Views, its requirements and architecture.

 Chapter 4, “Implementation”, takes a detailed look at the main components of the

system.

 Chapter 5, “Results”, discuss the achieved results and tests.

 Chapter 6, “Work Plan and Methodology”, looks at the initial plan for the

internship, explains how that plan evolved and makes an evaluation of how well that

plan was executed and why.

 Chapter 7, “Conclusion and Future Work”, summarizes the lessons learned and

explains where to go next.

1.5 Annexes
 Annex A State of the Art

 Annex B flot and jqPlot Performance Tests

 Annex C Requirements

 Annex D Planning

 Annex E Implementing a Simple Dashboard

 Annex F Early Versions of the Map Widget

PulseViews: A Solution for Pulse Dashboarding

 3

Chapter 2 - State of the Art

2.1 Introduction

Stephen Few, one of the lead visual information designers worldwide, defines a dashboard
as:

“(…) a visual display of the most important information needed to achieve one or more
objectives; consolidated and arranged on a single screen so the information can be
monitored at a glance.” [1, pp. 34]

The concept of dashboard comes from the Executive Information Systems (EISs), first
developed in the 1980s [1, pp. 6]. Their value is their potential to help with the problem of
information overload and deliver insight in an especially powerful way. They do this by using
high-resolution graphics, emphasizing performance management and metrics and by using
knowledge of the visual perception field [1, pp. 37].

According to Few, dashboards can have three different roles:

 Strategic – This is the primary use of dashboards. In this role a dashboard “provides

the quick overview that decision makers need to monitor the health and

opportunities of the business.”

 Analytical – As the purpose of these dashboards is to perform some kind of analysis.

They provide “rich comparisons, more extensive history, and subtler performance

evaluators.”

 Operational – These dashboards are used to monitor operations, and thus they allow

the operator to “maintain awareness of activities and events that are constantly

changing and might require attention and response at a moment’s notice.”

An example of a dashboard can be seen on Figure 2.

Figure 2. Example of a dashboard. Source:
http://www.microstrategy.com/mobile/graphics/ipad/cfodashboard-4.png

http://www.microstrategy.com/mobile/graphics/ipad/cfodashboard-4.png

PulseViews: A Solution for Pulse Dashboarding

 4

Currently Pulse dashboards have mostly an operational role although they have some
analytical features. To give an example, SIBS uses Pulse to monitor transactions and other
metrics in real time: if a bank system goes down the operations are immediately alerted and
proper action can be taken. Other example is ServeBase (a payment processor) that uses
Pulse to do analytics, namely to compare metrics form several customers (see Figure 3).

Figure 3. Example of an analytical dashboard built with Pulse.

2.2 Generic Structure of a Dashboard

The basic element of a dashboard is the widget. Widgets are self-contained UI elements that
accomplish a specific function (e.g., a pie chart). Typically in dashboards the function of a
widget is to display information.

Besides widgets, dashboards can also contain navigation elements (e.g., link) and visual (e.g.,
image) elements. Figure 4 shows an example, where you can see a dashboard and several
widgets and elements.

PulseViews: A Solution for Pulse Dashboarding

 5

Figure 4. Dashboard elements.

The position and size of the elements on the dashboard is determined by the layout
manager. Typically a layout is composed of containers to where the user can assign widgets.
For instance to give an example, Java has several layout managers, like BoxLayout (see
Figure 5) which puts elements in a single row or column.

Figure 5. Java BoxLayout layout manager.

The function of a dashboard builder is simply to allow the user to choose the desired layout,
the desired element (widgets or otherwise) and their configuration and the container of the
layout where each element should be rendered.

2.3 Existing Dashboard Building Tools

2.3.1 Introduction

Real-time dashboarding, with automatic update latencies inferior to one second, is a
relatively new area. Since there aren’t a lot of solutions in this regard, most of the current
state of the art is focused in solutions that present data from relatively static sources (like

PulseViews: A Solution for Pulse Dashboarding

 6

traditional databases or data warehouses). In this realm there are solutions from various
vendors and in this work we choose to analyze the following ones:

1. MicroStrategy Mobile Suite [2] - strategic dashboards

2. QlikView 11 [3] - analytical dashboards

3. Tableau Desktop [4] - analytical dashboards

4. Splunk [5] - strategic/analytical dashboards

MicroStategy Mobile Suite is a traditional BI tool that is oriented to reports and strategic
dashboards. It works on top of data warehouses and data marts.

QlikView is an analytics oriented tool that works on top of a custom in-memory database
that allows for data to be filtered by several dimensions very fast.

Tableau Desktop is an analytics oriented tool similar to QlickView but much more focused
on following good information design (i.e., how to display data) and usability practices
(which are one of their main selling points).

Splunk is a tool for a very specific vertical: machine data (e.g., logs) analysis. Although not
currently a direct concurrent of Pulse, it shares several key aspects that make it interesting to
analyze.

The choice of the solutions was based on their relevance in the market and their similarity
with Pulse in terms of dashboard objectives. The detailed state of the art can be found in the
chapter 2.1 of the Annex A.

2.3.2 Comparison

All products share some common aspects, namely:
1. Support for multiple platforms (e.g. web, iOS), which is important because it allows

users to view dashboards in the device that is most convenient to them.

2. Focus on avoiding scrolling on the dashboards, which is important because it helps

the user to keep focused and compare data.

3. Focus on visual ways to navigate through data, which is important because it makes

the discovery process more intuitive.

4. High variety of widgets, which gives users more options to display the data. This is

useful only to the extent that it gives users the right tools for the job and not just

different ways of showing data the wrong way.

5. Ability to be used by non-IT personnel (to some degree):

a. Emphasis on being easy to develop (e.g., providing undo/redo). This is

important because it allows users to build dashboards without the help of IT

experts (which slows the process down and increases its cost).

b. Ability to share and export content on the dashboards. This is important

because it allows users to communicate and store the information present on

the dashboard.

On the other hand, there are some very distinct aspects:
1. QlikView and Tableu use an associative model for data exploration in which users

can easily filter data by several dimensions and immediately see that data in charts,

tables, etc. Splunk uses a search query based model in which users explore data by

PulseViews: A Solution for Pulse Dashboarding

 7

interactively writing queries. These two approaches are, arguably, more intuitive than

the traditional BI model which is used by MicroStrategy.

2. The MicroStrategy suite has more charts (see Table 6 in Annex A). QlickView and

Tableu have fewer but more adequate charts. Especially Tableu that goes so far as to

suggest the best charts for different types of data. This is important because if we

help the user to build better dashboards (in this case by helping in picking the right

widget) the information in them will be more efficiently transmitted.

QlikView and Splunk have a more open architecture (they use standards like HTML and
JavaScript). This makes them less dependent on third party vendors and increases the
number of compatible platforms.

In terms of dashboard building the highlights can be seen in Table 1.

 MicroStrateby QlickView Tableau Splunk

Layout Approach 12 layouts or
absolute
positioning.

Absolute
positioning or
gird.

Based on
horizontal
and vertical
flows.

Row based.

Layout Complexity Average High Average Low

Layout
management/preview
separation

No No No Yes

Number of widgets High High Low Low

Widget Configuration Complex Complex Simple Simple
Table 1. Dashboard building tools overview.

In conclusion Splunk has the simpler and more easy to use dashboard editor (although it is
not as powerful as the others).

2.3.3 Lessons Learned

Given that one of the main objectives was to have an easy to use tool we can conclude that
key features to have are:

 Distinct modes for the layout editor and the preview. This allows for the user to

either focus on the layout or in the widgets by simplifying the two use cases.

 Simple and straightforward widget configuration: number of options reduced to a

minimum and the use of smart defaults. This reduces the time it takes configure a

widget.

 Web interface as the way to control the entire application. This approach is more

modern, less OS dependent and less costly to deploy and maintain.

 Fewer but better widgets. Given that most users do not have much formation in

Information Dashboard Design it’s better to give them less and better options in

terms of ways to display data.

 Simple layout manager (possibly row based). This reduces the time it takes for a user

to build a dashboard.

PulseViews: A Solution for Pulse Dashboarding

 8

2.4 FeedZai Pulse

2.4.1 Introduction

FeedZai Pulse is a product being developed by FeedZai in the area of real-time data
processing. In this context "real-time" means the ability to produce actionable information
updated to the second.

In particular, Pulse aims to solve the following problem: How to provide decision makers
with Key Performance Indicators (KPIs) about their operations, updated to the second,
being possible to instantaneously compare those KPIs against historical baselines, dissect the
information as it arrives, generate alarms and actions when unexpected events occur. Figure
6 illustrates the KPI concept and how it can be compared to the past and future.

Furthermore, Pulse is optimized for being able to do this for huge volumes of data coming
from operational systems.

Figure 6. How Pulse handles the past, present and future. Source: internal FeedZai presentation.

2.4.2 Architecture

In terms of architecture, operational systems feed a Pulse server with data. Pulse provides a
number of input connectors which allow information to arrive in real-time (e.g.,
Sockets/HTTP-JSON/WebServices, etc.). Information is processed in the Pulse Application
Server which, in the end, can either be feed to other systems or immediately made available
using a web interface called HTTP Output Adapter [6] which is used by jPulse [7], a
JavaScript library that is the basis of the real time dashboarding components [8]. This
architecture is illustrated by Figure 7.

At the core of the FeedZai Pulse engine resides a high-performance Complex Event
Processing (CEP) engine. The engine allows continuous queries to be defined which
produce results as new data arrives at the system. A continuous query typically works over a
time window. For example, a possible query is: "calculate the average power consumption of
the electric over a time window of the last 10 minutes". The system maintains in memory
the events corresponding to the time window needed to calculate the average. As new events

PulseViews: A Solution for Pulse Dashboarding

 9

arrive them are added to the window, and as they become obsolete they are removed from
the window. Note that the result of the query can be computed extremely efficiently. As the
query is continuously producing an "average", the system only needs to maintain a "total"
value and a counter of events being used. These two values are updated with the new data
coming to the window (increasing the total and the count) or as old data expires (decreasing
the total and the count). Contrary to what happens in a database, there's no need to revisit
all the records (events) to produce a new result. Furthermore, the events that are not being
used in the time window, for time windows that are quite large, can be temporally sent do
disk in bulk.

Figure 7. Architecture of Pulse.

2.4.3 Concepts

 A stream represents a source of real-time data. It's like a connection port between

the world and Pulse.

 A hierarchy represents how you want to navigate the data for a number of related

KPIs

 A KPI (Key Performance Indicator) represents a business metric that needs to be

tracked in real-time. KPIs are always associated with a certain hierarchy.

 A baseline represents values that we expect a KPI to have at a certain moment.

 Alerts are notifications sent to the user whenever a KPI reaches some limits.

Examples of limits are baseline boundaries and fixed values.

PulseViews: A Solution for Pulse Dashboarding

 10

Chapter 3 - Views: a Dashboarding Solution for Pulse

3.1 Introduction

The main objective of this project was to build a dashboarding solution for Pulse. As Pulse
already supported building dashboards, albeit manually, one of the first steps taken before
defining what Pulse Views would be was to create a simple yet complete dashboard using
Pulse.

The chosen application was a monitoring system for EDP and the resulting dashboard can
be seen in Figure 8. It features a drillable map, three KPIs and is iOS optimized. A complete
report can be found in Annex E.

Figure 8. Simple dashboard built manually.

During this experience it was clear that the existing abstractions were too low level and even
for programmers the learning curve was steep. With jPulse it was not feasible to expect non-
IT personnel to build dashboards with Pulse and this was a major limitation. Pulse Views
aimed to solve these problems by providing an easy to use and intuitive UI that can be used
by non-IT personnel.

PulseViews: A Solution for Pulse Dashboarding

 11

3.2 Requirements

On a very high level the requirements can be described by Figure 9.

Figure 9. Overview of Pulse Views from a use case perspective.

A detailed analysis of the requirements can be found on Annex C. Even so overall, there are
four main groups of requirements:

1. Global requirements

2. Building dashboards

3. Viewing dashboards

4. Widget authoring

And three roles:

 Data Analyst – The role of the data analyst is to explore the data and build the

dashboards that better conveys its.

 Business User – The role of the business user is to use the information presented

in the dashboards to make informed decisions.

 Developer – The roles of the developer are to author new widgets and to integrate

the embedded dashboards into custom web pages.

The summary of global requirements follows:

 Pulse Views must be packaged inside the Pulse Server as a web application

 The user can only access Pulse Views with a valid username and password

 Pulse Views implements the concept of a Pulse App, which is a self-contained and

independent entity created by a user. Inside a Pulse App there can be several

dashboards that can only access the resources of that Pulse App.

 The possible data sources for widgets are:

o KPIs: represents a business metric that needs to be tracked in real-time

PulseViews: A Solution for Pulse Dashboarding

 12

o Alerts: notifications sent to the user whenever a KPI reaches some limits

o Custom Data Sources: connections to external databases that fetch records

of a given table

The viewing dashboards requirements are pretty straightforward. The user must be able to:

 Open and view a dashboard if he has access to it

 Be able to switch to other dashboards of the same Pulse App

The building dashboards requirements include the ability to:

 Create, preview, edit and delete dashboards if the user has access to the dashboard

 A dashboard must have the following attributes:

o A human readable name

o A machine name (for use in URLs for example)

o A description of its layout

o A list of the widgets in the dashboard and their place in the layout

o Security definitions

o Custom CSS to apply to the dashboard

 Define an initial layout for the dashboard and change it later. The layout manager

must allow the user to define containers with various row and column spans and to

remove containers.

 Assign widgets to a layout container

 Configure the widget settings including:

o Widget related settings

o Data source related settings

 Generate a HTML snippet to embed dashboards in other web pages hosted in the

same instance of the Pulse server.

In order to allow the authoring of widgets by both users and other FeedZai employees it
must be possible to:

 Define a rendering function that is responsible to render the widget and that is

agnostic to the way and the place where the rendering is done

 Define a set of options which will be configured by the user

 Define the necessary metadata to ensure that the widget is rendered properly

 Allow for event based communication between the widgets

 Define all aspects of a widget in a single file

 Add new widgets to the library in a Pulse production instance

PulseViews: A Solution for Pulse Dashboarding

 13

3.3 Approach

3.3.1 Overview

This section provides an overview of the architecture by looking at the top level elements
that constitute it. Figure 10 shows the architecture at a conceptual level.

Figure 10. Pulse Views architecture on a conceptual level.

 Pulse DB – Storage abstraction used by the Pulse modules. It provides a common

abstraction atop of several database engines. This abstraction implements a limited

subset of SQL functionality.

 Authentication – Authentication of Pulse users.

 Authorization – Manages the access to various resources including Pulse Apps and

dashboards.

 Output Adapter – Provides an API to access the output of the event processing

engine.

 Metadata management – Provides an API to access metadata regarding Pulse

Apps and their components.

 Pulse Core Engine – Modules responsible for the event processing, KPIs,

baselines, rules and other internal modules.

 Plugin Loader – Responsible for discovering external widgets (i.e., widget

implemented by Pulse developers) and making them available to be used by the

Widget API.

PulseViews: A Solution for Pulse Dashboarding

 14

 Viewer – Web application which sole responsibility is showing the dashboards to

the user.

 jPulse – Library to facilitate the interaction with the Output Adapter.

 Builder – Web application that allows users to manage all aspects of the Pulse Apps.

This includes managing and authoring dashboards and dashboard layouts,

configuring widget options, accessing the Viewer and the embeddable script.

 Embeddable – Script that allows for rendering Pulse Views dashboards in external

web pages. This includes loading all the necessary dependencies and initializing the

Viewer.

 Widget API – Collection of modules that allow for loading, initializing and

rendering widgets.

 WDOs – (Widget Definition Objects) Collection of modules that implement

widgets.

3.3.2 Architecture

3.3.2.1 Introduction

The architecture of Pulse Views will be described in two perspectives: static and dynamic.

The static perspective shows the code modules (and their dependencies) of the system and
the dynamic perspective shows the flow of data while the system is running. Each module
corresponds to a physical source code file.

Typically a physical perspective is also included, but in this case that as deemed as
unnecessary because it would be composed of only a web server and a web browser.

3.3.2.2 Static Perspective

This section will present a static perspective view of the architecture components (see Figure
10) implemented in this project. These components are the Viewer, Builder (only in part
implemented in this project), Embeddable and Widget API. Regarding the WDOs only
some of them were implemented in this project and those are presented in section 5.2.2
Widgets.

On a source code perspective there is a component not present in Figure 10 that contains
the code common to the builder and the viewer. This component is called Commons.

The diagram of the static perspective of the Widget API can be seen in Figure 11.

PulseViews: A Solution for Pulse Dashboarding

 15

Figure 11. Static perspective of the Widget API.

A description of the modules follows:

 Event Delegator – Handles the event delegation between widgets.

 Instance Manager – Keeps track of all the widget instances in a dashboard. Used

for reference when configuring the widget events.

 Widget Renderer – Responsible for rendering a given widget with a given

configuration.

 Widget API Utils – Series of modules containing utilities used by the other

modules.

 Widget Resolver – Initializes all the widgets and provides an interface for accessing

WDOs.

 Option Types – Enumeration of the possible types of options (e.g., String, Integer).

 Public API – Modules accessible by the widget authors. Includes a proxy to the

Option Types enumeration and a proxy to some of the most used Widget API Utils

methods.

 WDO X – Represents all widget definitions. Each one defines how a widget renders,

its user configurable options and some metadata. Each WDO can be composed of

several modules.

 WDO Real-time Utils – Methods that facilitate the interaction with jPulse by

providing some higher level abstractions.

 WDO Custom Data Source Utils – Methods that facilitate the fetching of records

from custom data sources (i.e., external databases).

The diagram of the static perspective of the Viewer can be seen in Figure 12.

PulseViews: A Solution for Pulse Dashboarding

 16

Figure 12. Static perspective of the Viewer. Note: only the modules of the Widget API with which the Viewer
interfaces are shown.

A description of the modules follows:

 Root View – Implements the log in, error handling, DOM initialization both in the

Viewer and in the Builder.

 Layout Manager – Build the DOM for a layout defined in a configuration object.

 Metadata Collections – Series of collections that map to the metadata API.

 Dashboard Renderer – Dashboard rendering related utilities.

 app – Starting point of the application.

 Viewer – Main module of the Viewer component. Coordinates all the other

modules.

 Widget Wrapper – Responsible for rendering widgets.

 Event Delegator – Handles the event delegation between widgets.

 Widget Resolver – Initializes all the widgets and provides an interface for accessing

WDOs.

 Widget Renderer – Responsible for rendering a given widget with a giver

configuration.

 Widget API Utils – Series of modules containing utilities used by the other

modules.

The diagram of the static perspective of the Embeddable can be seen in Figure 13.

PulseViews: A Solution for Pulse Dashboarding

 17

Figure 13. Static perspective of the Embeddable.

A description of the modules follows:

 Embeddable – Loads (if they haven’t been loaded before) all the necessary

dependencies (static libraries like jQuery) and the Viewer itself. Initializes the Viewer

in the container and with the Pulse App and dashboard specified by the developer.

 Viewer – Main module of the Viewer component.

The diagram of the static perspective of the Builder can be seen in Figure 14.

Figure 14. Static perspective of the Builder. Note: only the modules of the Widget API with which the Builder
interfaces are shown.

A description of the modules follows:

 Root View – Implements the log in, error handling, DOM initialization both in the

Viewer and in the Builder.

 Layout Manager – Builds the DOM for a layout defined in a configuration object.

PulseViews: A Solution for Pulse Dashboarding

 18

 Metadata Collections – Series of collections that map to the metadata API.

 Dashboard Renderer – Dashboard rendering related utilities

 app – Starting point of the application.

 App View – Responsible for building the DOM around the dashboard section of

Pulse Views.

 Dashboard Main View – Responsible for directing the user to the correct screen

(wither Add, List or Dashboard Builder) according to the URL.

 Add – View used to create a dashboard or edit its metadata.

 List – View used to render a list of all existing dashboards. Also renders controls

that allow, for each dashboard to, open it on the Viewer, clone it, open the Add

screen and remove it.

 Dashboard Builder – Orchestrates the modules that allow configuring widgets and

changing the layout of a dashboard.

 Designer Cell – Renders the preview of a widget.

 Options Editor – Renders the options of a widget.

 Instance Manager – Keeps track of all the widget instances in a dashboard. Used

for reference when configuring the widget events.

 Widget Resolver – Initializes all the widgets and provides an interface for accessing

WDOs.

 Widget Renderer – Responsible for rendering a given widget with a giver

configuration.

 Widget API Utils – Series of modules containing utilities used by the other

modules.

3.3.2.3 Dynamic Perspective

This section will present a dynamic perspective of the Builder and Viewer components. The
objective of this perspective is to illustrate how data moves between the application
modules. The frontend modules correspond to the ones presented in the static perspective.

The dynamic diagrams are composed of three layers:

 Persistent Storage – Responsible for storing data in a persistent way. Typically this

will be a relational database.

 Data Access – Manages and facilitates the access to the application state. Acts as

the model of the MVC pattern.

 Presentation – Renders and maintains the (non-persistent) state of UI. In terms of

the MVC pattern the presentation layer acts as both the view and the controller.

The diagram of the dynamic perspective of the Widget API can be seen in Figure 15.

PulseViews: A Solution for Pulse Dashboarding

 19

Figure 15. Dynamic perspective of the Widget API.

In the Widget API the data flow is focused in displaying data to the user, be it real-time
events or records form a custom data source. In the case of real-time, historic data is
retrieved from the Pulse DB (that stores both metadata and aggregated data) by the Output
Adapter module, it is them passed to the client side jPulse library who passes it to the
widgets that then show the data to the user. The WDO Real-time Utils acts simply as a
proxy who provides an easier to user interface than jPulse. The real-time data follows the
same path, except that it comes from the Pulse Core Engine instead of the Pulse DB.

In the case of custom data sources, the widget requests the records to the WDO Custom
Data Source Utils module that uses the necessary collections from Metadata Collections to
fetch the data from the Metadata Management module which is responsible to fetch the
records from the external database.

The connection to the Widget API Utils is due to the necessity of doing some run time
checks to evaluate if a widget has conditions to render.

The diagram of the dynamic perspective of the Viewer can be seen in Figure 16.

PulseViews: A Solution for Pulse Dashboarding

 20

Figure 16. Dynamic perspective of the Viewer.

The Viewer module takes the target Pulse App and dashboard (passed in the URL, for
example) and first asks the Metadata Collections for the data relative to the Pulse App and
dashboard. This data is then passed to the layout manager (who builds the layout) which
passes the individual widget configurations to the Widget Wrapper module. Finally the
Widget Wrapper uses the Widget API to render the widget.

The Viewer also uses the Metadata Collections as the interface for authenticating the user.

The authorization checks are done in the server when a dashboard’s data is requested. If the
user is not authorized the Viewer takes care of communicating that to the user.

The dynamic perspective of the Embeddable does not really add anything new (it would be
Figure 16 without authentication and authorization) so it is omitted.

The diagram of the dynamic perspective of the Builder can be seen in Figure 17.

PulseViews: A Solution for Pulse Dashboarding

 21

Figure 17. Dynamic perspective of the Builder.

The App View module takes a target Pulse App (passed in by URL for example) and uses
the Metadata Collections to fetch the respective data. It also handles authentication and
authorization. The List module lists all the dashboards in the current Pulse App using the
data fetched by the App View and the Add module allows for adding new dashboards and
editing the metadata of existing ones.

The data fetched by the App View is also used by the Dashboard Builder to render the
preview of a specific dashboard. During the rendering of the preview the dashboard
configuration is passed to the Layout Manager who passes the individual widget
configurations to the Designer Cell. The Designer Cell module uses the individual
configurations to render the preview of the widget (by using the Widget API) and to pass to
the Options Editor module that renders the dialog that allows the widget configuration to be
changed by the user. When the user wants to save the configuration this is done via the
Metadata Collections.

Also, changes made to the layout are persisted via the Metadata Collections.

PulseViews: A Solution for Pulse Dashboarding

 22

Chapter 4 – Implementation

4.1 Introduction

Figure 18 through Figure 23 shows some screens that resulted of the implementation of
Pulse Views.

Figure 18. Dashboard list screen in the Builder.

Figure 19. Dashboard edit metadata screen in the Builder.

PulseViews: A Solution for Pulse Dashboarding

 23

Figure 20. The dashboard preview screen in the Builder.

Figure 21. The dashboard layout authoring screen in the Builder.

PulseViews: A Solution for Pulse Dashboarding

 24

Figure 22. The widget options editor in the Builder.

Figure 23. The Viewer.

4.2 Technologies and Libraries

In terms of technologies the choices were very simple. Given the necessity to integrate with
jPulse, which is written in JavaScript, Pulse Views had to be written in JavaScript. In terms
of communication with the server, given that we have a REST API the only option is
HTTP.

There were several important decisions to make in terms of libraries and most of them are
related with facilitating the development of a client side JavaScript application. Currently
most of the JavaScript APIs provided by the browsers are quite hard to use and even

PulseViews: A Solution for Pulse Dashboarding

 25

inconsistent between browsers. To mitigate this there are several classes of libraries that a
developer can use:

 AJAX and DOM manipulation – gives the ability to perform AJAX requests and

easily manipulate the DOM via a friendly and well documented API.

 UI elements toolkit – provides the developer with several ready-to-use and

customizable UI elements.

 HTML templating – gives the ability to define templates to dynamically generate

HTML client side.

 Asynchronous Module Definition Loader – allows organizing the code in

modules (one by file). Each module can declare its dependencies (that are other

modules).

 MV* Framework – MVC like frameworks that allow for a degree of separation of

concerns.

 CSS preprocessor – allows CSS to be written using some abstractions typically not

supported by browsers (e.g., variables).

The libraries chosen for each of the classes referred to can be found on Table 2.

Library Class Name Motivation

AJAX and DOM
manipulation

jQuery [9] Is the one used by jPulse and
using other would make the
integration much more difficult.

UI elements toolkit Twitter Bootstrap [10] Backed up and used by Twitter.
Outstanding community (the
biggest in Github).
Comprehensive set of UI
elements. Uses jQuery.

HTML templating Google Closure
Templates [11]

Developed by Google and used in
heavy used services like Gmail.
Good support for pre-
compilation.

Asynchronous Module
Definition Loader

RequireJS [12] Agnostic to the AJAX and DOM
library. Very good browser
compatibility. No good alternative
that meets the previous two
criteria.

MV* Framework Backbone [14] Works with jQuery. Very stable
(the last minor has 5 months) and
used in big scale projects (e.g.,
LinkedIn Mobile App).

CSS preprocessor None The features of the available
preprocessors didn’t outweigh the
need for compiling CSS and the
debug difficulties that this
encompasses.

PulseViews: A Solution for Pulse Dashboarding

 26

Table 2. Main libraries used by Pulse Views.

4.3 A Quick Introduction to Backbone

Backbone is a MV* (similar to MVC but without the controller [13]) JavasScript framework
that helps developers to structure their client side code. It provides “models with key-value
binding and custom events, collections with a rich API of enumerable functions, views with
declarative event handling, and connects it all to your existing API over a RESTful JSON
interface.” [14].

The most important components of Backbone are Models and Views. Models store the state
of the application and Views render that state (while ideally being stateless). There are also
Collections and Routers. Collections are lists of models with some convenience methods
and Routers facilitate the implementation of navigation between application screens.

4.4 Metadata API

4.4.1 Introduction

The Metadata API is a REST [15] API exposed by the Pulse Server that allows all the
aspects of a Pulse App to be accessed and (when possible) changed. This API is composed
of a series of resources that are mapped on the client side to Backbone models and
collections. The reference of the most relevant resources can be found on Table 3.

Resource URL Description

/pulseviews/api/apps Pulse App resource. Contains information like the Pulse
Apps name, URL alias, id, security type, author, users
associated with it and if it’s enabled or not.

/pulseviews/api/apps/{Pulse
App ID}/dashboards

Dashboard resource. Contains information like the
name, URL alias, id, security type, users associated with
it, author id, last author, creation timestamp, last
modification timestamp and widget and dashboard
configuration.

/pulseviews/api/apps/{Pulse
App ID}/kpis

KPIs resource. Contains information like the name, id,
window, expression, baselines associated with it and
others.

/pulseviews/api/apps/{Pulse
App ID}/baselines

Baselines resource. Contains information like the name,
id, KPIs associated with it and others.

/pulseviews/api/apps/{Pulse
App ID}/alerts

Alerts resource. Contains information like the name, id,
expressions associated with it and others.

/pulseviews/api/apps/{Pulse
App ID}/datasources

Custom data sources resource. Contains information like
the name, id, connection, entity name, columns, filters
(i.e., SQL WHERE conditions) and others.

/pulseviews/api/apps/{Pulse
App ID}/hierarchies

Hierarchies resource. Contains information like the
name, id, associated stream, hierarchy tree and others.

Table 3. Reference of the most relevant Metadata API resources.

PulseViews: A Solution for Pulse Dashboarding

 27

4.4.2 Dashboard Configuration Data Model

The dashboard configuration (i.e., the layout and widgets configuration) are stored in the
dashboard resource as a JSON [16] string. The reason for this configuration to be stored in
an opaque string is that this way the schema of the configuration is defined by the client.
This makes altering it much easier. Also it would be quite complex to model and manage the
relational schema of the configuration because it is necessary to support custom options and
those can have an arbitrary schema that, when using plugins, may only be known in run-
time.

The configuration object has tree keys:

 widgets – List of individual widget configurations.

 layout – Layout tree, dashboard height and maximum node id.

 options – Dashboard rendering related options: custom CSS and drill widget

options.

Each element of widget has the following keys:

 type – The id of the widget.

 conf – The current values of the widget options (the structure this object is defined

in the WDO).

 nodeId – The id of the layout node where this widget is to be rendered.

Each node of the layout tree contains the following keys:

 id – The node id.

 type – Can be “container” (column) or “element” (row).

 widthP – width of the node in percentage of its parent width.

 heightP – height of the node in percentage of its parent height.

 children – list of nodes that are to be rendered inside the node.

4.4.3 Dashboard Permissions Model

A dashboard can be in one of three permission modes:

 Just Me – Just the current user can access the dashboard.

 Application Users – All of the Pulse App users can access the dashboard.

 Specific Users – Only me and the users specified by me can access the dashboard.

These permissions are implemented using the Pulse Authorization module: each application
and each dashboard have a role associated with it.

4.5 Widget Definition Object

The Widget Definition Object (or WDO) is a JavaScript object with a well-defined structure
that contains the blueprint for a widget. This object must be wrapped in a module. For an
example please see [18].

The WDO has two keys:

 render – The function that is called when it’s necessary to render an instance of the

widget.

PulseViews: A Solution for Pulse Dashboarding

 28

 info – Metadata of the widget (e.g., name, icon, options). Most of the proprieties can

be omitted and defaults (see [17]) will be used. The mandatory proprieties can be

found in [18].

The render function receives two arguments:
1. conf – Contains all the initial state of the widget. The structure of this object is

defined by the widget options.

2. delegator – Proxy to the event delegator. Implements the Widget Events API.

And returns an object that has a propriety named destroy which is a function that cleans all
the state created by the render function.

For more details please refer to the Widget Definition Object documentation [19].

4.6 Layout Manager

4.6.1 Introduction

The layout manager is responsible for rendering the widgets in the correct position and with
the correct size. The layout manager has two operation modes:

 Ready Only – used by the Viewer. In this mode the user cannot change the layout.

 Read-Write – used by the Builder. In this mode the dashboard can be rendered in

either a preview mode (see Figure 24) or a layout edition mode where only the layout

container and layout authoring controls are shown (see Figure 25).

Figure 24. Dashboard in preview mode in the Builder.

PulseViews: A Solution for Pulse Dashboarding

 29

Figure 25. Dashboard in layout authoring mode in the Builder. The container in the lower right is different
because the mouse is over it.

4.6.2 Abstract Layout Model

The Pulse Views layout manager creates layouts by using two types of containers: R (row)
and C (column). Both types of containers are similar in the sense that they define a
rectangular region and that they can contain other containers inside then with the restriction
that they all must be of the opposite type of their parent.

Sibling containers (containers that have the same parent) occupy all the available space in
one dimension and use the other as the way to determine their position inside the parent:
they are stacked according to their order in the parent’s children list. Once stacked and given
the margins the containers must occupy all the available space (in both dimensions) inside
their parent.

For example, in Figure 26 the containers of type C occupy all the available height and are
stacked in the order of their position in their parents’ container list. It should be noted that
the available width/height is not 100% because the space for the margins needs to be
accounted for.

Figure 26. Example of the stack based rendering of containers.

PulseViews: A Solution for Pulse Dashboarding

 30

The children of containers of type R (which are containers of type C) are stacked on a row
(see Figure 26) and the children of contains of type C (which are containers of type R) are
stacked on a column (see Figure 27).

Figure 27. Example of stacking in a column.

The reasons why the layout manager was designed this way are:

 It resembles the way the default HTML layout manager works and thus it made it a

little easier to implement (because some of the calculations could be delegated to the

HTML renderer).

 The data structure is simple: a tree with multiple nodes; and easy to serialize into

JSON.

 The percentage based container dimensions and some of the restrictions made it

easy to allow the dashboard to be rendered at different widths.

The dimensions of a container are expressed in percentage and the children of a container
can never expand beyond the limits of their parent.

On the root of the layout there must be one or more containers of the type R. Widgets can
only be rendered inside containers of type C which enforces that the layout tree leafs are
always of this type.

Three transformations can be applied to the containers: add neighbor, split and remove.

Adding a neighbor is simply adding other children to the targets parent. The space available
is divided equally by all the children. Both containers of type C and R are valid targets for
adding a neighbor.

Splitting involves adding two new containers to the target. The two new containers will split
the available space evenly. Containers can be split horizontally or vertically depending on
their type.

PulseViews: A Solution for Pulse Dashboarding

 31

Both adding neighbors and split operations will be aborted if any of affected containers will
have its dimensions below a certain threshold. This prevents containers becoming too small.

Removing a container (of any type) involves several steps (that are done so that the user
does not have to do multiple removes):

1. The layout tree is traversed upward until a parent with more than one sibling is

found.

2. The node found in 1 (and all its children) will be the one removed.

3. The space occupied in the stack by the node to be removed is passed to its closest

sibling.

4. The node is removed.

If removing a given container will lead to the root container to be removed the operation
will be aborted. This avoids the user to enter a state where he does not have any more
containers available and cannot add more.

Because the margin of the containers must be constant in all layout levels when the
dimensions of a container change it necessary to go through all of its children (and the
children of the children and so forth) and update their dimensions.

4.6.3 Implementation

This is one of the most complex parts of the system and as such its code is divided in several
modules which represent the several components of the layout manager. These modules can
be found in Table 4.

Name Description

layout.view Core of the layout manager. Contains methods to create nodes
and execute all the possible transformations.

layout.model Manages the memory representation of the layout tree.

can.view Contains several methods to test if a given transformation can be
done without comprising the minimum size thresholds.

layoutBuilder.view Renders a layout tree into the DOM.

toolbarManager.view Handles the toolbars life cycle (i.e., when they are shown and
removed and what is their target element).

elementToolbar.view Contains the UI elements that allow adding neighbors.

containerToolbar.view Contains the UI elements that allow splitting and removing
containers. Also allows selecting the parent of the current
container.

Table 4. Reference of the layout manager modules.

The toolbars are overlays rendered in the same region of the container that contain the
layout transformation and navigation controls. They are shown when the mouse is over a
container and when the user uses the go to parent button.

PulseViews: A Solution for Pulse Dashboarding

 32

Both the add neighbor, split, remove and go to parent controls are rendered in the UI as
buttons. The controls to resize containers are rendered as handlers that can be dragged with
the mouse.

The draggable handlers were implemented on top of jQuery UI draggable [20]. This handler
behavior was quite hard to implement because the situations where the mouse is moved
beyond where the container can be resized to need to be accounted for and jQuery UI does
not provide any support in this regard.

Also, for improved usability, when there is enough space the size and padding of the toolbar
controls are increased.

4.7 Widget Options

4.7.1 Introduction

The widget options are what enables users to configure the initial state of widgets. This
includes styling, choosing the data to display and others. For an example see Figure 28.

Figure 28. Options of the plot widget.

The options available when configuring a widget can be defined in two ways (which are
described in the following sections):

 Declaratively – the widget author defines the options in an object literal and the

application takes care of rendering and passing them to the widget render function.

This approach is less flexible but reduces the development time greatly.

 Custom – the widget author has to implement the rendering of the options and the

application takes care of passing the values to the widget render function. This

approach is much more flexible but it is much harder to develop.

4.7.2 Defining Options Declaratively

The options are defined in an object assigned to the options propriety of the info propriety of
the WDO.

PulseViews: A Solution for Pulse Dashboarding

 33

The options object contains a tabs propriety which is a list of tabs that will be rendered in
the options editor view. For example in Figure 28 there are four tabs: Widget, KPIs, Data
Sources and Events. Each tab object contains an id, label (that will be shown to the user),
list of options and some flags that indicate if the options should be repeated by KPI or
custom data source.

Each option contains an id, label, type (the possible types can be found at [21]), default
(that will be used when the widget needs to render before the user has configured it),
validations (jQuery validate [22] validations can be used and/or a custom function can be
defined), baseline options, possible values (when the type is to be rendered as select box),
showme (a function that asserts whenever this options should appear or not) and others.

The complete reference of the tabs and options available proprieties can be found at [23].

Figure 29 shows an example of declarative options configuration. In the example there are
two tabs: widget (with only one option) and kpis (with several options that will be repeated
for each KPI).

Figure 29. Example of declarative options configuration.

When the options are passed to the widget render function they follow a structure based on
the ids of tabs and options. If you have a tab with id widget and with the options title and
width the options object passed to the render function will have a widget propriety which will
be an object with the proprieties title and width. If the flag for repeating options by KPI or by
custom data source is enabled the widget propriety will contains and array and each element
will be and object with the proprieties title and width.

4.7.3 Rendering Declaratively Created Options

Each tab defined in the options object will be rendered visually as a tab and the tab header
label will the label propriety of the tab object.

Inside a tab each option will be rendered in a line: on the left side of the line will be rendered
the label of the option and on the right the option input element. An example can be seen in
Figure 28.

When the KPI or custom data source flags is active the options are repeated one time for
each selected KPI or custom data source and UI elements for adding/editing/removing
KPIs and custom data sources are displayed. If the KPI flag is active and, if there are
baseline options defined, they will also be repeated by each baseline in each KPI and if the
distinct baseline positions flag is enabled the upper and lower baselines will also have
separated options. An example of a tab with the KPI flag enabled and that includes some
baselines can be seen in Figure 30. A tab with the custom data sources flag enabled is similar
except it does not have baselines.

PulseViews: A Solution for Pulse Dashboarding

 34

Figure 30. Example of an options tab with the KPI flag enabled.

When the user clicks on the Add KPI button (or the Add Data Source) the screen changes
to one where he can configure the KPI to add. In the case of the custom data source the
screen only contains a list where the user can choose one of the elements. In the case of the
KPI the screen is more complex: it contains a dynamic tree that displays the hierarchy tree
and that allows the user the select one node; when the user selects a node the input elements
for choosing the KPI, baselines and the filters appear on the right side of the screen. For an
example see Figure 31.

Figure 31. Example of the add KPI screen.

PulseViews: A Solution for Pulse Dashboarding

 35

To fill in filters the user has the help of an autocomplete (that displays sever provided
possible values) or can himself write the desired value in which case it will be validated if
the type is correct (e.g., if the type is Integer a String will be invalid).

Internally the options dialog is rendered in several steps:
1. The modal is created and the backdrop and header are rendered.

2. The list of available widgets is rendered and if this is not the first the selected widget

is marked as such.

3. An object containing the current options state is created using an iterator that visits

each tab and option.

4. The object created in 3 is passed to the generic options template. This template is

composed of several sub templates that render each type of tab and option (filling

them with their current value).

5. A series of JavaScript initializations are made:

a. Validations.

b. Bindings to the buttons that add/edit/remove KPIs and custom data

sources.

c. Option inputs that require JavaScript (like date pickers)

d. Truncation of labels where needed and tooltips.

4.7.4 Custom Option View

The custom options views approach allows the developer to completely customize the
configuration of a widget. This is done via a Backbone view that is passed to the tabs
propriety of the options object and that must implement the interface described in the Table
5. The value of the options is passed in as the model of the view.

Method name Description Parameters Return value

render Renders the view in its
current element.

-- The view instance.

proceed Method called when the
users clicks the Save
Changes button.

-- An object with the options or
false if the current state of the
view is not valid (e.g., if an
option validation fails)

Table 5. Custom Options View interface.

When developing custom option views developers can use some generic views (see Table 6).

PulseViews: A Solution for Pulse Dashboarding

 36

Name Description

tabs.view Renders several tabs in a similar way to the declarative approach. Allows
each tab to be a custom view.

tab.view Renders several options in a similar way to the declarative approach. Allows
each option to be a custom view.

option.view Renders an option in a similar way to the declarative approach. Accepts all
the parameters applicable to options in tabs without flags with the exception
of validations.

Table 6. Reference of the generic custom option views.

4.8 Widget Events

Widgets can communicate with other widgets by emitting and receiving events. This allows,
for example, the user to show a chart by clicking on a button.

Who receives what events from whom is defined in the widget configuration in the events
configuration tab. In Figure 32 we can see a tabs widget that can receive an event (called an
action) to change the tab, a button widget that can trigger the event click (called an event) and
the binding added by the user that connects the click event to the change tab action.

Figure 32. Events configuration tab.

The events also can be used as a way for the widget to communicate with the application.
For example, there is an action that the widgets can declare (called onDashboardLoad) that is
called when the dashboards loads. The binding for this type of actions is done by the
application without the need of user intervention.

Both actions and events can have parameters that need to be explicitly declared by the
programmer in the WDO. The user is responsible for choosing the mapping between event
and action parameters. Optionally the programmer can declare that a parameter should have
a static value chosen by the user (via a text input).

PulseViews: A Solution for Pulse Dashboarding

 37

The binding and triggering of events is done inside the render function via three methods
available in the delegator parameter:

 on – Bind to an action.

 off – Unbind an action.

 trigger – Trigger an event.

An important aspect of the events is that they are only active on the Viewer.

For the complete reference on the events API please refer to [24].

Internally the event delegator is composed of two components:

 Core – Wrapper around the Backbone publish/subscribe implementation [25].

There is an instance of the core for each dashboard rendered which allows having

several dashboards rendered on the same page (which can happen when using

embedded dashboards).

 Delegaty – Proxy passed to the render function to deny a widget instance the ability

to send events that were not declared, to impersonate another widget or to send

events to widgets other than the ones specified by the user. An instance of delegaty

is created by each widget instance.

The usage of the publish/subscribe model made disabling of the events in the Builder trivial:
it was only necessary to pass to the render a function a dummy object that implemented the
API and which methods didn’t do anything.

4.9 Embeddable Dashboards

Embeddable dashboards allow a developer to include a Pulse Views dashboard in an
arbitrary HTML page. This is quite common in projects where custom dashboards, that
include custom elements, need to be created.

There are, however, some restrictions:

 The page must have jQuery included.

 The page must be hosted inside the same Pulse server instance where the dashboard

was created (this can be bypassed by using HTML iFrames).

 Authentication is required and it is of the responsibility of the developer.

 Some widgets may render differently when embedded due to absence of Pulse Views

CSS styles.

Given the above preconditions the only thing necessary to embed a dashboard is to go the
options of the dashboard to embed (see Figure 33) copy the embeddable script, paste it on
the desired page and choose the HTML element where the dashboard should render.

PulseViews: A Solution for Pulse Dashboarding

 38

Figure 33. The options screen of a dashboard.

Due to the modular nature of the code (and after some minor changes to the Viewer) the
embeddable is simply a wrapper that loads (if necessary) the necessary static dependencies
(i.e., libraries like jQuery), does some initializations and then users RequireJS to load and
initialize the Viewer with the desired dashboard. Rendering several dashboards in the same
page is supported as well as the usage of plugins.

The developer interacts with the embeddable via a jQuery plugin.

4.10 Plugins

In Pulse Views a plugin is a widget authored by a Pulse developer and that, after being
loaded, can be used in dashboards in the same way as any other widget. In order for a plugin
to be loaded its source needs to be copied to a special folder inside the Pulse Server and the
former should be restarted. After that the widget will be available to be used in Pulse Views.
For more details please refer to [26].

The biggest downside of the current approach is that if the developer authoring a plugin
loads a JavaScript that fails to initialize (due for example to a syntax error) it may cause Pulse
Views to not load. This issue was not addressed because removing the problematic widget
solves the issue and because only developers with access to the Pulse installation can load
widgets.

There are also some public modules that developers can use when developing widgets:

 Option Types – Enumeration of the possible types of options.

 Widget Public API – Collection of utility methods useful when developing widgets.

The complete reference of the public modules can be found at [27].

Internally the loading of plugins is a very simple process:
1. When the Pulse Server loads a list of the files with the extension ‘.widget.js’ in a

special folder is compiled.

2. Using the list of widgets to load the code of a special module is dynamically

generated so that it has as dependencies all the widgets to load. This module returns

a list of references for the plugins.

PulseViews: A Solution for Pulse Dashboarding

 39

3. The widget resolver (who loads all the base Pulse Views widgets) has as dependency

the special module created at 2. On load it is only necessary to concatenate the list of

base widgets with the list of plugins.

Although the architecture of the plugin system was defined in the scope of this project the
implementation of the server side component was done by a third party because it needed to
be implemented in the backend.

4.11 Drill Widget

The drill widget allows the user to explore the various levels of a hierarchy. It allows him to
choose in which level he wants to be and which values he wants to apply to the filters. The
widgets will then be re-rendered so that they show the data for the desired level. KPIs of
different hierarchies will be unaffected.

A possible use case is: Pulse is calculating a KPI which is the average of the transactions
across banks and cities. The drill widget allows the user to explore various banks and cities
in a hierarchical way.

To activate the drill widget the user has to go to the dashboard options where it also needs
to choose the target hierarchy.

As the drill widget communicates with the other widgets via the widget events it only works
on the Viewer. On the Builder it is used to set the initial state of the drill widget.

An example of the usage of the drill widget can be seen in Figure 34.

Figure 34. Example of the usage of the drill widget.

Contrary to what the name seems to imply the drill widget is not part of the Widget API. It
does not even have a WDO. This approach has chosen because we wanted to render the
widget in a predetermined place. Instead of a WDO the drill widget is a Backbone view that
uses a Backbone model to store its state. This makes propagating state changes to the
widgets (when in the Viewer) easy because is just a matter to listening to changes the model.

The drill widget is rendered as a breadcrumb that represents the current path in the
hierarchy. The user can drill up by clicking in any of the levels, drill down by clicking in
“Drill To” or change the value of any of the filters.

Changing the value of a filter is done with the help of an autocomplete (that displays sever
provided possible values) which is the one provided by jQuery UI [28].

PulseViews: A Solution for Pulse Dashboarding

 40

4.12 iOS Support

4.12.1 Introduction

The jPulse components were designed and implemented mostly with desktop browsers in
mind and although they work in iOS devices the interaction is limited to the JavaScript
events that are common to mobile and desktop browsers (e.g., click). The objective of this
task was to enable the iOS users to have the same level of interaction that they have on
desktop browsers.

4.12.2 Requirements

After an analysis of the existing components and their behavior on iOS devices a list of
broken functionalities was compiled. The list also contained the actions to take and possible
solutions. This list was then presented to the Product Owner who ordered the items by
priority. The list can be seen on Table 7.

Description Action Solution Priority

Plot

Panning does not work Fix Catch drag & drop event
and prevent default

Must

Zoom does not work Fix Catch pinch to zoom
event and prevent default

Must

Double click does not work Fix Catch double tap event
and prevent default

Must

Vertical marker does not work Ignore - -

Selection on the overview does not
work

Fix Catch drag & drop event
and prevent default

Must

Drill down table

Selection input fields does not work
very well (is very slow and events do
not behave well)

Fix Use native selection input
fields

Should

Expand and collapse animation is
slow

Fix Do not use an animation Should

The scroll bar does not appear Fix ? Should

A line on the table has a different
color (probably related to the over
event)

Ignore - -

Tree

Drag and drop does not work Fix Catch drag & drop event
and prevent default

Nice to
have

PulseViews: A Solution for Pulse Dashboarding

 41

The space between element labels in
the tree is very small

 Increase the
padding/margin

Nice to
have

The space between arrows is very
small and they are very hard to click

 Increase the
padding/margin

Nice to
have

Table 7. Requirements for adapting jPulse components to iOS

4.12.3 Results

All the solutions in Table 7 for the Plot and Drill Down Table widgets were implemented.
The solutions for the Tree widgets were not implemented due to its low priority.

An image of the Plot component, running in an iOS device, before the adaptations can be
seen in Figure 35 and after in Figure 36. The only visible difference is in the overview chart
where the selection areas on the margin of the selected region are more pronounced and
easy to target using the fingers. Besides that, all the other interaction mechanisms were
implemented – the difference being that they now use the events of the Safari browser on
the iOS platform. Also of note is that all of this is transparent for the developer using jPulse:
the component knows when it is running on an iOS device and behaves accordingly.

Figure 35. jPulse Plot chart before adaptation.

Figure 36. jPulse Plot chart after adaptation.

An image of the Drill Down Table components, running in a iOS device, before the
adaptations can be seen in Figure 37 and after in Figure 38. The difference here is that the
default HTML select element is now used as the usability is much higher that the custom
element previously used. This was no simple task, as the whole component was not designed
having in mind that a different selection mechanism might be needed. Some style changes
were also applied to improve readability on devices with small screens.

PulseViews: A Solution for Pulse Dashboarding

 42

Figure 37. jPulse Drill Down Table before the adaptations.

Figure 38. jPulse Drill Down Table after the adaptations.

The implementation of the Drill Down adaptation involved the re-implementation of all the
eleven methods of the object responsible for drawing the select box. This task was even
more difficult because due to the lack of isolation: the internal state of the object was
directly accessed from the outside.

PulseViews: A Solution for Pulse Dashboarding

 43

Chapter 5 - Results

5.1 Introduction

In this chapter the final results will be shown including examples of dashboard implemented
with Pulse Views, widgets implemented in this projects and validation.

5.2 Examples

5.2.1 Dashboards

5.2.1.1 Introduction

In this section two dashboards created with Pulse Views will be presented. These
dashboards represent uses cases that Pulse Views targets.

5.2.1.2 Banking Demo

The banking demo dashboard provides an overview over the operation off a (fictitious)
USA bank. It allows, at a quick glance for users, to have a global vision over the transactions
done with several card types, at the transactions by state, at the tendency of the transactions
by second globally and at the various types of operations. An image of this dashboard can be
seen in Figure 39.

Figure 39. Banking demo dashboard image.

5.2.1.3 Telco Demo

The telco demo dashboard provides an overview over the operation off a (fictitious)
international telecommunications company. It allows for users to see to amount of calls by
continent, the evolution of the global number of calls, if there was any deviation from the
norm and the average call duration and cost by continent. An image of this dashboard can
be seen in Figure 40.

PulseViews: A Solution for Pulse Dashboarding

 44

Figure 40. Telco demo dashboard image.

5.2.2 Widgets

5.2.2.1 Plot

The plot widget is used to represent the evolution of a set of numerical series trough time
(see Figure 41 for an example). The plot widget can plot both real time data and custom data
source data. The support for custom data source data was implemented outside of the scope
of this project by a third party.

Figure 41. Example of an instance of the plot widget showing real time data.

Regarding the implementation for real time data, the user can plot several KPIs and
baselines on the same chart. There are also several options available to configure including:
title of the plot, amount of history shown, overview, legend, color of the KPIs and baselines,
labels of the KPIs and baselines and type of representation for the KPI (e.g., lines, points).

The plot for real time data is a wrapper around the existing jPulse.plot component. Using
the existing component allowed for huge savings in implementation time but there were
difficulties, the major ones being: lack of support for axis labels and tweaking necessary to
the settings to achieve the desired aspect (around 50 lines of configuration code).

5.2.2.2 Gauge

The gauge widget is used to represent a single value that corresponds to the current value of
a given metric (see Figure 42 for an example). The gauge is only available for real time data
as it only makes sense for this use case. This widget is similar in function to the bullet and
text.

PulseViews: A Solution for Pulse Dashboarding

 45

Figure 42. Example of the gauge widget.

The ranges can be statically defined by the user or can represent baselines.

Other options possible to configure are: the title of the widget, the label of the gauge, the
global range of the gauge, the unit label, the number of decimals, the default color for ranges
(will be used in zones outside of the defined ranges) and the color of each range.

Also the user can have multiple gauges in the same widget simply by adding more KPIs (see
Figure 43).

Figure 43. Example of multiple gauges in the same widget.

The bullet implementation is a wrapper around the existing jPulse component. It should be
noted that the multiples behavior is implemented by the wrapper and not jPulse.

5.2.2.3 Bullet

The bullet widget is used to represent a single value that corresponds to the current value of
a given metric (see Figure 44 for an example). The bullet is only available for real time data
as it only makes sense for this use case. This widget is similar in function to the gauge and
text.

Figure 44. Example of the bullet widget with multiples.

PulseViews: A Solution for Pulse Dashboarding

 46

As is the case with the gauge widget, the bullet supports rendering multiple bullets in a
widget (one by KPI).

The options available for configuration are: widget title, KPI label, KPI unit, KPI max and
KPI markers. Markers are vertical black lines rendered at fixed positions that represent an
important threshold. An example of a marker can be seen in Figure 44 in the Average KPI.

The bullet implementation was an adaptation of the one found on [29]. The communication
with pulse and the support for an arbitrary number of bullets and arbitrary boundaries was
implemented by the student.

5.2.2.4 Text

The text widget is used to represent a single value that corresponds to the current value of a
given metric (for an example see Figure 45, top right widget). The text widget is only
available for real time data as it only makes sense for this use case. This widget is similar in
function to the bullet and gauge, albeit it does not support multiples or baselines.

Figure 45. Example of the text widget.

The available configurations are: font size, label, unit label and number of decimals.

5.2.2.5 Tabs

The tabs widget allows the user to have tabs where otherwise he would have a widget. Each
tab of the tabs widget can contain any widget (including the tab widget itself). For an
example see Figure 46.

Figure 46. Example of the tabs widget.

The user can change the label of each tab header, what tab is open by default, the number
and tabs and if the tab header should be shown or not. The tabs widget also implements
actions that allow other widgets to change the displayed tab.

PulseViews: A Solution for Pulse Dashboarding

 47

Internally the tabs widget is relatively simple, because it reuses the Widget API code to
render the widgets inside each of its tabs.

5.2.2.6 Map

The objective of the map widget is to render geographic regions coloring each one
according to a metric. An example can be seen in Figure 47.

Figure 47. Example of the map widget.

A map widget was something that was on the roadmap from early on, and its development
has seen several iterations (which are described in Annex F). The last iteration resulted in the
widget currently in Pulse Views.

The map widget currently deployed in Pulse views is quite powerful: it colors regions based
on KPIs (with and without baselines), custom data sources and alerts; it has maps with the
main regions of all the world countries, the world and the continents. It allows the user to
drill from world level to country level, has legends specific to the type of data being shown
(see Figure 48) and tooltips. It also allows for configuring the widget title, the unit label of
the tooltip and for custom mappings (to use when the source data region format is not the
same used internally by the map widget).

Figure 48. Different types of legends for the map widget.

The available options and the layout of the configuration view were designed in
collaboration with key FeedZai stakeholders and an external user experience expert.

Internally the configuration view is implemented using the custom option view feature,
which allowed for much more flexibility albeit at the cost of increased complexity: the

PulseViews: A Solution for Pulse Dashboarding

 48

custom option view is implemented across 15 modules and has about 1060 lines of
JavaScript code.

5.2 Tests

5.2.1 Introduction

The project was validated using unit, UI and compatibility tests.

5.2.2 Unit

The unit tests were implemented using BusterJS [30]. This framework was chosen because it
allows for easily running tests in captured or headless browsers as well as in the server. This
is good because it facilitates using BusterJS in continuous integration and it facilitates testing
in multiple browsers. Although BusterJS has all those features the tests described in this
section were run in the browser, as the overhead of configuring a more advanced setup
didn’t offer, yet, enough benefits.

The most heavily unit tested component of Pulse Views is the Widget API: all the modules
that have methods are tested to some degree. The reason behind this is that unit testing UI
components is quite complex even more if they are currently changing (which has the case).

In total there were implemented 169 tests which cover 11 modules. A more detailed look at
the number of tests can be found in Table 8. The coverage is not reported because it’s not
supported yet in the framework used.

Module Component #tests #methods #total
methods

widget.optionTypes.utils.js Widget API 3 3 4

widget.render.js Widget API 1 1 1

widget.resolver.js Widget API 11 2 4

widget.utils.js Widget API 69 19 33

optionsIterator.test.js Widget API 1 1 1

layout.view.js Builder/Viewer 8 2 41

widget.events.js Widget API 27 6 7

widget.instanceManager.js Widget API 9 9 10

functional.utils.js Widget API 12 12 22

widget.events.delegaty.js Widget API 29 12 13

layout.utils Builder/Viewer 4 1 2
Table 8. Unit tests coverage.

PulseViews: A Solution for Pulse Dashboarding

 49

5.2.3 UI

User interface tests were implemented by the quality assurance team using Selenium [31].
These tests are run on top of a live Pulse Views instance that is connected to a live Pulse
Server and their cover high level aspects like navigation, interaction between different parts
of the application and others.

Selenium tests mimic a human browser in the sense that they interact with the web
application by the same means (at least as far as the web application is concerned).
Assertions are done by inspection the DOM.

Two types of tests were implemented:

 Functional – they test whenever or not the functionality is working. There were

implemented 189 functional tests.

 Regression – they test if bugs already resolved become bugs again. There were

implemented 134 regression tests based on issues found and being tracked.

5.2.4 Compatibility

There were two main mechanisms in place to ensure that Pulse Views has compatible with
the target browsers defined in the requirements (IE9, Chrome and Firefox 10):

1. During the development of a feature it would be manually tested by the developer in

the three browsers. To a feature to be finished all the functionality that it

encompasses must be present in all the target browsers.

2. At the end of a release cycle the quality assurance team would manually test the

implemented features in the target browsers with the focus of finding bugs in less

common situations.

5.3 Documentation

Both the Widget API and the dashboard builder usage were extensively documented. The
documentation of the Widget API can be found at [32] and the user manual for the
dashboard builder at [33].

PulseViews: A Solution for Pulse Dashboarding

 50

Chapter 6 - Work Plan and Methodology

6.1 Introduction

This chapter explains how (and why) the planning evolved during the project and the used
development methodologies.

As the internship planning was quite different in the two semesters there is a separated
overview of the first and second semesters.

6.2 First Semester

6.2.1 High Level Planning

At the beginning of the first semester a high level plan was elaborated, having in mind the
tasks that, at the time, comprised the product backlog. This plan assumed that all tasks
would be performed sequentially and that the tasks or the nature of the tasks would not vary
too much. Said plan can be seen in Figure 49.

Figure 49. The original work plan.

What actually happened can be seen in Figure 50.

Figure 50. High level view of how the work progressed.

 As you can see most of the time the initial plan was followed with three exceptions:

 The state of the art took a bit more than was expected – this was mainly because the

start-up time was not considered in the initial estimative.

 The Widgets iOS task started earlier – this was because the Product Owner decided

to drop the Port Flotzai to jqPlot task.

 A new task (EDP Dashboard Prototype) was created – more details on Annex E.

6.2.2 Operational Planning

During the first semester there were 5 sprints (with two week duration). The sprints calendar
can be found on Table 9. The first sprint starts only at 06-10 due to a start-up period of
almost a month. More details on the tasks can be found in Annex D.

PulseViews: A Solution for Pulse Dashboarding

 51

Sprint # Start End Tasks

1 06-10-2011 21-10-2011 Migration from flot to jqPlot.

2 26-10-2011 04-11-2011 flot to jqPlot benchmark. iOS adaptations.

3 07-11-2011 18-11-2011 EDP dashboard prototype.

4 23-11-2011 02-12-2011 iOS adaptations.

5 07-12-2011 16-12-2011 iOS adaptations. Intermediate Report.
Table 9. Sprints calendar for the first semester.

All artifacts related to planning can be found on Annex D.

6.3 Second Semester

6.3.1 High Level Planning

At the beginning of the second semester the Pulse Dashboard Creator task was started but it
was soon realized that it made much more sense to merge the Pulse Dashboard Creator and
Pulse Dynamic Dashboard into a web based unified product: Pulse Views. The development
of Pulse Views was divided in two high level phases: first the requirements, technologies and
high level architecture were defined and a proof of concept was implemented; secondly
Pulse Views was implemented and the architecture components were defined as needed.
The revised plan can be seen in Figure 51. The goals of the new high level plan were
achieved.

Figure 51. The work plan revised to include Pulse Views.

6.3.2 Operational Planning

During the second semester there were 10 sprints. The duration of the sprints changed to
three weeks because the student was integrated in the Pulse development team and they do
sprints of that length. The sprints calendar can be found on Table 10.

Sprint # Start End Tasks

6 06-02-2012 17-02-2012 Pulse Dashboard Creator.

7 20-02-2012 02-03-2012 Pulse Views prototype.

8 05-03-2012 16-03-2012 Pulse Views prototype.

Pulse Dev 19 19-03-2012 06-04-2012 Dashboard builder.

Pulse Dev 20 09-04-2012 27-04-2012 Dashboard builder.

Pulse Dev 21 30-04-2012 11-05-2012 Layout manager, tab widget, tests.

PulseViews: A Solution for Pulse Dashboarding

 52

Pulse Dev 22 14-05-2012 08-06-2012 Dashboard builder, embeddable, drill widget.

Pulse Dev 23 11-06-2012 03-07-2012 Bullet, gauge, plot and text widget.

Pulse Dev 24 09-07-2012 20-07-2012 Consolidation, documentation and plugins.

Pulse Dev 25 23-07-2012 10-08-2012 Map widget and custom options.
Table 10. Sprints calendar for the second semester.

All artifacts related to planning can be found on Annex D.

PulseViews: A Solution for Pulse Dashboarding

 53

6.4 Methodology

6.4.1 Scrum

The work of this project follows the Scrum agile methodology which is “a framework
structured to support complex product development. Scrum consists of Scrum Teams and
their associated roles, events, artifacts, and rules.” [34, pp.5].

In the Scrum framework there are three types of roles, five types of events and tree types of
artifacts. Consult Table 11 and Figure 52 for more details.

Name Description

Roles

Product Owner “(…) responsible for maximizing the value of the product and the
work of the Development Team” [34, pp.5]

Development
Team

“(…) consists of professionals who do the work of delivering a
potentially releasable Increment of “Done” product at the end of each
Sprint” [34, pp. 6]

Scrum Master “(…) responsible for ensuring Scrum is understood and enacted” [34,
pp. 6]

Events

The Sprint “(…) time-box of one month or less during which a “Done”, useable,
and potentially releasable product Increment is created” [34, pp. 8]

Sprint Planning
Meeting

“The work to be performed in the Sprint is planned at the Sprint
Planning Meeting” [34, pp. 9]

Daily Scrum “(…) 15-minute time-boxed event for the Development Team to
synchronize activities and create a plan for the next 24 hours.” [34, pp.
10]

Sprint Review “A Sprint Review is held at the end of the Sprint to inspect the
Increment and adapt the Product Backlog if needed.” [34, pp. 11]

Sprint
Retrospective

“The Sprint Retrospective is an opportunity for the Scrum Team to
inspect itself and create a plan for improvements to be enacted during
the next Sprint” [34, pp. 11]

Artifacts

Product Backlog “(…) ordered list of everything that might be needed in the product
and is the single source of requirements for any changes to be made to
the product.” [34, pp. 12]

Sprint Backlog “(…) set of Product Backlog items selected for the Sprint plus a plan
for delivering the product Increment and realizing the Sprint Goal.”
[34, pp. 14]

Increment “(…) sum of all the Product Backlog items completed during a Sprint

PulseViews: A Solution for Pulse Dashboarding

 54

and all previous Sprints.” [34, pp. 14]
Table 11. The roles, events and artifacts of Scrum.

Figure 52. The Scrum Process [35].

At the core of Scrum are three base principles: transparency, inspection and adaptation [34,
pp. 4]. These principles are enforced by a set of events and artifacts.

Scrum is used because it’s what is used at Feedzai and because as most of the tasks are inside
a very dynamic context, requirements may change and some tasks may need to be dropped.
This rules out the classic Waterfall models and favors more of an agile approach.

6.4.2 Roles

 Product Owner – Paulo Marques (FeedZai’s CTO).

 Scrum Master – Olga Filipova (the mentor at FeedZai).

6.4.3 Events

 The Sprint – The sprints had the duration of two and three weeks.

6.4.4 Artifacts

There are two additions relative to what is defined in Table 11:

 15/5 Reports – These are weekly reports sent to Olga Filipova, Paulo Marques and

Tiago Baptista. They shortly describe what was done during the week, what is

planned for next week and any problems encountered. The reason because they are

used is the increase of transparency and inspection.

 Burn-down charts – Typical burn-down charts in hours.

The Sprint Backlog and Burn-down charts artifacts are created and maintained by the JIRA
platform [36] (which is the one used internally by FeedZai).

PulseViews: A Solution for Pulse Dashboarding

 55

6.5 Version Control System

This project used Git [37] as a version control system. The branching model used is the one
adopted at FeedZai. It is composed of five types of branches: master (latest stable version),
develop (development main branch), features (for new features), quality (for quality
assurance), hot fixing (for bug fixing, one branch for minor release). An image of the
branching model can be seen on Figure 53.

Figure 53. Git branching model. Source: FeedZai internal presentation.

PulseViews: A Solution for Pulse Dashboarding

 56

Chapter 7 - Conclusions and Future Work

Looking back to all that was done the conclusion is that this project was a success: Pulse
Views was implemented and it allows for users to create and view Pulse dashboards and to
developers to create new widgets and use Pulse Views dashboards in custom pages. More
than that, it was integrated in Pulse 12.1.0 and is now used by several clients.

This internship was an excellent opportunity to try the fun and hard work spirit that defines
most of the successful high-tech startups; it dealt with very interesting subjects, namely data
visualization, JavaScript and HTML5 and it allowed for the personal and professional
growth that a company as FeedZai provides.

In terms of future work, there are several aspects of Pulse Views that can be improved:

 The performance of the layout manager for complex layouts is not ideal: resizing a

dashboard with more than 40 containers is hardly fluid.

 The number of AJAX requests done to the metadata API could be decreased in

some cases if a local cache was used.

 There is quite a lot of CSS and templates code that is no longer used by the

application: finding and removing this code would improve the load times.

 Compared to other dashboard solutions in the market Pulse Views still lacks several

widgets (like a heat map).

 It’s possible that the layout edition could be simplified if the split concept was

removed (the split would still be done, just implicitly). In this case the only creation

transformation primitive would be adding a neighbor.

 Being able change the container of a widget by drag and drop.

 Undo/Redo in the Builder.

PulseViews: A Solution for Pulse Dashboarding

 57

References
1. FEW, S. 2006. Information Dashboard Design, O’Reilly.

2. MICROSTRATEGY. MicroStrategy Mobile Suite.

http://www.microstrategy.com/freemobilebi/. Accessed on December 19, 2011.

3. QLIKTECH. QlikView. http://www.qlikview.com/. Accessed on December 19,

2011.

4. TABLEAU SOFTWARE. Tableau Desktop.

http://www.tableausoftware.com/products/desktop. Accessed on August 13, 2011.

5. SPLUNK. Splunk. http://www.splunk.com/. Accessed on August 13, 2011.

6. FEEDZAI. HTTP Output Adapter.

https://docs.feedzai.com/display/pulse/HTTP+Output+Adapter. Accessed on

August 14, 2012.

7. FEEDZAI. jPulse. https://docs.feedzai.com/display/pulse/jPulse. Accessed on

August 14, 2012.

8. FEEDZAI. Real Time Dashboarding.

https://docs.feedzai.com/display/pulse/Real+Time+Dashboarding. Accessed on

August 14, 2012.

9. THE JQUERY FUNDATION. jQuery. http://jquery.com/. Accessed on August

15, 2012.

10. TWITTER. Twitter Bootstrap. http://twitter.github.com/bootstrap/. Accessed on

August 15, 2012.

11. GOOGLE. Google Closure Templates.

https://developers.google.com/closure/templates/. Accessed on August 15, 2012

12. BURKE, J. RequireJS. http://requirejs.org/. Accessed on August 15, 2012.

13. OSMANI, A. Understanding MVC And MVP (For JavaScript And Backbone

Developers). http://addyosmani.com/blog/understanding-mvc-and-mvp-for-

javascript-and-backbone-developers/. Accessed on August 28, 2012.

14. DOCUMENT CLOUD. Backbone. http://backbonejs.org/. Accessed on August

15, 2012.

15. FIELDING, T.F. 2000. Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation, University of California, Irvine.

16. CROCKFORD, D. JSON. http://www.json.org/. Accessed on August 16, 2012.

17. FEEDZAI. Default WDO Values.

https://docs.feedzai.com/display/pulse/Default+WDO+Values. Accessed on

August 15, 2012.

18. FEEDZAI. Basic Widget Example.

https://docs.feedzai.com/display/pulse/Basic+Widget+Example. Accessed on

August 17, 2012.

19. FEEDZAI. Widgets API Widget Definition Object.

https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-

WidgetDefinitionObject. Accessed on August 20, 2012.

20. THE JQUERY FUNDATION. jQuery UI Draggable.

http://jqueryui.com/demos/draggable/. Accessed on August 20, 2012.

21. FEEDZAI. Option Types. https://docs.feedzai.com/display/pulse/Option+Types

Accessed on August 20, 2012.

http://www.microstrategy.com/freemobilebi/
http://www.qlikview.com/
http://www.tableausoftware.com/products/desktop
http://www.splunk.com/
https://docs.feedzai.com/display/pulse/HTTP+Output+Adapter
https://docs.feedzai.com/display/pulse/jPulse
https://docs.feedzai.com/display/pulse/Real+Time+Dashboarding
http://jquery.com/
http://twitter.github.com/bootstrap/
https://developers.google.com/closure/templates/
http://requirejs.org/
http://addyosmani.com/blog/understanding-mvc-and-mvp-for-javascript-and-backbone-developers/
http://addyosmani.com/blog/understanding-mvc-and-mvp-for-javascript-and-backbone-developers/
http://backbonejs.org/
http://www.json.org/
https://docs.feedzai.com/display/pulse/Default+WDO+Values
https://docs.feedzai.com/display/pulse/Basic+Widget+Example
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-WidgetDefinitionObject
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-WidgetDefinitionObject
http://jqueryui.com/demos/draggable/
https://docs.feedzai.com/display/pulse/Option+Types

PulseViews: A Solution for Pulse Dashboarding

 58

22. ZAEFFERER, J. Validation. http://docs.jquery.com/Plugins/Validation. Accessed

on August 21, 2012.

23. FEEDZAI. WDO Info Object Nested Proprieties.

https://docs.feedzai.com/display/pulse/WDO+Info+Object+Nested+Proprieties

#WDOInfoObjectNestedProprieties-Options. Accessed on August 20, 2012.

24. FEEDZAI. Widgets API Events API.

https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-EventsAPI

25. DOCUMENT CLOUD. Backbone Events.

http://documentcloud.github.com/backbone/#Events. Accessed on August 21,

2012.

26. FEEDZAI. Widgets API Importing Custom Widgets.

https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-

ImportingCustomWidgets. Accessed on August 21, 2012.

27. FEEDZAI. https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-

ImportantModules. Accessed on August 21, 2012.

28. THE JQUERY FUNDATION. jQuery UI Autocomplete.

http://jqueryui.com/demos/autocomplete/. Accessed on August 23, 2012.

29. BOSTOCK, M. D3js Bullet. http://mbostock.github.com/d3/ex/bullet.html.

Accessed on August 23, 2012.

30. JOHANSEN, C., AND LILLEAAS, A. BusterJS. http://busterjs.org/. Accessed on

August 23, 2012.

31. SELENIUM. Selenium. http://seleniumhq.org/. Accessed on August 24, 2012.

32. FEEDZAI. Widgets API. https://docs.feedzai.com/display/pulse/Widgets+API.

Accessed on August 25, 2012.

33. FEEDZAI. Pulse Views Dashboards.

https://docs.feedzai.com/display/pulse/5.+Dashboards. Accessed on August 25,

2012.

34. SCHWABER, K., AND SUTHERLAN, J. 2011. The Scrum Guide.

http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

35. LAKEWORKS. Scrum Process.

http://en.wikipedia.org/wiki/File:Scrum_process.svg. Accessed on December 22,

2011

36. ALTASSIAN. JIRA. http://www.atlassian.com/software/jira/overview. Accessed

on December 22, 2011

37. SOFTWARE FREEDOM CONSERVANCY. Git. http://git-scm.com/. Accessed

on August 27, 2012.

http://docs.jquery.com/Plugins/Validation
https://docs.feedzai.com/display/pulse/WDO+Info+Object+Nested+Proprieties#WDOInfoObjectNestedProprieties-Options
https://docs.feedzai.com/display/pulse/WDO+Info+Object+Nested+Proprieties#WDOInfoObjectNestedProprieties-Options
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-EventsAPI
http://documentcloud.github.com/backbone/#Events
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-ImportingCustomWidgets
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-ImportingCustomWidgets
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-ImportantModules
https://docs.feedzai.com/display/pulse/Widgets+API#WidgetsAPI-ImportantModules
http://jqueryui.com/demos/autocomplete/
http://mbostock.github.com/d3/ex/bullet.html
http://busterjs.org/
http://seleniumhq.org/
https://docs.feedzai.com/display/pulse/Widgets+API
https://docs.feedzai.com/display/pulse/5.+Dashboards
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://en.wikipedia.org/wiki/File:Scrum_process.svg
http://www.atlassian.com/software/jira/overview
http://git-scm.com/

	thesis report cover.pdf
	thesis report

