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Abstract

The AIDA project (Affective, Intelligent Driving Agent), a collaboration be-
tween Volkswagen of America and the Massachusetts Institute of Technology,
is an intelligent driving navigation system with a robotic interface that aims
to change the way people interact with the cars. In AIDA, a fundamental
challenge is the problem of Trajectory Prediction, that consists in finding the
route that the driver is more likely to choose to travel between the current
location and a specific destination. AIDA’s trajectory prediction model is
able to predict routes with 92% of accuracy. However, it was only tested
with three different drivers and, furthermore, the algorithm used shows some
limitations. This thesis aims to statistically validate this model by testing it
with more subjects, and to design a new and more realistic approach. In this
report we present a description of this new algorithm, all the data process-
ing methods used and the experiments performed on both original and new
approaches.
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Chapter 1

Introduction

In this chapter we will start by explaining the impact that the new generation
of navigation systems could have in our daily lives, that represents the main
motivation behind this thesis. Thus, in Section 1.1 we will analyze and
discuss some facts about the driver’s daily routines and limitations of the
current GPS devices.

Then, in Section [1.2] we will present the AIDA project as one of these
recent GPS systems and describe its concept and internal architecture. Since
all this thesis’s work belongs to this project, we will end the chapter by
talking about what was already performed and what goals we defined.

1.1 Motivation

In our daily lives, much of our driving is routine and it is easy to detect
patterns since we frequently go to the same destinations and follow the same
routes over and over again. In fact, Krumm and Froehlich [20] found out
that, for drivers observed during at least 40 days, about 60% of their future
trips are repeated in the observations. Even if there are shorter or faster
ways to reach the destinations, the drivers tend to stick with the same routes
used in the past. For example, when a driver is traveling from work to home,
there could be several reasons for him not to choose always the shortest path,
like he might want to pass by someplace previously or due to traffic reasons.
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Thus, by collecting and analyzing GPS traces of a driver, it should be
possible to detect the patterns described above and predict what will be the
driver’s next destination and route taken in a specific time of a day. This
information can then be used to improve the current navigations systems.
These devices know how to compute and show the driver the shortest path
for a given destination and some are also capable of displaying information
about traffic and points of interest (POIs) nearby. However, as was explained
above, the shortest way is not always the preferred by the drivers and without
knowing their behaviors and preferences, the help these devices can provide
becomes essentially limited to help the driver travel in unknown areas.

In contrast, if a navigation system knows beforehand what a driver’s route
and destination will be, it can provide better route guidance without forcing
the driver to input any kind of information at all. For example, it should be
able to warn the driver about the traffic and conditions of the roads that will
next be taken and give different pieces of advice depending on them. Besides
anticipatory driver warnings, these systems should be able to provide some
other types of meaningful help, like showing the user environment information
(e g. POIs, advertising) or automatically changing the vehicle’s behavior (e
g. automatic turn signals, cylinder deactivation, pre-braking). In fact, if a
driver’s next route is already known, it is possible to improve hybrid fuel
economy by up to 7.8%, as researchers from Nissan [7] show. Tate and Boyd
[30] also explored the benefits of knowing the route in advance in the hybrid
vehicles control scheme.

So, during the recent years, the driver’s trajectory and destination predic-
tion research fields have been improving rapidly, in part due to the advantages
we can take from them in the new car navigation systems. In this thesis, all
of the work presented is integrated in the AIDA research project [1], that
tries to combine these two fields in the best way in order to built an intelli-
gent navigation system with similar features to the ones described above. In
Section [[.2] we will describe the purposes of this project in detail, as well as
its architecture, the work done so far and this thesis’s goals.

1.2 AIDA project

The AIDA project (Affective, Intelligent Driving Agent), a collaboration be-
tween Volkswagen of America and the Massachusetts Institute of Technology,
is an intelligent driving navigation system with a robotic interface that aims
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to change the way people interact with the cars. Over time, AIDA analyses
the driver’s mobility patterns, common routes and destinations. Within few
weeks, it will have figured out, for example, the driver’s favorite parts of the
town, what time he gets off work or what he likes to do on the way back
home. By merging this kind of information with car sensors and knowledge
about the city such as road conditions, traffic, points of interest or gas sta-
tions, AIDA can provide precious suggestions and recommendations of the
driver’s interest.

For example, let’s imagine a scenario where the driver just entered inside
his car, on a week day, in his garage at home. As it is 9 o’clock in the
morning AIDA predicts, with an high accuracy, that he is going to his work
and that he will choose Route A to reach that destination. Moreover, in this
scenario, AIDA just received real time information about a car accident that
is expanding the traffic in Route A. In this case, even before he turns on
the engine, AIDA can help the driver by suggesting him alternative ways to
reach his work, in order to avoid Route A’s traffic, save time and get to work
on time.

One of the most innovative aspects in this system is the use of facial
simulation for the communication, which is a very quick way to express in-
formation since it can be easily interpreted by the humans. AIDA commu-
nicates with the driver through a small robot embedded in the dashboard
that expresses emotions through facial expressions (e.g. smile or by blink
an eye). Over time, it is expected that a relationship develops between the
driver and AIDA, where both learn from each other and establish an affective
connection.

1.2.1 Architecture and work done

There are two groups currently working on AIDA: The Personal Robots lab
and the SENSEable City group. The former is responsible for building and
designing the robot while the latter is working on intelligent navigations al-
gorithms and is divided in four main components: Driver behavior model,
Destination and trajectory prediction, Dynamic routing algorithm and Se-
mantics analysis of the city.

The Destination and trajectory prediction component is the one that
shows more improvements until today since there are already two works
performed on those areas that show promising results and conclusions. Di
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Lorenzo [§] presents an appropriate destination prediction algorithm for ATDA
with an average of 4.4 Km of error while Correia and Camara, in Correia’s
master thesis [6], suggest an algorithm for this project that is able to predict
a driver’s route given a destination with 92% of accuracy. However, in the
latter, the tests were performed with only three different drivers and the al-
gorithm shows some limitations, that will be particularly discussed in Section
5.1} The ideas behind both these two algorithms will be deeply analyzed in
Chapter [3|

1.2.2 Goals

The work that we will present in the next chapters is part of AIDA’s desti-
nation and trajectory prediction module. One of the fundamental challenges
in this component is the problem of Trajectory Prediction, that consists in
finding the route that the driver is more likely to choose to travel between
two points. Thus, the first goal of this thesis is to statistically validate Cor-
reia and Camara’s trajectory prediction algorithm [6], since the authors only
tested their approach with just three different drivers. We want to study the
behavior of this algorithm with a new dataset (presented in Chapter [4)) and
verify if the results obtained are as promising as the original ones (Section

632).

However, as was mentioned above, this algorithm has some limitations.
Thus, our second goal is to design and test a more realistic algorithm, ca-
pable of maintaining or even improving the results obtained by the original
one. This subject will represent our main concern in this thesis, so it is our
intention to present a deep study on it, from the preliminary results to the
worst case scenarios (Section .

Finally, we defined a third tentative objective, pending on overall progress,
that consisted in exploring the destination prediction module and different
ways of integrating it with the trajectory prediction one. As we will un-
derstand from Section [2.1] we only made a superficial exploration in this
subject, given the much higher priority of the others and their considerable
complexity.



Chapter 2

Methodology

In most of the research projects it is difficult to plan a whole year of work
because unexpected results might be obtained and new discoveries can influ-
ence the next steps. So, in our intermediate report [26] we presented more
than one possible working plan. In Section we will explain which plan we
actually followed and why:.

Since this is an exploratory work, the type of development used some-
what differs from the traditional software development methodologies, like
the waterfall model [35]. Thus, in Section [2.2| we will explain and talk about

the working methodology used during this thesis.

2.1 Working Plans

After we deliver the intermediate report [26], the main ideas behind the new
algorithm had already been discussed, most of the data had already been
processed and the first goal, that corresponds to the statistical validation of
Correia and Camara’s work [6], was almost completed. So, in that report,
we presented two different possible working plans, since the next steps would
depend on the experiments performed in the new algorithm.

In our Plan A, we would complete all these experiments in two months
and thus, we would have time to start exploring the integration between the
destination and trajectory prediction modules. Plan B (Figure[2.1)) was more
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realistic since it was only focused in the new trajectory prediction algorithm,
that is the main goal/concern of this thesis. In this plan, we reserved time
to analyze the worst case scenarios and implement possible improvements.

2010 2011
Project stages Sep | Oct | MNov | Dec Jan Feb Mar | Apr | May Jun Jul

[ st hoproject v | |

I

[Vatdation of Correa's thesis 1> —

[Tmplementation and Experiments 1> I
[sc — ] —

Figure 2.1: Gantt chart for Plan B.

Plan B was the one that we actually followed. The new approach re-
vealed the need for a further in-depth exploration of our ideas. While they
represented a much more realistic perspective than the earlier version, its
design and calibration was more demanding. So, in that point, we decided to
use the remaining time testing our algorithm in different ways, exploring the
worst case scenarios and analyzing and implementing possible solutions/im-
provements. In conclusion, we preferred depth over breadth. L.e.; instead of
getting "yet another” functionality in the project, we decided to evolve the
current one up to the maximum possible.

2.2 Development Approach

In a research project it is important to discuss and share opinions frequently
in order to merge different ideas and negotiate directions. Therefore, in this
thesis we chose an exploratory development approach, somewhat similar to
an agile model [34] in a software project development.

From September to March, there were weekly meetings where the work
developed during the week was reported and some different topics could be
discussed. In the first ones the main priority was to define the thesis goals
and the strategy for the rest of the year, while in the following the concern
was in collecting new GPS traces and define different kinds of data filtering
and processing techniques (Chapter {4)) in order to build traces with the best
quality possible.
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After defining all these procedures, the meetings started to be focused in
the new algorithm. They were more like brainstorm sessions where each per-
son was supposed to bring new ideas and share the research work performed
during the week with the rest of the team. These ideas were discussed and
merged until we obtained a final algorithm, described in Chapter [} Then,
from the beginning of the experiments to the deadline of this thesis, the pur-
pose of the meetings was only to discuss and interpret the results previously
obtained and define the next steps and tests to perform.

After the end of March, when Francisco Pereira (my advisor) left Portugal,
we started to meet only two times per month, via video conference. These
meetings started to happen more sporadically, mostly due to the huge time
difference between Portugal and Singapore (7 hours) and the difficulty in
finding compatible slots. However, as most of the next steps and tests had
already been defined and the thesis was already in its final phase, this fact
did not affect the final outcome.



Chapter 3

State of The Art

In this project it is crucial to understand the driver’s reasoning in order to
simulate an appropriate representation of the mental city map of a driver,
that is the base of our trajectory prediction approach. In Section we will
talk about some psychological studies that try to understand why these maps
usually differ a lot from the real ones.

Then, in Section [3.2] we will examine previous work made on the trajec-
tory prediction research field and particularly analyze Correia and Camara’s
distortion algorithm [6], since it represents the first iteration of ATDA’s tra-
jectory prediction module and part of this thesis work is focused on it.

Finally, in the last section, we will take a look into some destination pre-
diction algorithms that have been developed during the past years, specially
Di Lorenzo’s algorithm [§], that was used in AIDA’s destination prediction
module.

3.1 Spatial Cognition

Spatial Cognition is a research field that studies the way humans and other
animals perceive and represent space in their heads. In this case, space
refers mainly to cities, towns, metropolitan areas or other possible entities
that can never be seen in their entirety. Because of their proportion, it is
almost impossible for a person to perceive and represent such an entity in

12
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perfection, so the presence of distortions in this kind of mental representations
is unquestionable. It is important to be aware that these distortions can be
presented in both memory and perceptual representation [16].

Cognitive Map is the usual metaphor for the human’s mental image of the
maps of such environments. These maps differ from the real ones because
they are distorted in different ways regarding each person. In fact, those rep-
resentations are so complex that can not be defined with only this metaphor,
as Tversky [32] states. She believes that there are sorts of non-maplike infor-
mation that are also distorted and can be used to make inferences about spa-
tial proximity. The author refers to these cases as Cognitive Collages, where
Collages symbolize thematic overlays of multimedia that contain those types
of information, such as figures, facts about distances or directions or even
knowledge about the climate and time zones. Spatial Mental Models is the
other metaphor suggested in her work and it is used in situations where the
environments are simple and people do not preserve the metric information
but do preserve most of the spatial relations among landmarks.

For our work it is crucial to understand the source of the distortions
that originate the mental map of each person. In a study performed in
some North America cities, Stevens and Coupe [28] realized that people tend
to store in their memories not the exact location of all cities, but rather
the relative location of the states, calling this type of distortion hierarchical
organization. In a different study, Holyoak and Mah [13] placed two different
groups of students in different sides of the american coast and asked them
to estimate distances between some american cities. They realized that the
judgments were distorting depending on which side of the coast they were,
so different Cognitive Perspectives happened.

In 1981, Tversky [31] also detected other types of distortions like Rotation
(people tend to rotate spatial locations so that they will correspond to the
exact N-S frame of reference) and Alignment (two nearly-aligned locations
tend to be remembered as more closely aligned than they actually were). In
fact, judgements of spatial relations might be affected by political [22] and
semantic [I2] reasons too.

However, none of these studies seeks to understand the driver’s reasoning
and why some paths are preferred among others. The driver’s route choices
can make some specific routes be imaged as longer or shorter in the mental
map and this fact is a source of distortion too. In 1995, Golledge [10] tried
to understand the criteria most often used in route selection. Thirty-two
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subjects were selected and experiments were performed both in laboratory
and real environment. In the end, the results showed that the top three cri-
teria were shortest distance, least time and fewest turns. The author also
states that the route choice varies depending on the direction traveled. This
matches with Brunye’s results [4] that showed that drivers prefer routes to-
wards South and perceptually classify the North choices as being uphill. Sim-
ilar studies [3] show that least-angle routes with an initial straight segment
are often chosen. These results represent important clues for what should be
AIDA’s trajectory prediction algorithm, since the better we can understand
the driver’s reasoning, the better we will simulate and understand his mental
map of the city.

In addition it should be mentioned that, besides this work, there are
others that use a graph distortion approach (acting on the edge weights)
followed by the application of a shortest path algorithm, but they all have
different purposes.

Duckham and Kulik [9] used this procedure to generate the simplest route
to a destination, in other words, the route that is easiest to explain, under-
stand and memorize. In order to minimize the complexity of a route descrip-
tion, each pair of connected edges has an assigned weight that represents the
amount of information required to negotiate their intersection. If the deci-
sion point is complex (e.g. T-junction) the weight will have an high value,
otherwise it’s value will be lower. After distorting the graph, they simply
apply a shortest path algorithm and the simplest route is returned.

The same methodology is used in the works presented by Haque [I1] and
Caduff [5]. The former was inspired by Duckham and Kulik’s work [9] and it
only differs in the weighting function (in Duckham’s work the weight reflects
the instruction complexity of a decision point and in Haque’s the weight
describes the ambiguity of each turn at an intersection point). In the latter,
each node of the graph has nearby landmarks associated with it. In this case,
the weight of each pair of connected edges will depend on those landmarks’
saliency. The distance/orientation of a driver with respect to them is also
taken into consideration. In the end a revised version of Dijkstra is applied
to the graph, returning the clearest route in terms of spatial references.

These works, besides their different goals, inspired AIDA’s trajectory pre-
diction algorithm, that will be analyzed in next section.
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3.2 Trajectory Prediction

Trajectory prediction is a large research field that attempts to predict future
trajectories of moving objects in several environments. Before taking a deep
look into AIDA’s trajectory prediction algorithm [6], we should first analyze
some important works in the field, specially the ones that focus on the driver’s
context.

Karbassi and Barth [14] attempted to predict the route between two sta-
tions in a shared-use vehicle’s system. They collected GPS traces during
three years in order to create route frequency histograms between all pairs
of stations during three periods of the day: morning, noon and afternoon.
So, before entering the car, the users of this system should insert both origin
and destination stations on the station kiosk touchscreen. Then, during the
trip, as new location data were received (GPS positions every 30 seconds),
a hierarchical tree data structure was used to recalculate the most probable
route for the period of the day, based on the histograms described above and
links traversed so far.

In 2007, Sang-Wook Kim et al. [15] proposed a similar approach to the
one described above. Assuming that a driver started a trip from location
S and reached the location C' by a certain path, moving towards the final
destination D, their algorithm starts by looking at all past trajectories taken
from S to C'. Then, for each one of them, their paths from C were investigated
and the most frequent path (the one whose frequency is higher) that passes
by the destination D is returned. The authors were not able to collect real-life
trajectories, so they did not conduct performance tests.

The main limitation in the two works described above is the fact that they
both require a database with a driver’s past trajectories and routes. This
can lead to enormous databases and affect the performance of the algorithm,
besides the fact that it is impossible to predict a driver’s trajectory from
scratch (without acquiring prior knowledge), something that our algorithm
should be capable of. Moreover, it should also be able to predict both the
trajectory and destination without any user input and for a complete city
map, in contrast to Karbassi’s work.

There are also some authors that used pattern recognition techniques to
predict future trajectories. Simmons et al. [27] trained a Hidden Markov
Model with past routes and destinations in order to predict the next road
segments taken by a specific driver until the destination arrival. They tested
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their approach on a driver with 46 trips, achieving an accuracy often above
98%. However, this is a misleading result, because 95% of the driver’s road
segments end points were connected to only one other road segment. So, the
transition was forced and as there was only one option the prediction had
to be correct. Thus, the relevant result in this work is the average of 75%
of accuracy obtained when the transitions are unforced, that corresponds to
5% of the total predictions.

A similar approach was used in Krumm’s work [19], where he used a
simpler Markov Model (instead of a Hidden Markov model) to predict the
chain of road segments that a driver will next take. In contrast to Simmons’s
approach, in this work only about 28% of the segment transitions are forced,
which makes the results more believable. They show that the accuracy for
predicting the next segments rises with the number of past segments matched
and drops the farther the model looks into the future. For instance, 90% of
accuracy is obtained when only predicting the next, single road segment,
65% when predicting the next five and only 50% when predicting the next
ten segments.

In addition, both authors tried to add information about the time of the
day and the day of the week to the models to see if it would increase the
accuracy and both obtained negative results. However, Simmons et al. [27]
found out that the current speed could be a significant factor.

In 2008, Krumm and Froehlich [20] tried to guess a driver’s entire route,
instead of making road segment predictions like in the last two described
works. They gathered GPS driving data from 252 drivers resulting in 2.2
million GPS location points with an average of 15.1 days of worth driving
data per user. The authors state that a trip is different from a route, since the
trip describes a path through time and space and a route is a only collection
of latitude and longitude pairs and lacks the time component.

Their algorithm starts by combining similar past trips into routes. In
order to do that, they compare every trip in a driver’s trajectory data and
store the similarity scores between them in a trip similarity matrix. Then,
they use a hierarchical clustering technique that recursively combines trips
until the lowest score in the matrix exceeds a specific threshold. The similar-
ity score between two trips is calculated by computing the average minimum
point-segment distance between them (a version of the Hausdorff distance
algorithm).
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Thus, as a trip progresses, the distance between the current trip and all
the driver’s routes (that were calculated using the clustering method referred
above) is updated in another similarity matrix. Then, two algorithms can be
applied: the Closest match algorithm returns an ordered list with the most
similar routes to the current trip and the Threshold match algorithm returns
for each route a confidence measure given the trip’s distance so far.

The results show that by the end of the first mile the percentage of re-
peated trips correctly predicted is 30% and that by that point, 70% of the
times the correct route is already in the top 10 closest ones (increasing to
80% by the third mile). However, the results also show that by the first day,
only 1.5% of the trips were considered to be repeated. Furthermore, we can
observe that even after a month of route collection 40% of the trips are still
over new routes so there will always be a lot of trips that will not have a cor-
rect match. These cases can not happen in our algorithm, since the system
must be able to predict a driver’s route even if it is new for him and that is
one of the greatest motivations of our work.

Next, we talk about Correia’s master thesis, that represents the first
approach of AIDA’s trajectory prediction algorithm [6]. In contrast to the
works presented above, the idea of this work was to simulate the mental map
of a driver by distorting the city graph acting on the edges weight. Then, like
in Duckham’s [9], Haque’s [11], and Caduff’s [5] works, a simple shortest-path
algorithm (Dijkstra was his implementation) was applied in order to get the
shortest path from the standpoint of a driver. Since shortest distance is the
criteria most often used in route selection (Golledge [10], Section [3.1)), the
returned path should represent the one that the driver will choose.

For instance, if a couple of links are traversed 100 or more times in a month
by a certain driver, it is because, probably, from that driver’s standpoint,
they represent the shortest ways to achieve specific destinations. Therefore,
in order to make these links preferred over the others, their weight should
be diminished. Thus, before the beginning of each trip, the weight of all the
graph’s edges is updated as the following:

w = (wmax - wmin) X f(ntun Ntw) + Wpin

where w4, corresponds to the highest possible value of an edge’s weight (the
same as the initial value) and w,,;, the lowest possible one, that depends on
the “driver’s reality perception factor” a that may vary between 0 and 1:
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Wmin = Wmaz X &

The function f (74, Niww) represents how an edge weight value decays with
the number of times ny, a driver transversed it (Ny, is a normalization fac-
tor). He tested this algorithm with different v values and six different decay
functions: exponential, logarithms, sine, cosine, linear and inverse.

So, before the beginning of a trip, a set of probable destinations is returned
by another algorithm [8], that will be deeply analyzed in Section [3.3] Correia
and Camara’s algorithm starts by calculating the most probable route for
each one of the destinations (the one with the shortest path in the distorted
map). Then, during the trip, as the driver transverses a few links, some
destinations will be ruled out of the set because their predicted routes can
not be matched anymore by the driver. Anytime the set becomes empty, a
new set of possible destinations and routes is computed.

As we can see, in contrast to Krumm and Froehlich’s approach [20], this
algorithm can predict a driver’s route even if he never went through it. Even
when the system is initialized and there are no graph distortions (every edge
has w,q, of weight), this algorithm achieves 86% (£7%) of accuracy when
predicting the route that will next be taken. The results also show im-
provements of 6% after the map being distorted. However, the tests were
performed with only three drivers from two cities, so the statistic evaluation
is not a point in favor.

Moreover, we can detect some limitations in this algorithm. For instance,
we can understand that it will never be able to represent the perfect mental
map of a driver. Even if a driver chooses the same routes everyday, the dis-
tortions will never stop, the map will be changing infinitely and will never
stabilize. This and another problems will be discussed in Chapter [5] where
we will talk more deeply about the ideas discussed around this algorithm’s
limitations and the process we went through until reaching an improved dis-
tortion function.

3.3 Destination Prediction

In order to understand the idea behind AIDA’s destination prediction algo-
rithm [8], we first need to be aware of what inspired it and take a look into
previous studies in this research field.
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Terada et al. [29] proposed four different destination prediction methods
that should be applied depending on the type of road driven on. The Basic
Method returns the most probable destination by calculating the degree of
concordance between the current route and every past trajectory stored in a
database, using the following formula:

Pij = (1 — OC)NTZJ + aP(i—l)j

where P;; represents the probability of a user at a specific road ¢ going to
destination j, N;; the frequency of going to destination j by 7 and N; the
frequency of visiting edge i. The constant a may vary between 0 and 1
and controls the weight of considering past routes for calculating F;;. The
percentage of past drives that reached destination j will correspond to F;.

However, the authors noticed that the accuracy was decreasing when
there was a use of alternative ways. Thus, for those cases, they decided
to change the weight o dynamically calling it the Alternative way Method.
In this new method, the « is not constant anymore and is defined be the
following equation:

Ni,j
Ni_1+N;

o =

The authors also propose two more methodologies: the Departure Method
and the Context Method. In the former, the strategy was to use sorts of data
of each departure to predict less commonly used destinations in situations of
intense use of arterial ways. In the latter, they developed a similar approach
to Patterson’s [25] and trained a Bayesian network with driving context in-
formation (e.g. time of the day, the day of the week, weather or number of
passengers) in order to predict the destinations.

This kind of driving context information was also used in Kostov’s work
[17], but with different goals. In this work, he started by organizing the
driver’s past trajectories in an F'P-Tree, that allows an efficient search for
moving patterns and facilitates the calculation of destination probabilities.
Then, with the goal of predicting the driver’s destination reliably, they pro-
posed an algorithm that automatically assigns categories to each user based
on the type of information referred above. For instance, if a user A often
goes to a shopping on Saturdays and Sundays, it is assumed that weekend
is a category to the user A. Likewise, if he has lunch one day at 12:50 and
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at 13:10 on another day, it is considered that his category for lunch time is
around 13 o’clock. In the end, a group of common destinations is extracted
by combining the tree data structure with these categories.

We can see in the results that the prediction accuracy increases as the
number of history data used and the time since the engine started increases
as well. So, when the engine is running for five minutes and the number of
history data used is 400, they present an accuracy of approximately 75%,
which demonstrates a good performance. However, the authors only applied
this method on the history data of three subjects, which does not represent
a strong statistical validation.

Besides Terada et al. [29], the use of pattern recognition techniques to
predict a driver’s destination has been explored by some other researchers as
well. The works presented by Ashbrook [2] and Patterson [25] use a second-
order Markov model and a Bayes network, respectively, to predict where the
driver will go next, among a set of previous learned destinations. The main
limitation in these works, is the fact that they both need to acquire prior
knowledge of a driver’s common destinations, like home and work. Although
these ideas are interesting, AIDA needs a more complex algorithm that can
work in a new car without knowing the driver’s routines.

In 2006, Krumm [I8] placed a grid 41 Km X 41 Km over the Seattle area,
with each cell having 1 Km of weight. His approach is based in the idea that
the time to reach a specific destination decreases monotonically as a trip
progresses, which is not always true. The goal was to assign a destination
probability to each cell on the grid by applying a Bayes rule. However, this
algorithm can return cells that represent rivers, lakes or forests and that
should not happen on AIDA’s algorithm.

This shortcoming was solved by the same author and Horvitz [21], by
using the United States Geological Survey (USGS) [33] to characterize each
cell with ground cover information. In this way, cells that represent more
attractive areas (e.g. commercial) have more probability to be chosen as
destinations than the others (e.g. water, forest).

These authors use the same initial base but propose two different models
for destination prediction. The Closed-World approach focuses on destina-
tions that have already been visited by the driver, so the number of times a
driver concluded a trip in each cell is computed. Then, a histogram over the
cells is built and after the normalization they developed a probability func-



CHAPTER 3. STATE OF THE ART 21

tion based on personal destinations. In contrast, the Open-World approach
considers new destinations, that have not been seen before. Their approach
is based on the intuition that the common destinations tend to cluster, in
other words, the authors believe that they are always near each other so the
driver can, for instance, save time. Thus, for each cell, a discretized prob-
ability distribution is computed over the distance from previously visited
destinations.

These two models described above are further integrated with each other
in order to create the main model. However, based on the results, this model
is not able to predict unvisited destinations since it behaves essentially like

a Closed-World model.

In some points Di Lorenzo’s work [§] is similar to the one described above
since it also uses square grids to modeling space and two different models for
two different Worlds. Nevertheless, the ideas behind these two models are
not the same and, in addition, this algorithm is capable of adaptively change
the group of most probable unvisited destinations.

Therefore, in AIDA’s destination prediction algorithm [8], the Routine
Model corresponds to the scenario where the driver is traveling to a known
destination on his daily routine, like home or work. Thus, the driver’s driving
history is extracted a priori and is used to train a probabilistic predictive
model. In this case, the Markov model was chosen because there is access to
temporal sequences. Then, in order to filter the set of possible destinations,
an expected trip time t is computed and only those cells that are ¢ time unit
away from the origin stay in the set. Furthermore, as this model only focuses
on visited destinations, the new ones are eliminated from the set.

The Non-routine Model is somewhat more complex than the former. As
there are not enough temporal sequences to unvisited destinations, a Bayesian
rule is applied over other relevant data, that takes into account the purpose
of the trip and the familiarity with a particular area.

Given the day of the week and the time of the day, some temporal patterns
can be extracted from the history of a driver, such as his time to lunch or to
go to the gym. Thus, we can guess the purpose of most of trips. For instance,
if a driver is not driving home at his lunch time, we know that probably he
is going to some restaurant nearby. Therefore, in this approach, information
about Points of Interest (POI) in each cell is used in the data training, so
that the probability of a driver being at a specific POI category, in a certain
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time of a day, in a specific cell can be computed.

Moreover, if a driver is exploring a new area, information about its land
use and population density is used to filter destinations, since drivers that
are not familiar with a specific region tend to visit popular places. This
filtering also discards the undesirable cells that represent ocean, forest or
desert because they typically have zero human population.

The results show that the destinations can be predicted accurately with
an average error of 4.29 Km. It is also noticeable that the choice of a Markov
model in the Routine Model was appropriate because it yields a lower average
error compared to the Bayes approach used by Krumm and Horvitz [21] in

the Closed-World (3.93 Km vs 4.37 Km).

Although it has still many points to improve and future work ahead, the
algorithm presented above is the one that was integrated, in a first phase, in
AIDA’s destination prediction module.



Chapter 4

Data Collection and Processing

As was explained in Subsection [1.2.2] the first part of this thesis consists in
the statistical validation of AIDA’s original trajectory prediction algorithm.
The dataset used by Correia and Camara to test this approach was just
composed by three different drivers, two from Coimbra (Portugal) and one
from Seattle (WA, USA). In the other hand, our new dataset is composed by
GPS traces collected in San Francisco (CA, USA) by eight users in a period
of one year (from May 2008 to May 2009).

So, our first goal is to test the original approach with the San Francisco
dataset and compare the results obtained with the ones got by Correia and
Camara. In the end, if we succeed in the experimentations, we will have the
algorithm validated, since we believe that the fact that it shows improvements
in eleven different drivers from three different environments is enough to
conclude that it can be used as a valid trajectory prediction algorithm. The
same reasoning is applied to the second part of this work, where we intend
to test the new approach with the same eleven drivers.

Both datasets recorded a broad range of users’ outdoor movements, in-
cluding not only home-work trips but also some extra-routine entertainments.
However, they give no indication of when a trip begins or ends and AIDA’s
trajectory prediction algorithm needs knowledge of a driver’s discrete trips
to yield results. Moreover, some GPS points are noisy and contain invalid
sensor data.

In the next four sections we will talk about the steps we performed in order
to extract clean traces from the GPS raw measurements of both datasets.
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Then, in Section 4.5, we will present some statistics and data comparisons
and finally, in Section (1.6 we will talk about the limitations of our map
matching algorithm and how they affected our traces.

4.1 Pre-processing

After some analysis of the original GPS raw data files, we found out that
most of them were a variation of the NMEA format [24], where the coordi-
nates are given in minutes and seconds. Thus, the first step was to convert
the coordinates in degrees and compute a timestamp from the hour and the
day provided, this way converting the data in a latitude,longitude,timestamp
format. Next, each user’s GPS data was sorted chronologically, by times-
tamp.

In the end an algorithm was processed for each user’s datafile in order to
understand what was the most appropriate bounding box for each subject.
This last step is very important because we can not load, for instance, all
the map of the state of California to our database (due to system memory
problems), so it is crucial to find out which is the bounding box that best
fits each driver’s traces.

4.2 Trip Segmentation

The algorithm used to segment the GPS points in trips looks for gaps between
two consecutive recorded points (P1 and P2) of 2 minutes or more. If a gap
is found, P1 becomes the end point of the last trip and P2 the begging point
of the current trip. The threshold value of 2 minutes, like some other GPS
data processing techniques, was inspired by the work performed by Krumm
and Froehlich [20], where they used GPS traces collected from Seattle (WA,
USA).

In their work, they explain that a threshold value of 3 minutes would be
optimal. However, after running some tests, we concluded that there was no
problem in reducing the threshold in one minute. After a brief data analysis,
we realized that during a common trip, the GPS points were being extracted
with a very high frequency (from 1 do 5 seconds), so the 2 minute gap is
enough to understand when a new trip begins.
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4.3 Trip Cleansing

Every GPS trace contains noisy points that represent outliers and our dataset
is no exception. So, once the traces were segmented, the GPS points needed
to be cleaned. Outliers typically appear as wildly mistaken points along
a reasonable sequence of GPS points and normally are far away from the
temporally adjacent points in the traces.

Thus, like in Krumm’s work [20], we decided to implement a cleansing
algorithm based on speed and acceleration to remove these noisy points. We
iterate over every GPS point in each trip checking if the segment formed by
the current point with the previous one was traversed at more than 200 Km/h
and, if so, the current point is removed. With this cleansing we achieved a
reduction of approximately 1% of the data points:

Algorithm 1 Outliers Removal
1: Load each user’s GPS data files with the trips already segmented;
2: Initialize empty List [;
3: for all File f do
4:  for all Trip ¢ in File f do

5: for all Point p in Trip ¢ do

6: if speed(Point p — 1 , Point p) < 200 Km/h then
7 Add Point p to List [;

8: else

9: Point p is outlier;

10: end if

11: end for

122 end for

13: end for

4.4 Trip Filtering

In some cars the GPS receivers often produce intermittent streams of GPS
readings, even when turned off, which can generate false trips in the user’s
data files. Thus, as our segmentation algorithm does not discriminate be-
tween these fictitious trips and the real ones, we applied some filtering algo-
rithms to our traces in order to obtain valid results.
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As was referred above, most of the GPS points are extracted every second.
At first, we thought that this should be a positive fact because the more GPS
points we have the more precision we can get. However, after analyzing the
results obtained after the cleansing and segmentation stages, we realized that
we were wrong. Each user’s data file had an average size of 20 Megabytes
and a lot of points were repeated, representing negligible distances and noise.

Thus, we decided to apply a filtering algorithm that eliminates every GPS
point that is less than 10 meters away from the previous one. In this way,
we were able to decrease the size of the files in 80%. However, there is one
limitation. If a vehicle is more than 2 minutes stopped at a traffic light, all
the GPS points extracted during that time will be within a circumference
with 10 meters of radius, which means that after this filtering, these points
will all be deleted except one. This way, when the car starts to move on again,
the segmentation algorithm will consider that a new trip began because the
next GPS point will be extracted 2 minutes after the previous one. So, our
segmentation algorithm is not able to tell the difference between a 2 minute
gap resulted from the car being shut off and a long traffic light waiting.

From Krumm and Froehlich work [20], we decided to use two filters:
the WithinBoundsTripFilter and the MinimumPointCountTripFilter. The
former removes the trips that take place outside the user’s bounding box, that
was defined the pre-processing stage. The latter removes the trips composed
by less than 30 GPS points in order to eliminate small and fictitious trips.

4.5 Data Statistics

The application of these four stages described above to each user data file
reduced the number of trips in roughly 73%. Thus, our final dataset is
composed by 1892 trips from 11 different subjects. On average, each user
took 6 (£3) trips per day and each trip lasted for 14 (£5) minutes and had
7 (£2) Kilometers of length.

If we compare these numbers with the ones showed by Krumm, we can
conclude that our traces have a better quality. As we can see in Table 4.1} in
our dataset, the number of days of data per subject represents more than one
month, the double of Krumm’s. Therefore, it allows us to perform a more
completed training of our algorithms and obtain more truthful results, since
there are more trips per user available to analyze. However, Krumm'’s dataset
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included 14468 trips from 240 users, which makes their work statistically more
relevant.

Dataset AIDA (S. Francisco, | Krumm

Seattle & Coimbra) | (Seattle)
Num subjects 11 240
Trip distance (Km) 7 (£2) 12
Trip time (minutes) 14 (£5) 16
Num trips / day 6 (£3) 4
Num trips / subject 172 (£130) 60
Num days of data / subject 36 (£35) 15

Table 4.1: Comparison between the quality of the traces presented in Krumm
and Froehlich’s work [20] and in this one.

4.6 Map Matching

The purpose of a map matching algorithm is to match each pair of coordinates
of a trace to the correct road segment on the map. In this work, we did not
need to worry about this phase, since AIDA’s map matching algorithm was
already been implemented by Correia and Camara. Thus, the purpose of this
section is not to describe how this algorithm works, since it is well explained
in Section 4.1 of Correia’s master thesis [6], but rather talk about its main
limitation and how it influenced the composition of our traces.

What happens is that the algorithm was designed with too much perfec-
tionism. That means that the matches only occur when there is 100% sure
that the current point corresponds to a specific segment so, in theory, there
will be no match errors. The problem is when there are more than one possi-
ble correspondent segment for a particular point and the algorithm does not
know which one it should assign. In that case, it will simply not match the
point, which will cause a separation in two traces. As this situation might
happen more times during the matching, in the end we will have each trace
divided in pieces, as Figure demonstrates.

The top figure shows the appearance the trace should have when perfectly
matched. The problem is that the algorithm was not able to match the red
points, so the red segments will not be part of the trace after the matching.
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Before map matching (1 trace)

\ After map matching (4 traces)
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Figure 4.1: The map matching algorithm limitation.

Thus, in this case, we will have four smaller traces to train and test our
distortion functions instead of a bigger one. On average, each trace is divided
in 3.35 smaller traces after the map matching so, due to this limitation, the
number of trips per driver has increased in roughly 335%, as we can see in
the Table 4.2l

Before Map Matching | After Map Matching
Trip distance (Km) 7 (£2) 1.1 (£0.7)
Num trips / subject 172 (£130) 576 (£497)

Table 4.2: Comparison between the number of traces before and after the
map matching.

So, the traces that we are going to predict in the experiments phase
(Chapter [6)) have, on average, 1.1 (+0.7) Km of length that correspond, on
average, to 19 (£9) segments. Although this number of segments is already
quite significative, we also would like to study the performance of our algo-
rithms with a different map matching algorithm, less perfectionist but that
would not cause separations in the traces. If our traces had 7 (£2) Km
length as initially, the number of segments that we predict would increase a
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lot and the predictions would be more difficult and the results more realistic.
However, as we saw in Chapter [2, working on the map matching algorithm
is not part of this works’s plan and it is not our concern, so that represents
future work.



Chapter 5

The new approach

In this chapter we will start by talking about the limitations of AIDA’s
original trajectory prediction algorithm (Section , by describing some
scenarios where the results obtained might not be as promising as expected.
Then, in the following sections, we will explain how the new approach works
and how it is able to have a good performance when facing the original
algorithm worst case scenarios.

5.1 Original algorithm limitations

In Section we explained the basic ideas of Correia’s master thesis [6],
particularly how the weight updating function works and distorts the graph.
Basically, before the beginning of each trip, the weight of each edge of the
graph is updated by a decay function that receives a value x by argument.
This z is the normalized quantity & where n is the number of times a link
was traversed and N is the highest n between all links. The higher the value
of x, the lower the new weight value will be.

With the map being distorted by this function, the authors achieved about
92% (£5%) of accuracy. Although these are very promising results, their
algorithm contains some limitations. As it was introduced in Section
one of the problems is that the map will be distorting infinitely. The main
goal of using a distortion function approach is to get an approximation of
each person’s mental map of a city. This map is supposed to stabilize after
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a couple of weeks, something that is impossible to happen in this case. Even
if a driver chooses the same routes everyday the distortions will never stop,
since the edges weights are all updated before the beginning of a trip. These
persistent updates can lead to other problems.

Let’s imagine a scenario where a driver chooses always the same path from
home to work during one month. After this month, a new and faster road is
built and the driver decides to change his routine and starts to choose always
the new road to go to work. The problem, in this case, is that the algorithm
will take too long to realize that the driver has a new preferred route to
work. It is easy to understand that the weight of the edges that compose
this new route will rapidly diminish, because the number of times that they
were traversed will quickly increase. So, in theory, this route should represent
the shortest path. However, this is not reflected on the graph. What happens
is that the edges of the old route were distorted during a long period (one
month) and there is no way to increase its weights as quickly as they were
previously decreased. In this case, the growth of these weights will be too
slow, because the only way to increase them is to wait for the N to increase,
so the x can be lower. Therefore, it will take too long for the weight of
the new route to be lower than the old one, so the latter will represent the
shortest path for a long time.

In conclusion, although this approach presents promising results, we be-
lieve that it will never be able to produce a stable map. We need a more
complex algorithm that should be able to quickly adapt and react to changes
in the driver’s mind and stop the distortions when the best approximation
to the mental map is achieved. In Section we will describe how the new
approach is going to work, particularly the map stabilization effect, which we
believe to be a possible solution to overcome the limitations described above.
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5.2 The map stabilization effect

As was explained in Section [5.1] one of the main limitations of Correia and
Camara’s algorithm is the infinite distortion. Therefore, we decided not to
update all the links weight before the beginning of a trip in our new approach.
We realized that, when the route chosen by a certain driver is the same as
the predicted by the algorithm, there is no reason to update the weight of
any links. In contrast, if they are different, only the weight of the edges of
both routes should be adjusted. So, we believe that the best way to achieve
a stable map is not to change it when the trips are being predicted correctly.

Another limitation described above was the slow reaction of the algorithm
when a situation of an abrupt change of routine happens. Let’s imagine a
scenario where the shortest-path between a driver’s work and home is rep-
resented by Route A, that has 800 meters of length. However, due to some
reason, this driver always chooses Route B (1200 meters) to travel between
these two locations, so the algorithm must make Route B shorter than Route
A. Our idea, differently from the original algorithm, is to decrement Route
B and increment Route A in the same proportion every time the driver com-
pletes the trip, that corresponds to one iteration. The higher the difference
between the weights of these two routes the higher should be the strength
(proportion) applied, so more abrupt will be the distortions. In contrast, the
last rectifications will be more accurate, in order to avoid distorting the links
more than what is necessary and compromise the map stabilization. In this
way, we believe that the algorithm will quickly rectify the weights when a
case of abrupt change of routine happens. Figure illustrates this idea, the
map stabilization effect.
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Figure 5.1: The map stabilization effect.
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In order to compute the strength value, we start by calculating the dif-
ference (in percentage) between the weight of both routes. Then, we simply
divide this difference in two equal parts to obtain two equal pieces of strength.
One piece will be applied positively in the shortest route (the one we want to
increment) and the other one will be applied negatively in the longest route
(the one we want to decrement). So, this variable can be defined as

-t
2

strength =

where a is the total weight of the shortest route and b the total weight of
the longest one. In this way, we will never distort a link more than 49.9(9)%
of itself, since the difference between two routes will always be lower than
100%. In the opposite, the lowest possible strength value will be 0%, that
corresponds to those situations where both routes have the same exact length.
As we can see in Figure p.1]'s example, the new weights for Route A and B,
after the driver passes by Route B twice, are:

After one passage (iteration 1):

_ 800m
strength = 11% ~ 0.17(17%)

Route A = 800m + (800m x 0.17) = 936m
RouteB = 1200m — (1200m x 0.17) = 996m

After two passages (iteration 2):

936m

strength = 1_9% ~ 0.03(3%)
Route A = 936m + (936m x 0.03) = 964m
RouteB = 996m — (996m x 0.03) = 966m

In the examples described above we used f(x) = z as distortion function,
since the strength calculated is directly applied to the links so, for instance,
f(A7%) = 17%. However, despite of representing well the idea of the map
stabilization effect (the lower the difference between the weights, the lower
the strength applied), this function does not yield the results needed in some
situations, as we will understand in Section [5.3]
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5.3 The distortion function

In Section we saw when and how we are going to distort each driver’s city
graph. However, we still need to define the function that returns the strength
that will be applied because the function f(x) = x has some limitations.
For instance, the distortion function must not return zero when x = 0. If
by accident two routes have the exact same length and the driver always
chooses the one that is not the shortest for the algorithm, the rectification
will never happen, since with strength = 0 no distortions will be made.
Another limitation is the fact that this function always decreases in the same
proportion, which can lead to situations where too small strengths are applied
(e.g., 0.000001%) in each iteration, making the rectifications impossible to
be completed in a valid period.

We believe that there are also other functions that make good represen-
tations of the map stabilization effect and that are capable of overcoming the
limitations described above. Due to its flexibility and since it is commonly
used in driver behavior modeling in transport research literature, we decided
to try the Sigmoid as our distortion function. In our case, this function is
defined as

f(x):%

grate

where mazval is the maximum value (in percentage) the function can
return, mpoint is the x value whose y corresponds to the medium point
between zero and maxval and grate corresponds to the slope of the function,
in other words, its growth rate. As the function’s argument will never be lower
than 0% and higher than 49.9(9)%, we will define the function in = € [0, 50].

The biggest challenge of using this function is to choose the right parame-
ters. We started by defining maxval = 50, because we believe that we should
not distort an edge more than 50% of its own weight in each iteration. By
doing rectifications over that value, we would be distorting the links more
than what is necessary to rectify them, which could compromise the stability
of the map. Instead, we prefer to do smaller adjustments in each iteration
and make more accurate rectifications. Moreover, if we want our function to
have a similar behavior to f(x) = x in order to have a good representation
of the map stabilization effect, defining f(49.9%) ~ 50% is a good starting
point.
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The remaining parameters are more tricky to choose and difficult to jus-
tify. We decided to define mpoint = 25 because, since we want this function
to have the closest possible behavior to f(z) = z, this medium point value
would guarantee that f(25) = 25. We also defined grate = 5 because the
slope obtained with this value is not too abrupt nor too smooth and we be-
lieve it represents a proper learning curve. Moreover, the use of this growth
rate implies that f(0) = 0.3, which represents the function’s absolute mini-
mum. Besides solving the situation of the two same length routes described
above, in this way, we also guarantee that the rectifications will be completed
in a valid period, since 0.3% is the minimum strength that can be applied in
each iteration. We can see the function’s appearance in Figure [5.2
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Figure 5.2: Distortion function’s appearance with mazval = 50, mpoint = 25
and grate = 5.

By using this function and these parameters, we believe that we are main-
taining the map stabilization effect represented by f(z) = x, but without the
limitations referred. The results of the application of this new algorithm in
the eleven drivers described in Chapter [4| will be presented in Section [6.3
where we will also understand why we were not so right about our initial
theoretical assumptions (presented in Section and why these parameters
values, described above, are not the most optimal ones to this case.



Chapter 6

Experiments

In this chapter we will take a look to the tests performed and results obtained
on both original and new approaches. We will start by talking about the
performance evaluation of our algorithms. Then, in Section we will
describe the tests we made on the original approach and see if the results
obtained are enough to statistically validate it.

Finally, in Section [6.3] we will see how we came up with an optimal
distortion function for our new algorithm. We will compare its performance
with the original one, show and discuss the results and see how to improve
the accuracy in the worst cases scenarios.

6.1 Applied Measures

In order to compare the performance of their algorithm in the different tests,
Correia and Camara proposed four different measures, that are described
in detail in Subsection 5.1.1 of Correia’s master thesis [6]. In their work
they claim that, if we look at them separately, we can not extract rigorous
conclusions. Therefore, only by considering them as a group, we can further
strictly evaluate the algorithm in the job of predicting the route that will be
taken by the driver to a certain destination.

During the experiments, we performed a lot of tests on the distortion
function and comparisons between different approaches, so we needed to find
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a simpler way of comparing the results and quickly understand what are the
best ones. If we used all the four measures at the same time to compare two
different approaches, we would take too much time to analyze the results and
we would have a lot of difficulty in plotting them. Therefore, we decided to
choose only one measure to describe the performance of our algorithm, this
way reducing the problem dimensionality.

Thus, among those four measures, we decided to pick the First Predic-
tion Accuracy. This measure aims to understand the accuracy of the first
prediction made, that corresponds to the route predicted in the beginning
of the trip when the shortest-path algorithm is for the first time applied. It
corresponds to the ratio between the number of road segments that this route
shares with the one that, in fact, the driver chose and the total number of
road segments of that route that was taken by the driver. We believe that
this measure is enough to express the algorithm’s performance, since it allows
us to have a good idea of how good the predictions yielded by the algorithm
are.

6.2 Original Approach Validation

In the following subsections we will describe the tests we performed on the
original algorithm and present the corresponding results. In Chapter 4| we
explained that our dataset can be divided in two parts. The first part, com-
posed by three different drivers from Coimbra and Seattle, has already been
tested with this approach while the second one, composed by eight drivers
from San Francisco, has not yet been. Our goal in this section is to demon-
strate that the improvements shown in Correia’s master thesis [6] with the
first part of the dataset also occur with the second one. With this demon-
stration, we intend to statistically validate this approach.

6.2.1 Prior Prediction

Before testing the distortion function, we should first be aware of how the
algorithm behaves when no distortions are applied to the map graph. So,
the purpose of this test is to run every trace of a driver without making edge
updates before the beginning of the trips. This test is very important, not
just to understand the behavior of the algorithm in this situation but also



CHAPTER 6. EXPERIMENTS 39

to further compare its results with the ones yielded by tests that use the
distortion function to distort the map in every iteration. Only by comparing
both results we can understand if there are any improvements and if it is
worth to use the distortion function or not.

After running this test on all the San Francisco drivers we obtained, on
average, 83% (£4%) of First Prediction Accuracy (FPA). This means that,
if we just use a simple shortest-path algorithm to predict the route that
the drivers will take, without making any distortions on the original city
graphs, we can correctly guess, on average, 83% of the road segments by
which they will pass over. In fact, in 62% (£7%) of the traces the algorithm
was able to correctly predict all the segments, which means 100% of FPA.
These are interesting results because they match with Golledge’s studies [10],
that demonstrate shortest distance is the criteria most often used in route
selection. With this test, we can see that the base of our approach makes
sense. However, our goal is to show that we can improve these results by
distorting the city graph according to each driver’s past route choices.

6.2.2 Re-substitution Method

The goal of this test is to understand the algorithm’s performance when a
distortion function is applied to the map edges before the beginning of each
trip. This test runs every trip of a driver, starting with a non-distorted graph
and distorting it in every iteration with the smooth log function — log 10(x)
and a = 3 (training phase). Then, the traces are run again, but this time
using the graph previously distorted, in opposite to the Prior Prediction
test where the traces are run using the original one. This is called, in the
pattern recognition field, the Re-substitution Method, where the train and
the test datasets are the same. We chose this function and this a because,
when combined, they were the ones that presented best results in the tests
performed by Correia and Camara in [6].

In this test we obtained, on average, 90% (£2%) of FPA using the eight
drivers of San Francisco as input, which represents improvements of nearly
7% regarding the 83% obtained in the Prior Prediction test. In Table|6.1| we
can understand that these results are very similar to the ones obtained by
Correia and Camara in their work, using the Coimbra and Seattle dataset. If

we join the two parts of the dataset and calculate a total average, we obtain
90% (£3%) of FPA all the eleven drivers.
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Coimbra/Seattle | S. Francisco | Total Average
dataset dataset
N° of drivers 3 8 11
Prior Prediction 86% (£7%) 83% (£4%) 84% (£5%)
Re-substitution 92% (£5%) 90% (£2%) 90% (£3%)
Improvements 6% ™% 6%

Table 6.1: Comparison between the improvements obtained by the original
algorithm, regarding the Prior Prediction test, using two different datasets.

In Figure [6.1] we show how the map distortion affects the accuracy of
first prediction in a typical driver. The X axis of the graph corresponds to
all the traces of the driver (in this case, from 1 to 595) while the Y axis
represents, for each trace, the difference (in percentage) between the FPA
obtained using this test and the one obtained with the Prior Prediction test.
Thus, a positive value means that the algorithm was able to correctly predict
more segments of a trace using the distorted map instead of the original one.
In the opposite, a negative value occurs when the distortions made in the
graph deteriorate the F/PA obtained in the Prior Prediction test.

First Prediction Accuracy Improvements/Degrades

| | | | | I IR | |

Lamaedersmgdganmgn grmooaNmy® YT P YT
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Figure 6.1: Improvements and degrades caused by the distortion function
regarding the Prior Prediction test in a typical driver.
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As we can see, if we run the traces using a distorted graph instead of using
the original one, we obtain much more improvements than degrades. In fact,
the use of a distortion function in this driver’s map can cause improvements of
nearly 90% of first prediction accuracy (36% on average), but may also cause

degrades in some situations. These cases represent the worst case scenarios,
that will be deeply analyzed in Subsection [6.3.6]

The study presented in this chapter is promising and confirm that, in
fact, the results showed in Correia and Camara’s work were not obtained
by chance. Thus, as we explained in Chapter 4} since this algorithm shows
similar improvements in eleven different drivers from three different cities,
we believe that it can be used as a valid trajectory prediction algorithm.

6.3 New Algorithm Behavior

In this section we will start by talking about the preliminary results we
obtained with the new algorithm and how they influenced our next steps.
Then, we will explain how we came up with our final distortion function and
show some statistics and graphs about it. In the end, we will take a look to
the worst case scenarios. As we are testing a new approach, all the traces of
the eleven drivers described in Chapter [4] were used as input to our tests, in
opposite to Section where the approach was not new and one part of the
dataset had already been tested.

6.3.1 Preliminary results

In Section 5.3 we explained why we believed 25 and 5 were the most suitable
values for the medium point and growth rate, respectively, of our new dis-
tortion function. Table [6.2] shows the First Prediction Accuracy we obtained
using our new approach with these parameters and compares its improvement
regarding the Prior Prediction test with the one obtained by the original al-
gorithm.

As we can see, we obtained more improvements (6%) using the original
approach instead of the new one (3%). These results were quite surprising
and disappointing for us. Since in theory our new approach should produce
an higher FPA value, obviously something was wrong with the function pa-
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Original New Approach

Approach | (M.Point=25 & G.Rate=5)
Prior Prediction | 84% (£5%) 84% (£5%)
Re-substitution | 90% (+3%) 87% (+4%)
Improvements 6% 3%

Table 6.2: Comparison between the improvements obtained by the original
and by the new algorithm regarding the Prior Prediction test.

rameters. We realized that 25 and 5 might not be the most appropriate
values for this case and we started to think about the best way to figure out
what are the optimal parameters. That is what we are going to talk about
in the next two sections.

6.3.2 Function Flexibility

Before taking a look to the results obtained, we should first understand how
the parameters affect our distortion function. Since the maximum value of
distortion is only a threshold and does not affect the function’s appearance,
we will only study the influence of the medium point M and growth rate
G parameters. Figure [6.2] shows how the function’s look changes with the
variation of M and G values.

As we can see, the lower the growth rate the higher the function’s slope
and the sooner the function will start to make very small adjustments. In
the opposite, a higher G makes the learning rate smoother. So, with a very
small G value (e.g., 2) we are expecting to obtain bad results, since the
small adjustments will start too soon and a lot of iterations will be needed
until the rectification is completed. For example, let’s imagine that there
are two different roads (A and B) that end in the same destination: A has
112 meters and B 508 meters of length. For some reason, the driver always
chooses route B, so we must make this route shorter than A. If we use our
distortion function with the parameters G=2 and M =25 we will need 11196
iterations to complete the rectification, in other words, the algorithm will
make the correct prediction only after the driver pass 11196 times by that
path. However, due to the very small rectifications done in the final iterations
(some lower than 0.0001%), the algorithm will correct the paths with a huge
precision (A=206.6068m vs B=206.6065m).
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Figure 6.2: Function flexibility analysis.

We also believe that a very high G (e.g., 70) will cause a bad FPA too
because, in this case, the small adjustments will never be made and the
function will distort more than what is needed, which can affect traces that
share links with the routes that are being distorted. If we maintain the M
value, change the G to 70 and do the exact same test above, we see that we
just need 3 iterations to get the weights fixed, due to the abrupt distortions
done in each iteration (some over 40%), which means a fast rectification.
However, we can also see that the difference between the two routes after
the rectification (precision interval) is too high (A=222m vs B=208m). The
fact that we are distorting the routes more than what is truly needed (e.g.,
route A has 222m but could have 206.6068m as we saw above) is not positive
at all because some of the traces that share links with, for example, route A
may no longer be the shortest ones for the algorithm after this rectification.

The same reasoning is applied to the medium point parameter. If it is too
short the consequences are similar to ones verified when the G is too high.
A very high M value has the same effect that a very short G value. Thus,
we can understand that our G and M parameters should not be too short
nor too high, so we need to find a balanced point.
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6.3.3 Brute Force Search

In order to find the optimal parameters for our distortion function, we de-
cided to perform a brute force style search. In this search, we varied the
G value from 0 to 70 and the M value from -20 to 50 and performed the
Re-substitution Method for all the combinations possible for all the different
drivers. Figure [6.3| shows the First Prediction Accuracy obtained for each
combination of G' and M in a typical driver.

Figure 6.3: First Prediction Accuracy (in percentage) obtained for each com-
bination of G and M in a typical driver using the Re-substitution Method.

This graph was quite surprising for us and we took a while to understand
it. As we can see, typically, in each driver’s graph there is a dark red zone
where FPAs slightly above 95% are obtained, which represents improvements
of 11% regarding the Prior Prediction test and 5% regarding Correia and Ca-
mara’s original approach. This zone corresponds to very low medium points
and not too high growth rates. The best results where obtained with G=9
and M=-12 (95% + 2% on average). We can see the function’s appearance
with these parameters in Figure

After all, our initial idea was surprisingly wrong. It seems that we can get
much more improvements if we make strong and abrupt rectifications in each
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Figure 6.4: Distortion function’s appearance with G=9 and M=-12.

iteration (typically above 40%) instead of trying to represent the map stabi-
lization effect described in Section In Section [6.3.2| we explained why we
thought the use of very low medium point was a bad idea. Theoretically, we
would get the weights fixed in very few iterations but we would compromise
the precision of the rectification. If we repeat the same test performed in that
section, but this time using the parameters that produced the best results,
we will see that we just needed 2 iterations to fix the weights, but the total
difference between them is too high (A=249m vs B=116m).

Apparently, the precision is not the problem that we thought. We were
so worried about making precise rectifications and not to distort more than
what is necessary when after all, a precision interval of, for example, 133
meters (249m - 116m) is not bad at all and it is not enough to jeopardize the
predictions of traces that share links with the routes that are being distorted.
In order to let the reader understand the difficulty of the predictions that are
being made, we should say that about 33% (£19%) of the transitions are
forced, meaning that there is only one next link for a given link in those
cases. This statistic is very important, because if this value was too high,
the promising results we obtained would not have relevant meaning.

6.3.4 Complete Simulation Test

To have an idea of how a simple weight rectification affects the average F/PA,
it is important to understand how it changes after each trip is completed.
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In order to study those variations, we picked four of the eleven drivers and
applied the Complete Simulation test, that simulates all a driver’s routes in
sequence, one route at a time, while checking how both the average FPA of
all his traces and the number of traces with a bad FPA is changing. Figure
[6.5] shows the graph resulted from applying this test to a typical driver.

— First Prediction Accuracy (%)
— Traces with FPA lower than 70%
o Complete test - User 1 —

94

92

a0

88

86

840 200 400 600 800 1000 IZOEQP
n traces

Figure 6.5: Complete Simulation Test on a typical driver (Driver number 1:
1144 traces).

In this driver, the F'PA starts at nearly 85%, meaning that without making
any distortions on the original city graph, we can correctly guess, on average,
that percentage of road segments by which he will pass over (Prior Prediction
test). Then, in general, we can see that the average FPA increases as the
trips are being completed and the map is being distorted, until reaching
roughly 95%. It is interesting to see that, although the scales are different,
the number of low F'PA traces is inversely proportional to the average FPA. In
this driver, the algorithm was able to reduce the number of these traces from
250 to 88 (from 22% of all the 1144 to 8%), which represents improvements
of 14%. In fact, in all the remaining drivers the algorithm was able to reduce
the number of low FPA traces in similar percentages (19% + 5% on average),
which demonstrates a good performance. However, there are still some cases
where the rectifications made after a trip cause the decline of the FPA. We
will understand why this happens in Subsection [6.3.6] where we will take a
look to the worst case scenarios.
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6.3.5 Unknown Routes

In Subsection we demonstrated how we achieved, on average, 95% of
FPA in all the eleven drivers, using the Re-substitution Method. However, as
was explained in Subsection [6.2.2] in this method we are training our model
with the same dataset that we are testing it, in other words, the traces that
we are using to distort the map are the same ones that we are trying to
predict in the testing phase. Thus, we are considering that all the traces
that we are going to predict have already been traversed by the driver at
least once before.

The problem with the Re-substitution Method is that it does not count
the fact that the route that we are trying to predict may have not ever been
traversed by the driver. So, in order to have an idea of the performance of
the algorithm when counting with those situations, we decided to use the
ten-fold cross validation technique, where the map is distorted using 90% of
the driver’s traces and then tested with the remaining 10%. This is repeated
ten times, each time holding out a different set of testing data, with the
average over all tests reported. Moreover, due to this method’s randomness
in building the sets, we decided to repeat this procedure another ten times
for each one of the eleven drivers.

We should say that about 45% (£14%) of the traces collected for each
driver are repeated at least three times in the corresponding dataset, meaning
that they are probably part of routines. So, we can conclude that all the
remaining 54% represent sporadic trips. This is important to refer because
if the datasets were composed by mostly routines, the probability of finding
a unknown route in the testing sets (that was not previously trained) would
be very low, and thus this test would not make sense at all.

Table shows that the final average FPA obtained with this test was
91% (£2%). This table is a new version of Table where we can com-
pare the relevant results obtained until this point and see that the new
algorithm, even when considering the driver’s unknown routes, can pro-
duce higher improvements than the original approach tested with the Re-
substitution Method.



CHAPTER 6. EXPERIMENTS 48

Original New Approach

Approach | (M.Point=-12 & G.Rate=9)
Prior Prediction | 84% (+5%) 84% (£5%)
Re-substitution | 90% (+3%) 95% (£2%)
Cross-validation - 91% (£2%)
Improvements 6% 9% (+2%)

Table 6.3: Comparison between the improvements obtained by the original
and by the new algorithm (tested with two different methods), regarding the
Prior Prediction test.

6.3.6 Worst Case Scenarios

In this subsection we will try to understand why some rectifications made
after a trip cause the decline of the average FPA and degradations in some
traces. In a study performed in four of the eleven drivers, we concluded that
the worst case scenarios represent 17% (£2%) of the total traces and corre-
spond to those situations where a route that had its edges weight increased
in previously iterations share links with routes that will next be taken by
the driver. The first typical worst case we are going to analyze is when this
situation occurs with the origin of both routes being the same (Figure .
This situation happens in 60% (£9%) of the worst cases.

-

Figure 6.6: Typical worst case scenario (Same origin and destination).

Let’s imagine that a driver goes from his work to home five times a week.
From Monday to Thursday, he always takes route B but on Friday, due to
some reason, he prefers route A. In this case, let’s consider that four passages
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are enough to make the route B shorter than route A. So, on Friday’s after-
noon, when the driver is about to leave his work, the algorithm will wrongly
predict that he will take route B to home. At this point, the average FPA
obtained is 80%, because the algorithm can just correctly predict 100% of
the links in % situations (it is not able to predict Friday’s route).

After Friday’s trip is completed, as the rectifications that are being done
by the new distortion function are very abrupt (always higher than 40%),
route A will become shorter than route B again. At this point, the average
FPA will decrease to 20%, because with this distribution of weights the algo-
rithm is only able to correctly predict Fridays’s route, that represents % of all
the routes. If this cycle is repeated in the next weeks, this inconsistency will
last forever and the algorithm will never be able to correctly predict all these
five trips at the same time. Now, we understand why there will be always
degradations in some traces and why it is impossible to avoid some declines
on the average FPA during the Complete Simulation test (Subsection .

Figure shows the second type of scenario that can happen, that repre-
sents the remaining 40% of the worst cases. This situation occurs when the
routes share the same destination but have different origins.

Figure 6.7: Typical worst case scenario (Different origin but same destina-
tion).

In this example we consider that the driver always chooses route B to
go from his work to home. Thus, as route A is initially shorter than B, its
weight will be increased. The problem is that route A shares three links with
route C, that is the shortest and preferred one by the driver to travel from the
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gym to home. So, since our distortion function makes abrupt rectifications,
those three links can have their weight increased in such a way that route
C will no longer represent the shortest path for the algorithm in the way
gym-home.

This fact was our main concern in Subsection [6.3.2, where we explained
that the fact that we are distorting the routes more than what is truly needed
should not be positive at all. However, due to the promising results obtained,
in Subsection [6.3.3] we concluded that, despite the abruptness of the rectifica-
tions, the correct prediction of routes similar to route C was not in jeopardy.
After analyzing all these cases in those four drivers, we confirmed that our
theory was right, because in all of them an average of 100% FPA was ob-
tained after few iterations, meaning that the increase of route A’s weight did
not affect route C.

So, we can conclude that, at least given the current dataset, only the first
typical worst cases we presented (Figure truly represent a threat. Next,
we will look more deeply into those cases and discuss some ideas about how
to improve the FPA in those situations.

6.3.7 Possible Solutions and Future Work

Figure 6.6 showed us the worst case scenarios that truly represent a threat to
our FPA. In these cases, it is impossible for this algorithm to always correctly
guess which path the driver will take so, since only one represents the shortest,
we will need to add some extra information to our model. Our approach to
resolve this situations is based on the fact that people have different periods
of the day where they tend to do similar trips.

If we pick the example shown in Figure[6.6], we would say that it is possible
that, for some reason, the driver takes route A when he goes home at the
lunch time and route B when he returns home afternoon. In order to confirm
this idea, we decided to plot a histogram, for each driver, of the frequency
of trips made in each half an hour interval of a day and then normalize the
data in order to validate the periods. We decided to use a normal curve to
represent each relevant period since it is a standard. Probably, there are
other distributions that best fit a driver’s behavior during a day but, since
our only purpose is to detect periods, we believe that a normal curve works
well in this case. Figure[6.8/shows the histogram obtained for a typical driver.
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Figure 6.8: Left: Histogram of the frequency of trips made in each half an
hour interval of a day; Right: Normalization of the data and period detection.

In the left figure we can see three different periods in green, yellow and
blue colors. The grey intervals represent sporadic trips that rarely happen. In
the right figure these intervals were discarded and the data was normalized.
As we can see, the periods detected can be approximated without too much
error to normal curve, which validates our idea. The algorithm used to detect
these zones was the following:

Algorithm 2 Periods Detection
1: Detect which intervals represent a minimum in the histogram;
2: Calculate the mean value of the minimums;
3: Eliminate all the intervals whose frequency is below the average of the
minimums;
4: Detect the periods resulted;
5: Join the periods that are separated by half an hour (1 interval);
6: Eliminate all the periods that do not last more than one hour;

We just saw that we were right about our assumption since we detected,
in each driver, different periods of day where the trips are frequent. So, in
theory, if we assign one individual map for each one of the periods and distort
it according to the trips done during each one, we will obtain different maps
adapted to different periods and so, in general, we expect to obtain less trace
degradations. In Figure we can see the results obtained by applying the
Complete Simulation test to the same typical driver studied in Subsection
6.3.4] but this time using four different distorted maps, one for each relevant
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period detected during the week and one for all his weekend trips.
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Figure 6.9: Complete Simulation test for each relevant period of a typical
driver.

These results were quite satisfactory, since we can verify that there are
much less F'PA declines in each period’s simulation regarding the simulation
showed in Figure 6.5 In fact, these approach seems to work very well for
this driver specially for the weekends, since there are no declines presented
in the simulation for that period. This means that during the weekends
this driver has a very consistent route choice and always chooses the same
routes to reach the same destinations. We can find improvements in the
other graphs too, but since they all correspond to week periods it is more
difficult to eliminate all the declines, since the drivers tend to have a less
consistent route choice during those periods due to their work, the traffic
hours or family contretemps. However, we can see that in most of these
periods the final average F/PA obtained is nearly 96%, which improves the
95% obtained with the same simulation, but using the same map for all the

traces (Figure [6.5).
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So, we just showed how can we improve the results by using a individ-
ual map for each relevant period of each driver. However, the algorithm is
still quite far from the perfection. We believe that there are more ways of
improving the average FPA in these worst case scenarios and that represents
our future work. For example, we believe that we could do more accurate
predictions if we could get an idea of the rush hours of each city or traffic
information. It is common sense that the drivers tend to avoid high traffic
roads during rush hours and so, that information could help us to understand
which route the driver will choose. Another idea is to have an individual map
for each day of the week instead of each day period, or even join both. This
could help us predicting those situations similar to the first example men-
tioned in Subsection [6.3.6] where for example the driver, on Fridays, chose a
different route from the other days of the week.
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Conclusions

In this chapter we will start by introducing the team that contributed to
the development of this thesis and the roles of each individual (Section [7.1]).
Then, in Section [7.2] we will make a brief summary about the work performed
during this year, that is described in this report.

7.1 Contributions

During this thesis T worked with Pedro Correia and Francisco Pereira (my
advisor), both members of AIDA’s team. Since Pedro was the one that im-
plemented AIDA’s trajectory prediction algorithm, and one of my tasks was
to validate it, he helped me during the first experiments phase by explaining
me the architecture of his code. We also defined the tests to make on the
original algorithm and analyzed its results together.

All the data processing phase and literature research was my entire re-
sponsibility. I looked for similar works in order to understand what type
of processing should be applied to the traces and I also performed a deep
research about scientific papers that could be the state of the art for this
project and explained the basic concepts of the most relevant.

As was referred in Section [2.2] we obtained the new algorithm through
brainstorm sessions where the three of us participated actively by discussing
each one’s ideas and merging them until we reached a final proper sketch.

o4
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From that point to end of this thesis, I was responsible to implement the new
algorithm and all the tests/studies associated as well. In the weekly meetings,
me and Francisco used to analyze and discuss together the results obtained
and define the next steps to perform in the following week(s). Finally, I wrote
this report and the intermediate one as well.

7.2 Summary

In this report we started by introducing AIDA as a new generation navigation
system capable of changing the way people interact with the cars. We talked
about its different components, particularly the destination and trajectory
prediction model that is the one that shows more improvements until today.

We collected and processed new GPS data in order to statistically val-
idate AIDA’s original trajectory prediction algorithm, that had just been
tested with three different drivers. We chose the tests we thought were the
most relevant for this task and we successfully validated the algorithm since,
on average, it demonstrated a good performance (90% of accuracy) when
predicting the routes of eleven drivers from three different environments.

We also explained the limitations of this algorithm and proposed a more
realistic one, based on the map stabilization effect described in Section
In the experiments phase, we realized that we were wrong about this initial
idea and we demonstrated how to reach, on average, 95% of accuracy us-
ing the new algorithm (with the same eleven drivers) just by changing the
parameters of the distortion function. We also performed tests like the Com-
plete Simulation, where we can verify that the low accuracy traces and the
total average accuracy are inversely proportional and the Unknown Routes,
where we can see that the accuracy of the algorithm decreases to 91% when
counting with unvisited paths. Finally, we presented a study about the worst
case scenarios and possible solutions to resolve this kind of situations, like
the use of different maps for different relevant periods of each driver.

In conclusion, this thesis contributed to the Trajectory Prediction research
field by proposing a new approach, based on the distortion of the cognitive
map of each individual, that is able to predict (with high accuracy) the route
that will be chosen by a driver to travel between two different locations,
without acquiring prior knowledge.
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