

noPhish - Anti-phishing system using
browser fingerprinting

João Pedro Figueiredo Correia Rijo Mendes

jprmendes@student.dei.uc.pt

Advisor:

Mário Zenha Rela
Date: July 12, 2011

Masters in Informatics Engineering
Thesis
Final report

 i

Abstract

In a world defined by technology and massive use of the internet, security issues must be a
concern. There are many techniques used to overtake online security barriers and phishing is
definitely one of them. The present work focuses on this technique, studying and
implementing a way to detect this kind of attacks using a new approach called “browser
fingerprinting”. The final solution aims to gather user‟s browser information and, with it,
create a unique signature that will identify that specific user and from then on determine if
he/she is a legitimate user or an impersonated attacker. One of the reached conclusions was
that this method might not be adequate if the attacker simulates the target user‟s browser
fingerprint and enters the system being considered trusted. However, it was possible to
conclude that, in certain conditions, this can be a useful method applied to different matters.

Keywords

Anti-Phishing, Browser Fingerprint, Browser details, Device fingerprinting

 ii

 iii

Contents

Chapter 1 Introduction .. 1
1.1. Phishing ...1
1.2. Browser fingerprinting ..1
1.3. Motivations ...2
1.4. Scope ..2
1.5. Objectives ..2
1.6. Results ..2
1.7. Work distribution ...3
1.8. Outline ...4

Chapter 2 State of the art ... 5
2.1. Device Fingerprinting ..5
2.2. TCP/IP Stack fingerprinting ..9
2.3. Browser information... 10
2.4. Fingerprint comparison .. 11

Chapter 3 Approaches ... 13
3.1. Browser information... 13
3.2. Browser fingerprinting system .. 14
3.3. Trust calculator algorithm approach .. 17
3.4. Integration Approach ... 18
3.5. TCP/IP and Network analysis .. 18
3.6. Testing approaches ... 20

Chapter 4 Work done ... 21
4.1. Final Browser fingerprinting system .. 21
4.2. TCP/IP and Network study .. 27
4.3. Testing... 28

Chapter 5 Results and Validation .. 31
5.1. Synthetic tests .. 31
5.2. Integration .. 31

Chapter 6 Conclusions ... 33
6.1. Future Work ... 33

Acknowledgments ... 35

References.. 36

Appendix A Data analysis ... 37

Appendix B Selected Attributes .. 40

Appendix C Work Distribution ... 42

 iv

List of Figures

Figure 1 - Work distribution .. 3

Figure 2 – Facebook account security .. 7

Figure 3 - Facebook security .. 7

Figure 4 - Microsoft tracking protection list .. 9

Figure 5 - EAV structured database .. 13

Figure 6 - Attributes table ... 16

Figure 7 – noPhish Architecture.. 21

Figure 8 - fingerprint table .. 21

Figure 9 - configuration_parameter table ... 22

Figure 10 - configuration parameters .. 22

Figure 11 - attribute table ... 22

Figure 12 - tmp_invalid table ... 22

Figure 13 - tmp_fingerprint table .. 23

Figure 14 - Integration .. 23

Figure 15 - Iframe calling noPhish .. 24

Figure 16 - Signature Collector tool .. 24

Figure 17 - Trust Calculator module (generic) .. 24

Figure 18 - ratio.cpp return .. 25

Figure 19 - mySQL query for entropy .. 26

Figure 20 - System Behavior .. 27

Figure 21 - whois data ... 28

Figure 22 - log fingerprint table ... 29

Figure 23 - log results table .. 29

Figure 24 - log numbers table .. 29

Figure 25 - Number of results ... 31

Figure 26 - Untrusted results .. 32

 v

noPhish - Anti-phishing system using browser fingerprinting

 1

Chapter 1
Introduction

1.1. Phishing

With the growth of the internet and its users, the security threats emerged and attacks
became more frequent, hidden under several possible forms. If, in one hand, we register
simple pranks or network accesses using sniffing methods, in the other hand there are
attackers who want to obtain some financial gain or to harm people and/or systems. As an
example of this particular behavior we have “phishing”: a social engineering technique used
to take advantage of human ignorance.

Phishing comes from “fishing”, considering that the attacker throws the bait, hoping
that, in a group where most will ignore it, some will feel tempted to bite it.

These attacks can be traced back to the mid-1990s when the American company
AOL was attacked with credit card fraud. To prevent future attacks they created an
algorithm that made it extremely difficult for hackers to set up fake accounts. In response,
the hackers started to pose as AOL representatives in emails and instant messages sent to
AOL members. The emails requested the members‟ usernames and passwords. Many people
in the mid-1990s didn‟t have a full understanding of cybercrimes, so they unwittingly handed
out sensitive information that was used by the hackers to enter their accounts and perform
illegal activities [1].

The most known form of these attacks consists in sending emails to users falsely
claiming to be a legitimate enterprise, bank or government institution, in an attempt to scam
the user through identity theft. Usually this email contains links to websites that asks users to
update or change their personal information, such as passwords or private social codes.
Generally, all this process is transparent to the victim, so in many cases they don‟t find out
they have been tricked until they check their account details, or being informed that
something is wrong by the legitimate enterprise or organization [2].

1.2. Browser fingerprinting

Browser fingerprinting is a method that pulls together innocuous browser data, such
as system fonts, language, and operating system. All this information, together, composes a
browser fingerprint. Giving a real example, it is like identifying a person: just having long
nose, won‟t identify anyone, but adding other information like the name, even if anybody
else has the same one, id number, height, and so on, we soon have enough information to
uniquely identify this person [3].

The use of this method can be considered privacy violation, as it can be used to
collect user‟s navigation information and use it in behavioral advertising. Currently there is
no standard policy that prohibits websites to collect this kind of available information. In
any case, in this work, this method will be used to complement traditional user
authentication mechanisms as an additional parameter to identify the user.

noPhish - Anti-phishing system using browser fingerprinting

 2

1.3. Motivations

As mentioned before, phishing is not a technical attack, since it explores the human element.
The user‟s weakness doesn‟t allow him to realize that he/she is being tricked. It is the user
who commits the biggest mistake (trust the bait) and therefore this hack is not easily
preventable with technology. But it can be detected as we intent to demonstrate with this
study.

There are some interesting questions that this study will help answer: is browser
fingerprinting an effective method to detect phishing attacks? Can we manage the evolving
of signatures over time? What techniques must be used to compare signatures? Integrating
this project in a real environment will be the perfect case study in order to answer these
questions.

1.4. Scope

This is an investigation Thesis with a strong practical component which is part of the Masters
of Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Besides the investigation and software development, this Thesis includes all the
project management activities, along with planning, scheduling and work tracking. All these
tasks are made with the monitoring of an advisor teacher.

The integration part of the project was developed in direct interaction with NONIO,
which is a group of Universidade de Coimbra that administrates a web application used by
students, teachers and employees called “inforestudante”. This application is used to manage
several processes like grading, scheduling and payments.

1.5. Objectives

The main objectives of this work are to study the viability of using browser fingerprinting
technique to uniquely identify users that are accessing a certain system and to identify the
potentials and weaknesses of this approach to help detect phishing attacks or minimize its
impact.

To achieve this, this study will initially focus on investigating the effectiveness of
browser fingerprinting as a complementary method of user authentication. Thus, it is
necessary to verify if it is possible to identify users, being able to tell, accurately, if either they
are trusted or impersonating attackers.

The final solution must collect browser attributes creating a signature (fingerprint)
which will then be compared with the fingerprints already stored in the database, confirming
the user‟s identity. If the system considers that the user is not trusted it can either limit
his/her access or ask for personal questions to prove its identity.

In the end we must have enough data in order to make it possible to assess the
effectiveness and efficiency of this approach in the identification of phishing attackers.

1.6. Results

The detailed results can be seen in chapter 5.

noPhish - Anti-phishing system using browser fingerprinting

 3

In general we can consider that the results are positive. They show that, if applied in
the right conditions, it is possible to integrate this technique in an application in order to
guarantee a better security level, being possible to identify situations where the user is a
phishing victim.

We successfully implemented this project on a real application, what allowed us to
understand the pros and cons of this approach, being able to identify “untrusted” signatures
and understand the reason of those results.

1.7. Work distribution

Figure 1 - Work distribution

As it can be seen, some of the work activities were done in parallel. For instance, when the
interaction with NONIO team began by asking permission to collect their user‟s data, we
started developing the data collector tool. The interaction only ended after concluding and
deploying this tool in NONIO‟s page.

The tasks represented with the label “completed with intervals” were developed in
a phased manner as it was regarding the interaction with NONIO. In this case, the
interaction took place between relatively wide “intervals”. The Second “NONIO
interaction” activity represents, among others, the initial meetings and talks that took place
in an attempt to integrate noPhish with NONIO, also represented in the figure by
“integration”.

There are tasks that were not completed, which are represented by the label “Not
completed”. The ones that took place after the end of the first semester were not completed
due to the alterations to the management plan that had to be made in order to make
the integration with NONIO possible.

The detailed aspects of each activity can be found later in this report.

noPhish - Anti-phishing system using browser fingerprinting

 4

1.8. Outline

In chapter 2, the state of the art is presented, where it is possible to read about the work that
is being done in this area and the theoretical possibilities to solve some of the problems
found during this project.

Chapter 3 contains the adopted approaches. In this chapter we point out the final
system‟s workflow and its desirable behavior. This chapter contains the decisions we had to
make throughout the project and their relation with what is described in the State of The
Art.

In chapter 4, we describe the work that was in fact done following the planned
approaches. All the components developed are explained in detail. The tests are also
presented in the end of this chapter.

Finally, in chapters 5 and 6 are the project‟s results and conclusions.

noPhish - Anti-phishing system using browser fingerprinting

 5

Chapter 2
State of the art

This work began based on the EEF’s (Electronic Frontier Foundation - privacy-advocacy
group) studies “How unique is your web browser” by Peter Eckersley, which states the risks
associated to the capability of identifying each browser by its fingerprint. The same study
also focuses on the privacy problems that browser fingerprinting may pose and what
countermeasures may be appropriate to prevent it and its use as a security mechanism [4].

2.1. Device Fingerprinting

This approach emerged back in the early 1990s when inventor Ric Richardson was helping
musicians to use new software for playing their electronic keyboards. There was no way to
let people test the software before buying it, so Richardson designed a "demonstration"
version that would let people test it, but not copy it. The idea was to configure the software
to work only after it was linked to a unique computer. So, he developed a way to catalog
each computer's individual properties [5].

Browser fingerprinting is a device fingerprinting method based on transparent device
profiling. It basically uses client-side languages and other methods available in the browser,
in order to profile a device. Device fingerprinting also uses other methods like tagging,
operating system fingerprinting and TCP fingerprinting. Besides transparent device profiling,
device fingerprinting may also use client-based methods, which require installing software on
an end computer [6].

 Device fingerprinting is considered to be a replacement to the use of cookies in the
sense that, while cookies can be deleted or blocked, it is almost impossible to delete a
fingerprint after it has been collected or even prevent fingerprinting at all. One study,
surveying 70 million website visits found that a fingerprint of an applicable device could be
generated 89% of the time whereas cookies could only be used 78% of the time [5].

Client based fingerprinting and remote fingerprinting

In the case of a client-base approach there is the need to install executable software in the
end computer. The advantage of using this method is that it has access to information that is
highly unique, persistent and harder to tamper with, like hard drive serial number or MAC
address of the network card. This approach has a major disadvantage: aside from the fact
that most corporate computers won‟t allow anything to be installed from an external
website, this method is not practical in most ecommerce transactions because the process
requires some action or permission on behalf of the user.

On the other hand, remote device profiling is a new device fingerprint method that
relies on information that can be measured remotely via a profiling server. This information
is based on anonymous attributes that can be measured or derived from the user‟s browser
characteristics, operating system and connection. This is a practical approach to ecommerce,
online media and retail financial businesses, given that it has zero impact to the user‟s
customer experience and their privacy and does not require registration. Despite the fact
that, with this transparent profiling method, protected device attributes such as MAC
address or hard-drive serial number are not available, recent advances in TCP/IP protocol
and Operating System fingerprinting now enable a device to be profiled beyond more
obvious browser characteristics such as browser type and version [6].

https://www.eff.org/
http://online.wsj.com/article/SB10001424052748704679204575646704100959546.html
http://knol.google.com/k/alisdair-faulkner/device-risk-profiling/18v5fw3qagud7/3

noPhish - Anti-phishing system using browser fingerprinting

 6

Security

Tracking companies can use this data to uniquely identify computers, cell-phones and other
devices, and then build profiles of the people who use them. Hence, the controversy grows
over this intrusive online tracking, since it‟s hard, even for sophisticated web surfers, to tell
if their machine is being fingerprinted. There is not a way for people to delete fingerprints
after they have been already collected.

When it comes to device fingerprinting, “we have no convenient options for privacy” said
Peter Eckersley. “All the things we can do are inconvenient to the point of being really impractical”.
Recently Mr. Eckersley found out that about 91% of nearly 1 million computer users
surveyed could be fingerprinted simply by visiting a website.

But this technique is also used to help fraud prevention, because the same techniques
used to profile the users, can be applied, taking advantage of that knowledge, to identify
them, enabling a fraudster‟s device to be recognized even when he changes the identity
through the use of proxies and stolen credit card or account password information.
Depending on the business, different strategies are used to leverage device fingerprinting to
combat fraud. Detecting anomalies related to the device fingerprint is a powerful way of
providing first time fraud detection. An example of anomaly detection would be determining
that a device was connecting through a proxy to hide its real location, or determining that a
device is currently under the control of a botnet. When fraudsters find a hole in defenses they
will try to extract the maximum value as fast as they can. Creating velocity filters based on a
Device Fingerprint will enable the minimization of fraud costs even when names, credit card
details and IP Addresses are changed. A device fingerprint is a powerful tool for finding
related transactions either as an identifier in itself or as a mean of finding transactions with
related characteristics (e.g. finding related transactions performed from the same ISP and
location). This technique is also a valuable tool to be able to detect when accounts or
subscriptions are being accessed or shared illegally. If a device has been involved with fraud,
adding that device to a blacklist will enable the protection of customers that share the same
device reputation network [6].

Last year, Facebook implemented a new security functionality that consists in
providing users with recent activity on their account, including the last time the account was
accessed, the device used, what approximate city it was located in, and the browser and
operating system on the device. It will also provide the same details for other sessions if they
are active on other devices and offer the user the ability to click "end activity" to log that
device off remotely (Figure 2).

noPhish - Anti-phishing system using browser fingerprinting

 7

Figure 2 – Facebook account security

This company also built a new system to block suspicious logins even before they
happen. When an unusual device is trying to get access to an account, the system asks the
accessing person to answer an additional verification question to prove the user‟s identity as
the real account owner (Figure 3). These private and personal questions are designed to help
the legitimate user and to preclude the attacker to get access to the account information. The
system may ask the user to enter a birth date, to identify a friend in a photo or answer a
previously provided security question.

The Facebook security team claims that when a user is asked to go through this
process, it is just them saying “Hi, we are here to help you protect your account”. Although
the company state that they had great results with the implementation of these
functionalities, they reiterate that the first line of defense is the user, hence they encourage
the user to practice safe behavior on Facebook applications [7].

Figure 3 - Facebook security

noPhish - Anti-phishing system using browser fingerprinting

 8

Advertising and privacy

Nowadays advertisers don‟t buy ads, instead they want to target and get access to specific
people. Device fingerprinting can satisfy that need by recording user‟s online behavior,
shopping habits and even demographic information. Some say that it‟s considered to be the
next generation of online advertising.

The American company BlueCava, has recorded over 200 million devices and built a
“Reputation” database. They plan to sell this information to advertisers willing to pay for it.
BlueCava’s Device Reputation Exchange allows businesses to share their experiences with the
various devices that visit their respective websites. This allows businesses that experience
fraud to tell other businesses about the “bad” devices, so they can be blocked from doing
further fraudulent transactions. Just like credit card companies have been doing for years,
only with devices. BlueCava’s exchange also allows businesses to share useful information
about the category of products that the devices are purchasing. This enables other websites
to provide more relevant content for each device, improving the overall experience for
users.

This matter brings evident questions – are the people willing to give this kind of
information? Do they want to get tracked out and receive advertising? – The truth is that
these companies using device profiling don‟t explicitly notify the people whose devices they
fingerprint. These companies claim they are not using any personal information, and in fact
they have no idea who is the actual user of the device, so the privacy of the individual is
protected [6] [8].

Digital tracking and Fingerprinting methods are currently legal but, in the United
States of America, there is an ever-increasing pressure over the online-advertising industry,
from both federal regulators and some Congress members, warning them that the
government will intervene if they don´t start doing more to protect consumer privacy. There
are some recommendations from the Federal Trade Commission on that matter. FTC proposes
that a “Do not track” system should be implemented directly in every browser if the
industry doesn‟t start coming up with its own solutions shortly. This system would enable
end users to block web service providers, marketers and advertisers from monitoring their
online behavior and FTC would then police companies that implement tracking
technologies ensuring that they comply with the user‟s requests. While some marketing firms
say that they will create opt-out functionalities if they adopt fingerprint technology, others
already have it implemented. It basically consists in having an opt-out cookie or add-on on
the user‟s browser.

In the end of last year, the Better Advertising Project, Inc. announced an unprecedented
partnership toward launching a program that will allow consumers to edit their interests,
demographics and other profile information collected about them. It will also allow people
to choose not to be tracked at all. This program follows the advices stated by government
and FCT [9].

BlueCava’s CEO David Norris, states that his company “supports the FTC’s efforts to
push the industry to self-regulate”. BlueCava’s privacy system allows consumers to specify
their preferences and opt-in/out of being tracked, separately from being targeted. “We
believe that there is an important distinction between the two” – tracking is all about
“watching” which sites you visit on the web, while targeting is about serving relevant
information for consumers. “We believe that consumers should have the choice, so we
provide both options”. [10]

noPhish - Anti-phishing system using browser fingerprinting

 9

Microsoft implemented a tool to block tracking in its newest version of Internet
Explorer. The tool, allows users to stop certain websites and tracking companies from
gathering information about them. Users are able to subscribe to something called "tracking
protection lists" (Figure 4), which represents several lists with web addresses used by
tracking companies. Internet Explorer then automatically blocks those companies from
accessing the user's computer [11].

Figure 4 - Microsoft tracking protection list

Customized content

It‟s a common practice to analyze computer and browser details in order to display the
website correctly to each user. When a page is accessed by a mobile device, some web
applications gather some information about the device‟s resolution and perform mobile
detection techniques to display the content accordantly to the right screen resolution and
size.

2.2. TCP/IP Stack fingerprinting

This type of fingerprint consists in collecting a group of attributes from a remote device
available during the communications in the layer 4 of this protocol. Since certain parameters
within the TCP protocol definition depend on the implementation of each operative system
meaning that different operating systems set different defaults for these values, it is expected
that, by combining all the collected parameters, one can infer the remote machine‟s
operating system or use them to help creating a device fingerprint.

The TCP/IP fields that may vary include the following:

 Initial packet size (16 bits)

 Initial TTL (8 bits)

 Window size (16 bits)

 Max segment size (16 bits)

 Window scaling value (8 bits)

 "don't fragment" flag (1 bit)

 "sackOK" flag (1 bit)

 "nop" flag (1 bit)

As said before, by analyzing these factors from a packet, one may be able to
determine the remote operating system. This works better for some operative systems then
others, not being 100% accurate. However by looking at several signatures and combining
the information, the accuracy of identifying the remote host increases [12].

noPhish - Anti-phishing system using browser fingerprinting

 10

Active fingerprinting

Usually, stack fingerprinting has been done using active tools, which operate on the principle
that each operating system responds differently to a variety of malformed packets.

In order to determine an operative system running in a given host, all one has to do
is build a database on how different operating systems respond to different packets, then
send that host a variety of malformed packets, check how it responds and compare these
responses to a database.

Passive fingerprinting

With this approach, instead of actively querying the remote system, the packets are passively
captured. By analyzing sniffer traces and identifying these differences, one may be able to
determine the operating system of the remote host [12] [13].

2.3. Browser information

To this subject, Browser information refers to the user‟s system information that can be
freely accessed by the browser through the use of client-side languages, as JavaScript or Flash.
Browserspy.dk is a website containing several methods on how to obtain different types of
information.

To collect such information, the user must access the website where the collection
scripts are running. All the information that is gathered has to be converted in a unique
fingerprint. To do so, there are several possible approaches.

There are numerous distinguishable attributes provided by browsers that allow us to
tell them apart. A good example is User-Agent, which is a string containing the name,
operative system and browser‟s version number. This particular attribute is sent every time a
user visits a web server.

E.g.: Mozilla/5.0(Windows; U; Windows NT 5.1; en-GB; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6

As can be seen, apparently, there is a lot of information in this given user-agent
string. All of it is useful to distinguish a browser from another. In fact, user-agent string
contains about 10.5 bits of identifying information (string usually carries 5-10 bits), which
means that, by picking a random person‟s browser, only one in 1500 (210.5) other users will
share the same string [14].

Entropy

Having separate facts about a person is not enough to identify it. But if we manage to have a
group of attributes, it turns out that there is a possibility to deduce the person‟s identity.
Consequently, each one of the facts is partially identifying. There is a mathematical key
measure of information that allows us to measure how unique a person‟s identity is
considering a given fact: entropy [14].

The called information theory is considered to have been founded in 1948 by Claude
Shannon in his seminal work, "A Mathematical Theory of Communication". According to
Shannon‟s information theory, entropy is a measure of the uncertainty associated with a
random variable which quantifies the expected value of the information contained in a
message, usually in units such as bits [15].

http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Bit

noPhish - Anti-phishing system using browser fingerprinting

 11

 Thus, the entropy H of a discrete random variable X with possible values {x1,…,xn}
is represented by

 (2.1)

E represents the expected value, and I is the information content of X. So, I(X) is a
random variable. Having p as the probability mass function of X then the entropy can
explicitly be written as

 (2.2)

If the unit for the entropy is bit, so the base of the logarithm is 2.

2.4. Fingerprint comparison

Regarding methods for comparing signatures, we can say little about the specific algorithms
used by entities applying this methodology. One of the most immediate approaches is to
hash the concatenated browser‟s features and compare signatures by performing a string
match between them.

 There are various ways of comparing strings and consequently signatures.
Notwithstanding, there is the need to choose an approach that meets the requirements of
each particular situation.

Approximate string comparison

In computing, approximate string comparison is the technique of finding strings that match
a pattern and that can be expressed in percentage rather than exactly. The problem of
approximate string comparison is typically divided into two sub-problems: finding
approximate substring matches inside a given string and finding dictionary strings that
match the pattern approximately.

In approximate string comparison, the objective is to find matches for short strings,
like words from a dictionary in longer texts, in situations where a small number of
differences is to be expected.

Levenshtein distance

The Levenshtein distance measures the amount of difference between two sequences. It is
defined as the minimum number of edits needed to transform one string into the other, with
the acceptable edit operations being deletion, insertion or substitution of a character.

The Levenshtein distance is generally used when comparing short strings but it can
also be used to compute the distance between two longer strings. However, the cost to
compute it, which is roughly proportional to the product of the two string lengths, makes it
non viable.

Damerau- Levenshtein distance

Damerau-Levenshtein is an extension of the Levenshtein. Damerau-Levenshtein distance algorithm
also considers the number of transpositions of two adjacent characters. For example,
comparing “joao” with “ojao” would give a Levenshtein distance of 2 and a Damerau-

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/String_(computing)
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/Substring
http://en.wikipedia.org/wiki/Approximate_string_matching

noPhish - Anti-phishing system using browser fingerprinting

 12

Levenshtein of 1. This numbers can be used to calculate a ratio based on the maximum length
among the strings. In this case “joao” and “ojao” would have a Damerau-Levenshtein similarity
ratio of 75% (1 out of 4 characters is different) [16].

Case-base reasoning

In 1980, at Yale University, Roger Schank began the first studies on the techniques based on
case-based reasoning (CBR). In 1983, Janet Kolodner developed the first CBR system based
on Schank‟s dynamic memory model, serving as a base for other CBR systems

CBR is the process of solving problems based on solutions of past and similar
problems. When a doctor uses the symptoms of a recent case to assign a cause and a cure, a
lawyer who resorts to jurisprudence to solve current cases or a judge who creates case law,
they all are using case-based reasoning.

For computer reasoning purposes, case-based reasoning has been formalized as a
four steps process:

1. Retrieve: Given a target problem, retrieve cases from memory which are relevant to
achieve a solution for it.

2. Reuse: Map the solution from the previous case to the target problem. This may involve
adapting the solution as needed to fit the new situation.

3. Revise: Having mapped the previous solution to the target situation, test the new
solution in the real world (or a simulation) and, if necessary, revise.

4. Retain: After the solution has been successfully adapted to the target problem, store the
resulting experience as a new case in memory.

The Retrieval step is itself a huge area of research in CBR. Usually, there are two
alternatives for retrieval process available in the commercial CBR tools: the k-Nearest
Neighbor (k-NN) and Decision Trees.

K-NN involves establishing a similarity metric by which the closeness of two cases
can be measured. Then the target case is compared to all the cases in the case-base and the k
nearest are retrieved. It has the disadvantage that retrieval time increases directly with the
size of the case-base.

The alternative is to use Decision Trees (k-D-Trees) where case retrieval is proportional
to the depth of the D-Tree (i.e. k); the maximum depth is the number of attributes used in
retrieval. K-D-Trees do have the disadvantage that they need to be rebuilt from scratch when
new cases are added to the case-base.

There are CBR systems involving approaches to representation and retrieval that are
radically different from this one, however, the majority of CBR systems have specifications
represented as feature vectors and use either k-NN or k-D Trees for retrieval [17] [18].

http://en.wikipedia.org/wiki/Computer_reasoning

noPhish - Anti-phishing system using browser fingerprinting

 13

Chapter 3
Approaches

3.1. Browser information

To begin with, there is the need to collect and select the browser attributes to use in the final
composition of the fingerprint. To do so, an initial analysis of the existing browser attributes
and the means to retrieve them is mandatory.

Data to collect

The first step is to identify all the possible collectable browser attributes pointing out the
technologies needed to extract them. And, subsequently, create a database to store real
values from those attributes.

Afterward, the ideal scenario is to retrieve the browser information in a real
environment, to which the solution is to develop and integrate an information collection
module. This module consists in a hidden frame, pointing to our own web server, that can
be placed anywhere on a page to collect and store the browser information. That page
contains several scripts that gather all the attributes we‟ve pointed out initially.

Multiple source attributes

The browser attributes originate from multiple sources like Flash, Java, Javascript and PHP.
To collect all the attributes from the different sources, the approach, in this phase, is to store
them as the respective script finishes executing. Thus, there is the need to create an entity
with a unique ID. As the attributes are gathered, they are stored in an EAV structured table,
identified by that entity.

Figure 5 - EAV structured database

 As can be seen (Figure 5), in an EAV structured database, we manage to save the
different users first and then associate all the collected data with that users.

noPhish - Anti-phishing system using browser fingerprinting

 14

3.2. Browser fingerprinting system

Proposed Browser Fingerprinting system approach

Assuming that the noPhish system is integrated with a real entity, when login is performed
with regular credentials, our system checks the provided fingerprint against the database, by
sending the browser information to a web service that calculates the trust of the fingerprint.
If the result is trusted, the user is allowed to access his account. In the other hand, if the
result is not trusted the user might be a phisher and a second validation should be triggered.
This validation can be executed in the form of a security question, request of a token-card
number, or validation of text message (cell phone). This second validation should keep
phishers out while letting legitimate users in.

Concerns

There are some factors that need to be taken into consideration when building a system of
this kind, including impact, flexibility, matching accuracy and technique and fingerprinting
depth.

Preferably the system should have zero impact on user‟s experience as well as the
system server and infrastructure. Thus, all the process shall be transparent to the user.

The system can be implemented as a web service enabling easy and cost effective
integration in the end architecture.

When choosing the approach to generate, maintain and compare fingerprints, we
must aim for implementing a system that can change over-time and is self-configurable,
since some of the browser characteristics do not remain constant. Hence, when generating
the fingerprints, the approach cannot be to perform a simple hash of the collected attributes.
In addition, the system must perform all the fingerprint comparison as fast as possible.

There must be an initial analysis of the different characteristics that can be gathered
from the browser, especially when considering that today‟s browsers support technologies
like Flash, Java and JavaScript that are capable of obtaining extensive information. However,
such technologies can be disabled, jeopardizing the fingerprint collection. Nevertheless, this
concern should be taken into account when studying the scope of integration.

When composing the fingerprint, there is information that is very easy to manipulate
by a knowledgeable fraudster and is also blind to warning signals that lie beneath what the
browser shows. So, the approach is to analyze and study technologies that are able to
recognize a fraudster even when the browser‟s attributes change or when cookies are
deleted, and can more accurately alert to when a high risk proxy is being used.

Fingerprint composition

Selection of final attributes

After collecting enough information from the browsers into the EAV database, the intent is
to select the final attributes to use among all the ones that were collected. Since the idea is to
guarantee that the most differentiating attributes are part of the fingerprint, we need to
perform an analysis of the collected data focusing on checking the values of the attributes
and their frequency, fill rate and entropy (See Appendix A). Ordering the attributes by

noPhish - Anti-phishing system using browser fingerprinting

 15

entropy and checking the distinct values numbers, we select the most differentiating ones to
compose the final fingerprints (See Appendix B).

As can be seen (See Appendix A), although IP Address has high entropy, it is a fast changing
attribute and therefore we did not consider it for the selected attributes.

Subsequently to the selection of the fingerprint composition, there is the need to
copy the data retrieved in the EAV database to the final System‟s database. In order to
process that transfer, one have to use a technique called pivot tables. The use of this method
is very helpful because, it allows results to be displayed in an independent table, showing
reorganized data.

Two of the most important steps for implementing a CBR approach are choosing
which attributes will compose the case and calculating the weight of each attribute. Since the
composition is chosen, it remains calculating the weight. A more traditional solution would
be to hand pick attributes and manually fine tune the weights until a good result is obtained.
We selected a better approach that goes back to what it is intended to be implemented in the
system - a genetic programming and information theory based methodology. For that
reason, the idea is to use entropy as the main drive to select and confer weights to the
attributes. We split the 100 point total through the attributes according to their percentage
of total entropy. For example, for two attributes with entropy 4 and 6 we would assign a
weight of 40 to the first attribute and 60 to the second. This guarantees that the most
differentiating attributes have the highest weights.

Fingerprint comparison

The ambition regarding fingerprint comparison is to develop an algorithm that performs it
as fast and efficient as possible. In our system, the objective is not to concatenate the
gathered information into a static fingerprint. Fingerprints are expected to change
frequently, as the browser is updated or the user installs new fonts or plug-ins. Having these
aspects into consideration, traditional Bayesian networks are left out, because constantly
recalculating the network would have a severe performance impact. For the same reason,
custom rules approach was discarded, since we would have to manually update the rules
over time. Adaptive Bayesian networks would fix the need to constantly recalculate the whole
network by dynamically incorporating new data into the model. However, comparing with
some other analyzed approaches, this approach is not as simple as we intend to implement
the algorithm, and it would take us more time than planned to spend on this task.

Concerning our system intent, case base reasoning appears to be the most
appropriate solution. After discussing and studying some possible approaches, the solution
is to adopt a template retrieval approach in which the system returns all cases that fit within
certain parameters. This method limits the search space to a relevant section of the case-
base. After that, we implement a nearest neighbor approach that involves the assessment of
similarity between stored cases and the new input case, based on matching a weighted sum
of features. To complement this approach, we will use a configurable attribute, used to
collect the top score cases. We also follow a Null Adaptation approach, which is a simple
technique that consists in applying whatever solution is retrieved to the current problem
without adapting it.

noPhish - Anti-phishing system using browser fingerprinting

 16

Retrieving the nearest neighbors

In the process of getting the nearest neighbors of a given case, we use several approaches
when comparing browser‟s features. The comparison is done by exactly matching and by
approximate comparison.

Figure 6 - Attributes table

Regarding the template retrieving method, the process is done by making an exact
comparison of the values of the attributes previously selected for this purpose (Figure 2),
between the stored cases and the new case.

For those values limited to a fix set of options, the comparison is made by exact
string comparison. If the values are unbound to a set of options, like fonts or plug-ins, the
comparison is made using approximate string comparison algorithms that expresses
proximity as a percentage (Figure 6).

Approximate string comparison

As exposed before, we use approximate string comparison as an essential step of the
signature comparison process. The problem is that MySQL does not provide any functions
for it. This way, the approach is to initially test out different techniques and choose the one
that solves the problem in a more efficient and effective way.

The two most used algorithms for approximate string comparison are the Levenshtein
and the Damerau-Levenshtein distance algorithms. The tests started by using the Damerau-
Levenshtein distance using a MySQL stored procedure. However the performance is not
acceptable since it takes one second to calculate the distance between two strings. The
performance improved when we implemented a UDF written in C++. Nevertheless, a real
comparison could be of one fingerprint to several thousands, and frequently the total time
summed up to 600 seconds.

Analyzing the results, the conclusion is that the algorithm choice is not the best.
Both Levenshtein and Damerau-Levenshtein consider individual characters as the base unit, but
although this is valid for spell checkers and other user inserted strings (because of the
mistakes inserting characters), it does not make sense when comparing data collected from
the browser. If we compare, considering the browsers data, “Firefox” and “Firebird” have
nothing in common, but Damerau-Levenshtein would assign a ratio of 50%. Taking this in
consideration, we modified the algorithm to consider the similarity based on the number of
words in common between strings. The approach is to consider the words as tokens, no
matter their order. For example “Arial, Verdana, DIN” and “Arial, Verdana” would give a
similarity of 66% (1 out of 3 tokens is different). The performance was greatly improved,
speeding from the 600 seconds to at most 60 seconds.

noPhish - Anti-phishing system using browser fingerprinting

 17

Tools to manage signatures

Database Cleaner

For performance issues, it is necessary to maintain the number of signatures relatively small.
We decided to implement a database cleaning tool that would only keep the N newest
fingerprints for each user, where N is the maximum number of fingerprints per user,
allowing to keep several fingerprints for each user but not so much as to slow down the
system.

 Using Oracle, to implement this approach, it is only necessary to group the fingerprint
by username, rank them by date and delete the ones with rank higher than N. These
analytical functions can be done in Oracle in just one query. However, we are using MySQL
which does not have analytical functions and does not allow deletion with multiple sub-
queries. MySQL would need 3 different queries with minor performance to perform the
same algorithm emulating analytical functions.

To circumvent this performance issue, we developed a new algorithm. This approach uses a
threshold M, and if a user has more than M fingerprints, only the L newest are kept (where
M is the threshold of deletion, and L is the optimum number of fingerprints).

Weight Calculator Tool

Because browser‟s reality is constantly changing as well as the entropy of each attribute, we
built a tool that executes the weight calculation and updates the algorithm every time
needed. This way, even if, in the future, emerges the need to select and introduce new
browser characteristics, with this tool, the entire weight calculation process is simpler.

3.3. Trust calculator algorithm approach

System algorithm

1. The web-page triggers a call to the system;
2. The system collects the browser fingerprint and the user's identification in the original

system;
3. The system makes a template retrieval based on a configurable set of attributes;
4. The system uses the weights to calculate the distance between the cases retrieved in (3)

and the new case:
4.1. When comparing two cases there is a high possibility of some attributes not being

defined. In that case the following rule applies: if the attribute in both fingerprints
is undefined, it is a match, if the attribute is defined in one fingerprint but not the
other, then it is a mismatch;

4.2. For attributes whose values are limited to a fixed set of options (e.g. a Boolean) the
comparison should use exact comparison algorithms;

4.3. For attributes whose values are unbound to a set of options (for example font
list), the comparison should use approximate comparison algorithms that express
proximity as a percentage;

5. The system collects the top score groups based on a configurable number;
6. If the user's user name is represented in the highest score group, then the system returns

“Trusted”;

noPhish - Anti-phishing system using browser fingerprinting

 18

7. If the user name is represented elsewhere in the top score groups, then the system
returns Suspicious;

8. If neither 6 nor 7, then the system returns “Untrusted”;
9. If the browser is “Trusted” or “Suspicious” there are two scenarios:

9.1. If the new fingerprint is not an exact match with an existing fingerprint, this one
is added to the fingerprint database;

9.2. If the new fingerprint is an exact match with an existing fingerprint, it is updated
the record date of the existing fingerprint.

3.4. Integration Approach

In the login process of the “inforestudante” application, managed by NONIO, a browser
fingerprint is collected after the user logs in successfully and accesses to the initial page for
the first time.

This signature is sent along with a hash of the user´s identification through an iframe
to the noPhish web service, letting the user continue to utilize the application.

After the web service receives the fingerprint, the trusting mechanism is called and
the fingerprint is processed. If the reply is “untrusted” or “suspicious”, the signature should
be stored in a temporary table and its identifier should be sent to the NONIO‟s web service
along with the result.

If NONIO system receives a response, it should check if the user was notified by
email about a suspect misuse of his/her credentials for that signature in concrete. If it has
not been notified that day (between 23:59 and 0h) an email should be sent to the user‟s
official email account. The email should contain a link where the user can change the
password if he/she thinks that there is suspicious misuse of the credentials. The link also
must contain the user hash and the id of the signature stored in the noPhish system so that
the application can recognize which user is changing the password and the respective
signature. If the user submits the password modification, the received signature id, if it
already exists in the signature list, shall be removed.

When the 0 hours of each day are exceeded, the NONIO system shall send a list of
trusted signature IDs to the noPhish web service. The signature temporary table should be
cleaned and the trusted signatures must be stored in the fingerprint table.

3.5. TCP/IP and Network analysis

With the intention of considering other techniques for device fingerprinting, a study on
TCP/IP fingerprinting was carried out. The objective was to analyze the feasibility of using
this type of data to complement the already collected signatures to ensure greater
effectiveness in the algorithm. Testing the means to retrieve this new type of data and
analyze the performance and efficiency when combining the already implemented
mechanisms with this approach is necessary.

TCP/IP fingerprinting

Knowing that each Operative System implements this layer a in a slightly different way, the
different operating system‟s TCP/IP stack will respond differently given the same
circumstances in a TCP/IP communication.

noPhish - Anti-phishing system using browser fingerprinting

 19

 This way, the approach is to test out tools and fingerprinting techniques, before
implementing in the final system.

NMAP

NMAP ("Network Mapper") is a free and open source utility security auditing that also can
be used to explore the network. It can also be useful for tasks like network inventory,
managing service upgrade schedules, and monitoring host or service uptime.

Since NMAP is an active tool, it interrogates the target machine‟s TCP/IP stack by
sending it different packets and observing the response. Knowing how a given operating
system‟s TCP/IP stack would respond in advance to each of the eight tests allows NMAP to
determine with a high degree of accuracy not only which operating system the target is
running, but also what version it is running as well.

NMAP holds all of its known operating system fingerprints in a text file called
“nmap-os-fingerprints”. There are a few hundred fingerprints documented that include at
least one entry for all the popular operating systems [19].

For testing NMAP and the possible integration with the signature Collector module,
PHP-NMAP was used, which is a PHP Web frontend. The approach is, when the user‟s IP
is retrieved, the system calls and runs NMAP having that IP as parameter. The results can
either be inserted in the fingerprint as new attributes, or can be managed aside from the
current trust calculator system.

P0f

This is a passive OS fingerprinting tool. It can be used for gathering profiling information
about accessing users, customers or attackers, restricting access to certain systems or
otherwise handling them differently or detecting users with illegal network hookups using
masquerade detection, content optimization, pen-testing and thru-firewall fingerprinting
[20].

The TCP/IP details that we are analyzing are:

 TTL - Time To Live,

 Window Size,

 DF - Don't Fragment bit,

 TOS - Type of Service.

By analyzing these details from a packet, one may be able to determine the remote
operating system. This approach is not 100% accurate and some operative system analysis
gives better results than others. Nonetheless, by looking at numerous signatures and
combining the information, the accuracy of identifying the remote host increases.

Hence, the approach, using this tool, is to have a server running p0f and saving the
logs from user‟s accesses to the servers. Then, when the system requires that information, it
calls for a comparison between the retrieved fingerprint and a database of TCP/IP
signatures.

http://en.wikipedia.org/wiki/OS_fingerprinting
http://old.honeynet.org/papers/finger/traces.txt
http://old.honeynet.org/papers/finger/traces.txt

noPhish - Anti-phishing system using browser fingerprinting

 20

Network data

Detailed Network Information is another fingerprint component that can be studied in
order to be integrated in the final noPhish system. The approach is to use the RIPE1
Database, which contains registration details of IP addresses and AS numbers originally
allocated by the RIPE NCC. This information contains the organizations that hold the
resources, where the allocations were made, and contact details for the networks.

The approach is to run a whois client when the user‟s IP is retrieved in the signature
Collector module of the noPhish system, and save the returning results as new fingerprint
attributes.

3.6. Testing approaches

Test Creator tool

Prior to the integration process, it is necessary to test the developed components of the
system, particularly, the trust calculator module. Therefore, an application to generate
signatures and test the implemented features must be created. This application shall generate
new fingerprints, allowing the verification of the behavior of the algorithm. The generated
fingerprints can simulate browser updates or the complete change of browser by a user.

The goal is to determine if the comparison between the signatures is being made
correctly and if what changes in each attribute can compromise the expected results. We
want to check for possible adjustments to the data collection and data analysis tools that we
are using in order to get better results.

Integration tests

After implementing the entire system, it is necessary to test the integration. The
approach for this procedure is very simple. The system is tested at every point of
communication with NONIO. In the case of communication between web services, it should
be created a test method that allows assessing the success of communication between
both systems.

Before deploying the final systems, we must simulate all the steps represented in the
system architecture, by checking the behavior of the database and create log files.

1 http://www.ripe.net/

http://www.ripe.net/

noPhish - Anti-phishing system using browser fingerprinting

 21

Chapter 4
Work done

4.1. Final Browser fingerprinting system

NoPhish System Architecture

Figure 7 – noPhish Architecture

As can be seen (Figure 7), the noPhish system is composed by two servers and a mySQL
database. The signature collection tool runs on an Apache server and it is basically a group of
PHP pages containing the scripts for collecting the browser attributes.

The trust calculator web services runs on a Glassfish server and it is capable to perform
CRUD operations on the mySQL database. The “DB Cleaner Tool” and the “Weight
Calculator Tool” are running outside the web service context allowing the user to perform
maintenance of the database directly.

The signatures are sent to the trust calculator from the web page through SOAP
under HTTP.

DB structure

Figure 8 - fingerprint table

noPhish - Anti-phishing system using browser fingerprinting

 22

The “fingerprint” table (Figure 8) contains one line per browser signature. Each signature is
characterized by the username associated with it, the last seen date, and all the fingerprinting
attributes.

As can be seen (Appendix B) in the signatures we used “city” attribute that was
obtained using the given IP address, however we had to remove it from the signatures latter
in the project because we noticed the API we were using to retrieve that value stopped
working.

Figure 9 - configuration_parameter table

The “Configuration_parameter” table (Figure 9) contains multiple configuration parameters
for the application. The parameters can be seen in the following figure (Figure 10).

Figure 10 - configuration parameters

Figure 11 - attribute table

The “attribute” table (Figure 11) contains the list of available attributes. There is a Boolean
that indicates if the attribute should be used for template retrieval, and a Boolean that
indicates if the attribute should be compared using exact match or approximate comparison.
There is a value which indicates the weight of the field when calculating the distance
between signatures. The value of the “att_column” attribute is the same as the name of the
attributes in the “fingerprint” table.

Figure 12 - tmp_invalid table

noPhish - Anti-phishing system using browser fingerprinting

 23

The “tmp_invalid” table (Figure 12) contains an integer that represents fingerprints IDs.
This table is used by the “Database Cleaning Tool”, allowing it to save the signatures IDs
that are later removed from the system in the Database cleaning process.

Figure 13 - tmp_fingerprint table

The “tmp_fingerprint” table (Figure 13) contains the attributes retrieved from the
browser and the result of the trust calculation process. This table is used so that the system
is able to store the fingerprints not considered “trusted”. The system uses the stored
fingerprint id on this table, to send it to NONIO along with the username, in order to notify
NONIO about “untrusted” or “suspicious” accesses to the system.

Integration details

The integration architectural details can be seen in the following figure (Figure 14).

Figure 14 - Integration

Figure 14 only represents the modules where the communication between NONIO
and noPhish system is direct.

In order to run the “signatureCollector” tool inside the “inforestudante” page, it was
necessary to configure an SSL certificate signed by a valid certification authority. Only in
that way was possible to eliminate the unwanted security warning that appeared on the page.

noPhish - Anti-phishing system using browser fingerprinting

 24

The “signatureCollector” module, included inside “inforestudante”, has the user ID
as a GET parameter provided by NONIO (Figure 15). Therefore, it is possible to relate the
collected fingerprint with its user.

Figure 15 - Iframe calling noPhish

Signature collector

Figure 16 - Signature Collector tool

The signature collector module is composed by simple PHP pages. The “collect” page
contains PHP, Java and JavaScript scripts. On that same page, the browser's attributes are
retrieved and then sent to “sendSOAP” page through a POST request.

To obtain the data from the java applet, it was necessary to build a JavaScript function
that grabs the results from the applet.

On the “sendSOAP” page, a XML message is constructed containing the collected
attributes and the user ID retrieved from NONIO. With the help of a PHP library called
nuSOAP, the SOAP client is constructed based on a given WSDL and the message is sent
through SOAP to the Web Service described in the definition language file.

Trust Calculator

Figure 17 - Trust Calculator module (generic)

noPhish - Anti-phishing system using browser fingerprinting

 25

CalculateTrust

The “calculateTrust” Web Method is called by the “signatureCollector” module after it
retrieves the browser‟s attributes. That method receives the username, a list of attribute
names, which must be the same as the “att_column” in the “attribute” table, and a list of
corresponding attribute values.

The system stores those values in a hash table, composing the new case that will be
used to get its nearest neighbors.

The method to get a list of the nearest neighbors consists in building a custom
mySQL query. That query is composed by:

 A SELECT clause, where we compare the attributes used for weight comparison
(“att_for_template_retrieval”=0 AND “att_weight”>0). The comparison is done by
exact match or approximate string comparison, depending on the value of
“att_compare_exact_match” in the “attribute” table of each attribute. The result of
each comparison is multiplied by the weight of the compared attribute.

 WHERE clause. Here only the attributes used for template retrieval are compared,
by using an exact match comparison. This allows us to retrieve only the cases that
match the template parameters.

 GROUP by comparison score.

 ODER by descending order.

 LIMIT. Here we insert the “conf_value” existent in the “configuration_parameter”
table, which represents the maximum number of neighbors (Figure 9).

The approximate string comparison is done by calling “ratio” which is a mySQL User
Defined Function. This function returns the similarity between two strings, by counting the
number of matched tokens between them, dividing that value by the max number of tokens
of the two strings and multiplying all by 100 (Figure 18).

Figure 18 - ratio.cpp return

After getting the list with the nearest neighbors, if the size of that list is equal to zero
then the result of the trust calculation process is “untrusted”. If the username of the given
case matches with the most common username in the neighbors the result is “trusted”. If
the username appears in the neighbors, but is not in the most common group, the result is
“suspicious”. By default the result is “untrusted”.

If the result is not “trusted”, the system stores the given case as a fingerprint in the
“tmp_fingerprint” table. Then it calls the NONIO‟s web service, sending the temporary
fingerprint Id, the username and the result of the trust calculation process.

The NONIO‟s web service runs on HTTPS. That being, in order to establish the
communication channel it was necessary to implement a function that trusts the SSL
certificates.

noPhish - Anti-phishing system using browser fingerprinting

 26

TrustThisById

This method receives an array of integers that contains the IDs of the temporary fingerprints
that are considered trusted by NONIO (See 3.4. integration approach).

The system converts the array of integers into a coma separated string and builds a
query to obtain the corresponding fingerprints. Then it stores them in the final “fingerprint”
table. After this process, the “tmp_fingerprint” is truncated.

Tools

DB Cleaner Tool

As mentioned, this tool is used to clean the database for performance improvement. And
the best way we found to keep a reasonable number of fingerprints per user, is to keep the
latest ones stored in the database and delete the oldest ones.

The configuration attributes used to perform the cleaning operations are stored in
the “configuration_parameter” table (Figure 8).

For each user, all her/his fingerprints‟ IDs that exceed the maximum number defined
in the “configuration_parameter” table are inserted into a temporary table – “tmp_invalid”
(Figure 12). Then, the system eliminates all the signatures from the “fingerprint” table
(Figure 8), whose identifiers were stored in the “tmp_invalid” table.

Notice that, before selecting the exceeded fingerprints, they are sorted in a
descending order by date. In this way, the more recent ones remain in the database.

Weight Calculator Tool

With this tool, the process initiates with the selection of the attributes that are not used for
template retrieval. Then it calculates the entropy of each one using a mySQL query, replacing
every “?” by the names of the selected attributes (Figure 19).

Figure 19 - mySQL query for entropy

These values are stored in a Hashtable. The next step is to balance the weights
according to each attribute‟s entropy values. To do so, the system divides the attribute‟s
entropy by the total entropy and multiplies it by 100.

The weight values are then updated in the “attribute” table for each attribute.

System’s behavior

Consolidating, the overall system‟s behavior is the following (Figure 20):

noPhish - Anti-phishing system using browser fingerprinting

 27

Figure 20 - System Behavior

1. The user accesses the inforestudante page. This page retrieves a hash of the user‟s
username which is passed by GET parameter when including an iframe pointing to
noPhish system.

2. The “signatureCollector” module is included inside the iframe running scripts to
collect the Browser‟s information.

3. The collected information is sent through SOAP to the “trustCalculator” module.
Here the system calculates the trust level of the given fingerprint.

4. If the result is not “trusted” the system stores the fingerprint in a temporary table.
5. The “trustCalculator” module sends the temporary fingerprint ID to NONIO‟s

“noPhishService” through SOAP.
6. The “noPhishService” Web Service sends the trusted fingerprints‟ IDs back to

“trustCalculator”.
7. The “trustCalculator” stores the trusted fingerprints and cleans the temporary table,

including the signatures that were considered to be not “trusted”.

4.2. TCP/IP and Network study

NMAP

We tested out NMAP by calling it from a PHP page simulating the signature collecting tool.
Once the user‟s IP is retrieved, the PHP script calls NMAP sending the IP as a parameter.

Being an active tool, the time it took to run and give results was not in accordance
with the plan regarding performance. For that reason, the use of this option was discarded.

P0f

Once we discarded the active tool, we tested out p0f. We installed p0f in the noPhish server
and saved the accesses registry to a log file. Since we cannot run p0f on demand, we had to
find a way of accessing the log with the fingerprints when needed. This mechanism would
only be called in some situations, not being part of the defined signature collector module.

The idea was to create a method that would retrieve the log file and compare the
signature of certain IP with a database of TCP/IP fingerprints.

noPhish - Anti-phishing system using browser fingerprinting

 28

This module was not included in the final architecture, since we altered the work
plan in order to proceed with the integration part of the project with NONIO. The fact is
that the integration was supposed to start in the beginning of the second semester. However
the final agreement regarding the integration process was only reached in Mai, in the middle
of the semester (Figure 1), in a phase where the plan excluding integration was already
defined.

Network data

A script that calls the whois client installed on the server and retrieves the information was
developed. That information is then parsed to different attributes.

Figure 21 - whois data

The better approach would be to add these attributes (Figure 21) to the fingerprint.
But before doing so we would have to go through all the process of retrieving new data and
performing a new data analysis to understand the relevance of those attributes as part of
fingerprint. However, this approach was also left aside in the final architecture since the
integration with NONIO proceeded.

4.3. Testing

Synthetic Tests

TestCreator

In the initial phase of the project, it was necessary to test the calculation process. Since we
had several signatures and we still didn‟t integrate the application, we had to make synthetic
tests so we could verify the effectiveness and efficiency of the “trustCalculator” module.

noPhish - Anti-phishing system using browser fingerprinting

 29

We developed a tool which consists in a web page, that lists and modifies existing
signatures, and that let us create new ones.

We then created fingerprints that simulated upgraded browsers, browsers with new
installed fonts and plugins, and also completely different browsers.

Once the created fingerprints were stored in a new table, we ran a java script that
calls the trust calculator tool and saves the results in a log file.

Integration

Logs

In order to analyze the results obtained after the integration, we created a series of log
tables. These tables not only keep records of problems, but also store logs and results of
each system‟s module.

Figure 22 - log fingerprint table

The “log_fingerprint” table is used to store SOAP accesses and problems occurred
in each one of the system‟s module (Figure 22). This table helped solving problems when we
tested the system.

Figure 23 - log results table

In the “log_results” table (Figure 23) are stored the results of the trust calculation
process, indicating whether the signature of a particular user was considered “trusted”,
“suspicious” or “untrusted”.

Figure 24 - log numbers table

The “log_numbers” table (Figure 24) is for storing the number of “trusted” and “not
trusted” fingerprints after the NONIO‟s Web service calls the “trustCalculator” web service.

noPhish - Anti-phishing system using browser fingerprinting

 30

In this way, each day, we can make an accounting on the results, telling exactly how many
users accessed the system and how many of those were considered “trusted” or not.

Testing phases

The integration tests were phased. In this way, it was possible to test each module
individually in its several and successive phases, to check the communication between each
module and finally ending the process testing all the architecture components.

Initially the “signatureCollector” was tested by sending the data collected from the
browser to the “trustCalculator”. Then a log was generated to register the SOAP requests,
and in that way it was possible to check the correction of the data (Figure 22).

The next step was to invoke the “calculateTrust” method that logged the result
obtained from the trust calculation of each signature (Figure 23). The signatures‟ IDs that
should later be sent to the “nophishservice” were also saved.

Then, the all process was repeated, adding the invocation of “nophishservice”,
sending the “untrusted” signatures ID and storing them in the “tmp_fingerprint” table
(Figure 13). NONIO‟s system generated an email that was sent to us and NONIO, with the
information that was later meant to be sent to the users as defined in the architecture (See
3.4. integration approach).

In the next stage, the IDs of “trusted” signatures were sent every 10 minutes by
“nophishervice” to the “trustthisbyid” method. A log was generated in “trustcalculator” that
recorded those IDs, calculating the number of trusted and “untrusted” signatures.

In the end, the production version was deployed. NONIO then started to send the
trusted signatures at 00 hours of each day, and emails were sent to the user´s about the
possible suspicious misuse of their credentials (See 3.4. integration approach).

noPhish - Anti-phishing system using browser fingerprinting

 31

Chapter 5
Results and Validation

5.1. Synthetic tests

In the initial phase of the project, a sample of 4874 signatures was collected. Using the tool
“testCreator” we generated several synthetic signatures in order to test the “trustCalculator”
and obtain their level of trust.

Thus, the synthetic tests ran showed that we can successfully identify a false user
accessing the system (e.g. one who is accessing with phished credentials) 100% of the times.

Description Example Rate

True Positive Phisher with valid credentials is blocked 100%
False Positive Legitimate user with valid credentials is blocked >0%
True Negative Legitimate user with valid credentials is allowed <100%
False negative Phisher with valid credentials is allowed 0%

Table 1 - Synthetic tests

In some cases a legitimate user was also blocked. This happened in cases where the
fingerprint has changed in such a way that no longer matched with any other on the
database. This is an expected behavior. If the user‟s fingerprint changes in such way, he/she
must prove his/her identity (See 3.4. integration approach).

In order to determine the actual rate of false positives and true negatives we needed
to check the log files resulted from the integration with NONIO.

5.2. Integration

Before proceeding with the integrated systems‟ deploy, we collected and stored new
signatures of the user´s who accessed NONIO between the end of Mai and June. 147387
signatures were collected during this period.

This data was stored so that the users already had registered signatures and wouldn‟t
be considered “untrusted” in the first accesses following deployment. In this way, there
already was a data base to signature comparison.

After deployment, from 1192 accesses to the “inforestudante”, 1014 signatures were
considered “trusted”, 15 were “suspicious” and 163 were identified as “untrusted”.

Figure 25 - Number of results

0

200

400

600

800

1000

1200

Trusted Untrusted Suspicious

Total

Distinct

noPhish - Anti-phishing system using browser fingerprinting

 32

From that, 483 were distinct “trusted” signatures, 161 “untrusted” and 15 were
“suspicious”, summing up a total of 659 distinct users (Figure 25).

About 12% of the “untrusted” signatures represents users that didn‟t have any
signature registered in the system, what can be explained by the fact that during the period in
which the signatures were being collected and stored, those users didn´t access
“inforestudante”. The remaining percentage represents users who are using a different
browser than the ones registered in the data base.

Figure 26 - Untrusted results

It was now necessary to verify if between the “untrusted” signatures there was any
attacker or malicious user. To answer this question it would be necessary to analyze the
user´s responses to the warning emails they received from NONIO (See 3.4. integration
approach).

Unfortunately, it was not possible to collect this data since the integration could only
be ended when it was already impossible for NONIO to obtain and send this data in a time
that would allow meeting the deadline gave to the delivery of the Thesis. Thus, regarding
this matter, the results are, therefore, presented in the assumption that there was no
attackers access.

So being, with that presumption one must consider that there might be a number of
users who reported that their credentials were used by someone else, by clicking the link that
was presented to them in the email sent by NONIO, for mere precaution, or just because
they didn´t recall if it was them or not who accessed the “inforestudante” web page at the
given time.

Nevertheless, based on common knowledge, we can say that the results that we
would obtain would in fact meet the assumptions made, since even if 30 students responded
by saying they didn´t accessed their accounts, it would be unlike that those 30 accesses were
made by attackers.

0

50

100

150

Untrusted

Without signatures

Another browser

noPhish - Anti-phishing system using browser fingerprinting

 33

Chapter 6
Conclusions

In this report, we presented a methodology to help detecting phishing attacks using a new
approach called “browser fingerprinting”. Recalling the objectives described in section 1.5, it
is possible to outlook that each one of them was addressed.

We can conclude that this kind of technique is more suitable when it is used as a
complement of an authentication system, helping to detect situations where a user is being
victim of a phishing attack. It is true that our system is able to detect when a different
browser is accessing certain account, but if we used this technique as a single authentication
mechanism in an application, the attacker would start collecting and using target fingerprints
allowing him to enter the system. Our system doesn‟t have the capability to distinguish a
forged fingerprint from an original one, so if it matches, the attacker is considered to be a
legitimate user.

We also think that it might be more efficient in an intranet corporation environment,
where the fingerprint of the device doesn‟t change. So, the fingerprint evolution and
management were two of the more delicate concerns in this project.

For this reason, although being a little aside from what is “browser fingerprinting”, if
we managed to integrate the TCP/IP fingerprinting component into our system, it would be
harder for the attacker to simulate the TCP/IP stack data, since it would be collected in the
server. Therefore, implementing this type of systems seems to be a good solution.
Unfortunately, we were unable to implement and test this approach with more
detail, regarding the changes in the time management due to the fact that the architectural
approach for the integration changed several times as to what was originally planned.

The integration with a real entity, with its own active processes, can be complex,
mainly because an active system cannot be broken by the integration procedure and
traditionally the interactions between teams are slow. This question becomes especially
relevant when considering that the integration process requires constant communication and
understanding.

Taking into account the work done and the obtained results, we consider that this
was a productive project, not only due to the acquired knowledge from all of the
investigation and development processes, but also because it was a subject that motivated us
throughout the entire project.

6.1. Future Work

Similar to what happens in the Facebook application (Figure 1), an interesting approach
would be to include a “security” section in the inforestudante page so that the users could
see the browsers that accessed to their account in the last days/weeks. In that way, after the
user receives the warning e-mail, he/she could check the details of the accesses to his/her
account.

The “signatureCollector” module should be implemented directly in the
inforestudante page. Not only for performance issues but also because the data access and
retrieval must not fail. Being running inside an iframe and calling an external server through
SOAP requests, the process is slow and susceptible to errors. Thus, it would be easier to
guarantee an effective and efficient data retrieving process.

noPhish - Anti-phishing system using browser fingerprinting

 34

The obtained results shows that a considering large amount of “untrusted”
signatures comes from users who don´t have a registered signature in the system. In order to
overcome this detected problem in the implementation of techniques like browser
fingerprinting, it is possible to approach some solutions such as:

- To create a system in which the user accepts to participate by activating a security

functionality ;

- The system itself detects the first users´ application login access. This would create a

star point so that the user would be, from start, associated to a valid signature that

would evolve from there on.

noPhish - Anti-phishing system using browser fingerprinting

 35

Acknowledgments

Thanks to Marco Jorge (marcobjorge@gmail.com), my partner in this project in the first
semester, that helped in the implementation and discussion of the project.

For their help, related to the integration with NONIO, I would like to thank Prof.
Marco Vieira (mvieira@dei.uc.pt), Pedro Pinto (plpinto@dei.uc.pt) and André Capitão
(acapitao@student.dei.uc.pt).

Thanks to Professor Mário Zenha Rela (mzrela@dei.uc.pt) for being my project
advisor, providing solutions and guidance throughout the project.

mailto:marcobjorge@gmail.com
mailto:mvieira@dei.uc.pt
mailto:plpinto@dei.uc.pt
mailto:mzrela@dei.uc.pt

noPhish - Anti-phishing system using browser fingerprinting

 36

References

[1] Robson, Daniel. 2010. “A Brief History of phishing”.

(http://www.brighthub.com/internet/security-privacy/articles/82116.aspx).

[2] Reid E.Carl . 2009. “History of phishing”. (http://www.allspammedup.com/2009/02/history-

of-phishing/).

[3] Larkin,Erik . 2010. “Browser Fingerprints: A Big Privacy Threat”, PC Wold.

[4] Eckersley, P. 2009. “How Unique Is Your Web Browser?”. Electronic Frontier

Foundation.

[5] Angwin, J., Valentino-Devries, J. 2010. “Race is On to „Fingerprint‟ Phones, PCs”

(http://online.wsj.com/article/SB10001424052748704679204575646704100959546.html?mod

=WSJ_hp_MIDDLENexttoWhatsNewsThird). The Wall Street Journal

[6] ThreatMetrix. “Device fingerprinting and fraud protection white paper”.

(http://www.scribd.com/doc/5342718/Device-Fingerprinting-and-Online-Fraud-Protection-

Whitepaper)

[7] Popov, Lev. 2010 “Staying in Control of Your Facebook logins”.

(https://blog.facebook.com/blog.php?post=389991097130). Facebook blog

[8] Valentino-Devries, J. 2010. “‟Evercookies‟ and „Fingerprinting‟: Are Anti-Fraud Tools

Good for Ads?”. (http://blogs.wsj.com/digits/2010/12/01/evercookies-and-fingerprinting-finding-

fraudsters-tracking-consumers/). The Wall Street Journal

[9] Business Wire. 2010. “Better Advertising announces open data parternship”.

(http://www.businesswire.com/news/home/20101203005590/en/Advertising-Announces-Open-

Data-Partnership-Designed-Give)

[10] Dunaway, Gavin. 2010. “Fingerprint and privacy”.

(http://www.adotas.com/2010/12/answers-served-bluecavas-norris-talks-device-fingerprinting-and-

privacy/)

[11] Microsoft. “Tracking Protection”.

(http://ie.microsoft.com/testdrive/Browser/TrackingProtection/Default.html)

[12] Project Honeynet. 2002. “Know your enemy: passive fingerprinting”.

(http://old.honeynet.org/papers/finger/)

[13] TCP/IP stack fingerprinting. (http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting)

[14] Eckersley, P. 27 January 2010. “A primer on information theory and privacy”.

(https://www.eff.org/deeplinks/2010/01/primer-information-theory-and-privacy). Electronic

Frontier Foundation.

[15] Schneider, T.D. 14 April 2007. “Information theory primer with an appendix on

logarithms”. (http://www.lecb.ncifcrf.gov/~toms/paper/primer/primer.pdf). National Cancer

Institute.

[16] Approximate String Matching. (http://en.wikipedia.org/wiki/Approximate_string_matching)

[17] Cunningham, Pádraig, “CBR: Strengths and Weaknesses”, Department of Computer

Science. Trinity College Dublin, Ireland.

[18] Case based Reasoning. (http://en.wikipedia.org/wiki/Case-based_reasoning)

[19] Glasser, Thomas. 2000. “Intrusion Detection FAQ: TCP/IP Stack Fingerprinting

principles”. (http://www.sans.org/security-resources/idfaq/tcp_fingerprinting.php)

[20] Zalewski, Michal. 2006. “The new p0f”. (http://lcamtuf.coredump.cx/p0f.shtml)

http://www.brighthub.com/internet/security-privacy/articles/82116.aspx
javascript:;
http://www.allspammedup.com/2009/02/history-of-phishing/
http://www.allspammedup.com/2009/02/history-of-phishing/
http://www.pcworld.com/author/Erik%20Larkin
http://online.wsj.com/article/SB10001424052748704679204575646704100959546.html?mod=WSJ_hp_MIDDLENexttoWhatsNewsThird
http://online.wsj.com/article/SB10001424052748704679204575646704100959546.html?mod=WSJ_hp_MIDDLENexttoWhatsNewsThird
http://www.scribd.com/doc/5342718/Device-Fingerprinting-and-Online-Fraud-Protection-Whitepaper
http://www.scribd.com/doc/5342718/Device-Fingerprinting-and-Online-Fraud-Protection-Whitepaper
http://blogs.wsj.com/digits/2010/12/01/evercookies-and-fingerprinting-finding-fraudsters-tracking-consumers/
http://blogs.wsj.com/digits/2010/12/01/evercookies-and-fingerprinting-finding-fraudsters-tracking-consumers/
https://www.eff.org/deeplinks/2010/01/primer-information-theory-and-privacy
http://www.lecb.ncifcrf.gov/~toms/paper/primer/primer.pdf
http://www.lecb.ncifcrf.gov/~toms/paper/primer/primer.pdf
http://www.lecb.ncifcrf.gov/~toms/paper/primer/primer.pdf
http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Case-based_reasoning

noPhish - Anti-phishing system using browser fingerprinting

 37

Appendix A
Data analysis

noPhish - Anti-phishing system using browser fingerprinting

 38

Description
Entropy
(w/out
Nulls)

Entropy
(w/

Nulls)
Fill Rate

Values
Filled

Distinct
Values

User Agent 7,80 12,28 0,99 4808 1026

Application Code Name 0,00 0,29 0,77 3757 1

Application Minor Version 1,10 1,14 0,77 3752 11

Application Name 1,01 1,07 0,77 3757 3

Application Version 6,03 4,96 0,77 3757 620

Browser Language 1,22 1,23 0,77 3752 12

Cookie Enabled 0,84 0,85 0,98 4783 2

CPU Class 0,94 1,01 0,77 3752 4

Platform 0,58 0,73 0,77 3757 13

System Language 1,11 1,14 0,77 3752 12

User Language 1,15 1,18 0,77 3752 14

Plugins 8,82 6,35 0,77 3757 1509

Taint Enabled 0,89 0,97 0,77 3756 5

Mime Types 7,80 6,33 0,77 3755 1492

HTTP Accept Headers 3,14 3,11 0,98 4785 132

Screen 4,58 4,44 0,95 4630 135

Timezone 0,48 0,52 0,83 4022 20

System Fonts 8,86 3,67 0,31 1502 741

LSO Cookies Enabled 0,00 0,45 0,18 875 1

HTML 5 Support 2,52 2,23 0,77 3755 46

IP Address 9,68 9,55 0,98 4783 2095

Country 0,16 0,18 0,98 4783 22

Mobile access 0,06 0,08 0,98 4783 6

Samba User Info 6,46 0,62 0,06 286 121

Vendor 1,77 1,66 0,77 3752 10

Product 0,92 1,00 0,77 3752 2

Vendor Sub 1,07 1,11 0,77 3752 9

Product Sub 2,62 2,31 0,77 3752 50

Language 1,96 1,80 0,77 3752 19

Java Enabled 0,52 0,57 0,79 3849 2

System Panel Location 1 0,39 0,59 0,77 3749 3

System Panel Location 2 1,31 1,30 0,77 3747 5

Javascript Enabled 0,51 0,53 0,98 4783 2

HTTP Accept Charset 1,65 1,59 0,98 4783 12

HTTP Accept Encoding 1,65 1,64 0,98 4783 8

HTTP Accept Language 3,00 2,97 0,98 4785 77

noPhish - Anti-phishing system using browser fingerprinting

 39

Description
Entropy
(w/out
Nulls)

Entropy
(w/

Nulls)
Fill Rate

Values
Filled

Distinct
Values

Flash Enabled 0,86 0,89 0,80 3900 2

Audio/Video HW Disabled 0,03 0,45 0,18 875 2

Has Accessibility 0,36 0,51 0,18 875 2

Has Audio 0,00 0,45 0,18 875 1

Has Audio Encoder 0,03 0,45 0,18 875 2

Has Embedded Video 0,00 0,45 0,18 875 1

Has IME 0,26 0,50 0,18 875 3

Has MP3 0,00 0,45 0,18 875 1

Has Printing 0,03 0,45 0,18 875 2

Has Screen Broadcast 0,00 0,45 0,18 875 1

Has Screen Playback 0,01 0,45 0,18 875 2

Has Streaming Audio 0,00 0,45 0,18 875 1

Has Streaming Video 0,00 0,45 0,18 875 1

Has Video Encoder 0,03 0,45 0,18 875 2

Flash Language 0,92 0,62 0,18 875 6

Local File Read Disable 0,03 0,45 0,18 875 2

Manufacturer 0,92 0,62 0,18 875 7

Operating System 1,88 0,79 0,18 875 17

Pixel Aspect Ratio 0,38 0,52 0,18 875 18

Player Type 0,03 0,45 0,18 875 2

Screen Color 0,03 0,45 0,18 875 2

Screen DPI 0,05 0,46 0,18 875 3

System Version 0,82 0,60 0,18 875 17

Region 2,44 2,42 0,98 4783 44

City 3,74 3,71 0,98 4783 166

Available Processors 1,28 0,65 0,13 624 5

Java Total Memory 1,33 0,66 0,13 626 17

Java Maximum Memory 1,33 0,66 0,13 624 15

Java Version 2,73 0,90 0,13 624 11

Java Vendor 0,14 0,46 0,13 624 2

Java Vendor URL 0,14 0,46 0,13 624 2

Java Class Version 0,00 0,44 0,13 624 1

OS Version 1,80 0,74 0,13 624 8

OS Name 1,79 0,74 0,13 624 6

OS Architecture 0,27 0,48 0,13 624 4

IE plugins 10,27 8,24 0,77 3755 1771

noPhish - Anti-phishing system using browser fingerprinting

 40

Appendix B
Selected Attributes

noPhish - Anti-phishing system using browser fingerprinting

 41

Description
Used for
Template
Retrieval

CBR
Weight

User Agent 20,34

Plugins 22,78

Mime Types 21,12

HTTP Accept Headers x -

Screen x -

System Fonts 10,51

HTML5 Support 7,15

Vendor x -

Product Sub 7,69

Language x -

HTTP Accept Charset x -

HTTP Accept Encoding x -

HTTP Accept Language x -

City 10,41

OS Name x -

noPhish - Anti-phishing system using browser fingerprinting

 42

Appendix C
Work Distribution

noPhish - Anti-phishing system using browser fingerprinting

 43

