

State-Based
Programming in PQL
Ricardo Bernardino
rjrocha@student.dei.uc.pt

Supervisors:

Maria José Marcelino
Ricardo Ferreira
1st July 2014

Master in Informatics Engineering
Internship
Final Report

Abstract

Complex Event Processing (CEP) has become increasingly popular within orga-
nizations. The financial industry used to be the sole beneficiary of the CEP capa-
bilities, however nowadays we see it increasingly being adopted by non-financial
companies, especially for Business Activity Monitoring software (BAM). One of
the most distinctive features of CEP is pattern matching. In this field, pattern
matching should not be mistaken for the pattern matching in character strings,
nor pattern matching from the functional programming paradigm. Rather, it
specifies temporal relationships between events, such as sequences, restrictions
of event occurrences, just to name a few. On the other hand, one feature which
has yet to be widely adopted amongst the CEP engines is entity state and lifecy-
cle modeling, i.e., the ability to correlate events into instances of an entity, where
each entity will have di↵erent states and transitions representing its lifecycle.

The objective of this work is to investigate and implement this type of func-
tionality in Feedzai Pulse’s query language - PQL.

Keywords: “Complex Event Processing” “Entity Modeling” “Entity Lifecy-
cle” “Event Correlation” “Pattern Matching” “State-Based Programming”

Contents

1 Introduction 1
1.1 Motivation and Scope . 1
1.2 Goals . 2
1.3 Document Organization . 2

2 State of the Art 4
2.1 Snoop . 4

2.1.1 Pattern Matching . 4
2.1.1.1 Parameter Contexts 6

2.1.2 Entity State and Lifecycle 7
2.2 Streambase . 8

2.2.1 Pattern Matching . 8
2.2.2 Entity State and Lifecycle 9

2.3 Oracle Event Processing . 9
2.3.1 Pattern Matching . 9
2.3.2 Entity State and Lifecycle 11

2.4 Esper . 11
2.4.1 Pattern Matching . 11

2.4.1.1 Esper’s . 12
2.4.1.2 Match Recognize 13

2.4.2 Entity State and Lifecycle 13
2.5 Siddhi CEP / WSO2 Complex Event Processor 13

2.5.1 Pattern Matching . 13
2.5.2 Entity State and Lifecycle 15

2.6 TIBCO Business Events . 15
2.6.1 Pattern Matching . 15
2.6.2 Entity State and Lifecycle 17

2.6.2.1 Concept . 17
2.6.2.2 State Modeler . 18

2.7 Summary . 19

3 PKernel 21
3.1 PQL . 21
3.2 Frontend . 22
3.3 Driver . 23

3.3.1 Code Generation . 24
3.4 Backend . 24
3.5 API . 24

i

4 Pattern Matching 25
4.1 Drafts . 25
4.2 Requirements . 26

4.2.1 Functional Requirements . 26
4.2.2 Nonfunctional Requirements 27

4.3 Implementation Approaches . 27
4.3.1 RETE and its variants . 27

4.3.1.1 RETE . 27
4.3.1.2 RETE/UL . 29
4.3.1.3 TREAT . 29
4.3.1.4 LEAPS . 30
4.3.1.5 Gator . 30

4.3.2 Finite State Machines . 31
4.3.2.1 Siddhi . 31
4.3.2.2 SASE . 31

4.4 PQL . 32
4.4.1 Define Clause . 32
4.4.2 Pattern Clause . 34

4.5 Our Algorithm . 37
4.6 Use-Cases . 39

4.6.1 Stock Patterns . 40
4.6.1.1 Double Bottom . 40
4.6.1.2 Head and Shoulders 41

4.6.2 Fraud Detection . 43
4.7 Current Limitations . 43
4.8 Benchmark . 44

4.8.1 Setup . 44
4.8.2 Result Analysis . 45

4.9 Tests . 47

5 State-Based PQL 48
5.1 Drafts . 48
5.2 Requirements . 49
5.3 Entity Definition . 49
5.4 Implementation . 52

5.4.1 Code Generation and Instance Workflow 54
5.4.2 Query Interaction . 55

5.5 Use-Case . 57
5.5.1 Shipping Company . 57

6 Work Plan and Methodology 59
6.1 First Semester . 59
6.2 Second Semester . 59
6.3 Methodology . 60

6.3.1 Scrum . 60
6.3.2 Test-Driven Development 60
6.3.3 Git . 61
6.3.4 Code Review . 61

ii

7 Conclusion and Future Work 62
7.1 Summary . 62
7.2 Future Work . 62

A Planning 69
A.1 First Semester . 69
A.2 Second Semester . 71

B Functional Requirements 73
B.1 Pattern Matching . 73

B.1.1 Sequence . 73
B.1.2 Strict Sequence . 73
B.1.3 And . 73
B.1.4 Or . 73
B.1.5 Negation . 74
B.1.6 Cardinalities . 74
B.1.7 Within . 74
B.1.8 After . 74
B.1.9 Every . 74
B.1.10 Previous Event . 74
B.1.11 Previous Event from a Pattern Element 75

B.2 State-based programming . 75
B.2.1 Entity . 75
B.2.2 States . 75
B.2.3 State Transitions . 75
B.2.4 Timers . 75
B.2.5 Timers between States . 75
B.2.6 Counters . 76
B.2.7 Counters between States . 76
B.2.8 Multi-Stream Entity . 76
B.2.9 Timeout transition . 76
B.2.10 User-Defined Functions as Actions 76

C Nonfunctional Requirements 77
C.1 Pattern Matching . 77
C.2 State-Based Programming . 77

D Class Diagram 78

E Activity Diagrams 80

F PKernel Architecture 83

G Pattern Matching Benchmark Results 84
G.1 Query 1 . 84
G.2 Query 2 . 85
G.3 Query 3 . 85
G.4 Query 4 . 86
G.5 Query 5 . 86
G.6 Query 6 . 87
G.7 Query 7 . 88

iii

G.8 Query 8 . 89
G.9 Query 9 . 89
G.10 Query 10 . 90
G.11 Query 11 . 91
G.12 Query 12 . 92
G.13 Query 13 . 92
G.14 Query 14 . 93
G.15 Query 15 . 94
G.16 Query 16 . 95

H Drafts Produced 96
H.1 First Draft . 96
H.2 Second Draft . 98

I Grammar 100
I.1 Pattern Matching . 100
I.2 State-Based . 101

iv

List of Tables

2.1 Esper’s every clause examples . 12
2.2 Comparison of Pattern Matching clauses available in the CEP

engines analyzed. 19

4.1 Query pattern elements and prev evaluation step by step. The
event’s occurrences are ordered from left to right, and the char-
acter “–” means there is no update in the value. 36

4.2 Throughput, mean time and standard deviation of time spent. . 46

v

List of Figures

2.1 CEP market players from 1996 until 2012 - taken from [3] 5
2.2 Snoop’s Event classification[37] . 5
2.3 Streambase EventFlow application example 8
2.4 Oracle Event Processor’s query wizard 9
2.5 Esper’s Architecture - taken from [8] 11
2.6 TIBCO Business Events 5.1.1 modules 15
2.7 Example of a concept definition - taken from https://docs.

tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_
be_getting_started/images/concept-editor.gif 18

2.8 Example of state and transitions definition - taken from https://
docs.tibco.com/pub/businessevents_data_modeling/5.0.0_
april_2011/html/tib_be_data_modeling_developers_guide/
images/state_transition.gif . 19

3.1 PKernel frontend workflow. 23
3.2 The plan graphs generated for each query. 23
3.3 Code generation workflow. 24

4.1 Example of a RETE network with two rules (r1 and r2) - taken
from [39] . 28

4.2 Example of RETE, TREAT and Gator networks - taken from [48] 30
4.3 Automaton generated - taken from [32] 32
4.4 Partition By behavior example. 33
4.5 Type nodes’ output node order example. 38
4.6 Generated graphs for two pattern matching queries. 40
4.7 Double Bottom example. Source: http://www.investopedia.

com/university/charts/charts4.asp 40
4.8 Head and Shoulders example. Source: http://www.investopedia.

com/university/charts/charts2.asp 42
4.9 Time spent processing the events. 45
4.10 Throughput achieved. 46
4.11 Latencies for each of the specified percentiles, in nanoseconds. . . 46

5.1 Activity diagram representing the behavior in an entity partition. 55

6.1 Test-driven development workflow - taken from https://en.wikipedia.
org/wiki/File:Test-driven_development.PNG. 60

6.2 Git branching model used at Feedzai. 61

vi

https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif
https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif
https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
http://www.investopedia.com/university/charts/charts4.asp
http://www.investopedia.com/university/charts/charts4.asp
http://www.investopedia.com/university/charts/charts2.asp
http://www.investopedia.com/university/charts/charts2.asp
https://en.wikipedia.org/wiki/File:Test-driven_development.PNG
https://en.wikipedia.org/wiki/File:Test-driven_development.PNG

A.1 Planning first semester. 70
A.2 Actual task execution. 70
A.3 Planning for the second semester. 72

D.1 Generated class diagram. 79

E.1 And Node activity diagram. 80
E.2 Cardinality Node activity diagram. 81
E.3 Not Node activity diagram. 81
E.4 Or Node activity diagram. 81
E.5 Root Node activity diagram. 81
E.6 Seq Node activity diagram. 82
E.7 Type Node activity diagram. 82

F.1 PKernel high-level architecture. 83

G.1 Time spent processing the events, in milliseconds. 84
G.2 Query 1 mean latencies for each of the specified percentiles, in

nanoseconds. 84
G.3 Time spent processing the events, in milliseconds. 85
G.4 Query 2 mean latencies for each of the specified percentiles, in

nanoseconds. 85
G.5 Time spent processing the events, in milliseconds. 85
G.6 Query 3 mean latencies for each of the specified percentiles, in

nanoseconds. 86
G.7 Time spent processing the events, in milliseconds. 86
G.8 Query 4 mean latencies for each of the specified percentiles, in

nanoseconds. 86
G.9 Time spent processing the events, in milliseconds. 87
G.10 Query 5 mean latencies for each of the specified percentiles, in

nanoseconds. 87
G.11 Time spent processing the events, in milliseconds. 87
G.12 Query 6 mean latencies for each of the specified percentiles, in

nanoseconds. 88
G.13 Time spent processing the events, in milliseconds. 88
G.14 Query 7 mean latencies for each of the specified percentiles, in

nanoseconds. 88
G.15 Time spent processing the events, in milliseconds. 89
G.16 Query 8 mean latencies for each of the specified percentiles, in

nanoseconds. 89
G.17 Time spent processing the events, in milliseconds. 90
G.18 Query 9 mean latencies for each of the specified percentiles, in

nanoseconds. 90
G.19 Time spent processing the events, in milliseconds. 90
G.20 Query 10 mean latencies for each of the specified percentiles, in

nanoseconds. 91
G.21 Time spent processing the events, in milliseconds. 91
G.22 Query 11 mean latencies for each of the specified percentiles, in

nanoseconds. 91
G.23 Time spent processing the events, in milliseconds. 92

vii

G.24 Query 12 mean latencies for each of the specified percentiles, in
nanoseconds. 92

G.25 Time spent processing the events, in milliseconds. 93
G.26 Query 13 mean latencies for each of the specified percentiles, in

nanoseconds. 93
G.27 Time spent processing the events, in milliseconds. 93
G.28 Query 14 mean latencies for each of the specified percentiles, in

nanoseconds. 94
G.29 Time spent processing the events, in milliseconds. 94
G.30 Query 15 mean latencies for each of the specified percentiles, in

nanoseconds. 94
G.31 Time spent processing the events, in milliseconds. 95
G.32 Query 16 mean latencies for each of the specified percentiles, in

nanoseconds. 95

viii

What are the three most important ideas in programming?
Abstraction, Abstraction, Abstraction.

by Paul Hudak

Chapter 1

Introduction

This thesis describes the work developed in the area of event pattern matching
and state-based programming, at Feedzai, S.A., as part of the Thesis/Project
discipline of the Master of Computer Science at the University of Coimbra.
This work was supervised by Prof. Maria José Marcelino, and Eng. Ricardo
Ferreira.

In this chapter we describe its motivation, background, main objectives and
goals, providing also a brief introduction to event pattern matching and entity
state and lifecycle modeling, which are fundamental concepts of this work.

1.1 Motivation and Scope

Pulse is a real-time business intelligence platform developed by Feedzai. In
this context, real-time does not stand for zero latency. Rather, it denotes the
ability of deriving metrics and react accordingly, from the data being received
in a timely manner - near zero latency. These metrics in Pulse are called Key
Performance Indicators (KPIs), and they can be compared with historical values
as well as predicted future values.

At the core of Pulse is a Complex Event Processing (CEP) engine called
PKernel, and its query language Pulse Query Language [14] (PulseQL or PQL
for short). CEP is defined as the “Computing on inputs that are event streams.
For example: Applications that use stock market feeds as inputs and process
events in their order of arrival to compute running average stock prices, volume
weighted average prices over time windows, etc.” [28]. PKernel also deals with
events and event streams. Events are represented as tuples and they are the
basic unit of data in this engine, representing a change in the state of something,
e.g., “a financial transaction, a sensor output, a stock price tick” [28]. Event
streams are “a set of associated events. It is often a temporally totally ordered
set (that is to say, there is a well-defined timestamp-based order to the events
in the stream)” [41]. In PKernel, a stream has a data schema associated with
it and every associated event must conform to it.

The syntax of PQL is very similar to SQL and Microsoft’s LINQ[9], so we
have the usual clauses - from, select, where, group by, and so forth. Never-
theless, one of its shortcomings is the inability to define and perform pattern
matching in sequences of events. Currently, this can only be achieved through

1

recourse to Pulse’s rule engine, but in many other CEP engines pattern match-
ing is done through queries. A possible pattern in a fraud detection environment
is the detection of a transaction from a credit card at location X, followed by
another transaction from the same credit card at a di↵erent and quite distant
location Y within 10 minutes, for instance. If one such sequence of events occurs,
we would like to take action (block the transaction) and possibly generate an
alarm.

Moreover, there are a number of use cases and business processes which can-
not be modeled in PQL when we need events to be related, and we are interested
in knowing the state of a given entity - what we call state-based programming
and entity state and lifecycle modeling. Imagine a network management envi-
ronment where we have a huge number of networks, routers, switches, etc. In
such an environment, we might be interested in knowing the state a connection
might be in - idle, connected, disconnected - as well as how many times it has
transitioned from idle to connected, for instance. Another example can be the
shipping industry, where we might have the following states for the items: shelf,
in transit, lost, delivered; and we would like to know how many items were
lost in the last 24 hours. Although the group by clause is capable of correlating
events in a given stream by an identifier, we have no way of specifying the states
and transitions of an entity.

1.2 Goals

In this thesis, we will augment the Pulse Query Language in order for it to be
able to express event patterns, as well as the state-based programming. Both
of these features are not new in the CEP field, with some people considering
the pattern matching to be the jewel in the crown [41] and the foundation of
CEP systems [52]. We will create a syntax for specifying the pattern sequence,
as well as its conditions and operators, that is both simple to write and easy to
understand.

Concerning the state-based programming, it still has very little support
amongst the major CEP engines. There is some research on the topic [41][35],
but not at the same amount level as pattern matching. The goal will be to
create a syntax for defining the entities and declare its states and transitions,
similar to declaring a class in a Object Oriented Programming (OOP) language,
as well as enabling those entities to be used in PQL queries.

1.3 Document Organization

This thesis is organized as follows:

• Chapter 2, “State of the Art” In this chapter, we will analyze some of
the most well-known CEP engines available, both commercially and open-
source.

• Chapter 3, “PKernel” We will give a brief introduction and overview of
Pulse’s CEP engine, the PKernel.

• Chapter 4, “Pattern Matching” In this chapter, we will give an overview
of common algorithms for doing Pattern Matching, present the language

2

drafts for the new additions to PQL, and finally we will introduce the
implementation of the Pattern Matching capabilities in PQL.

• Chapter 5, “State-Based PQL” In this chapter, we will present the work
realized on State-Based programming in PQL.

• Chapter 6, “Work Plan and Methodology” In this chapter we present the
planning made for this thesis, as well as the adopted strategies and tools
related with software development.

• Chapter 7, “Conclusion and Future Work” As the chapter name suggests,
we will state the conclusions of our work, and provide possible directions
for further developments.

3

Chapter 2

State of the Art

In this section, we will analyze some systems (mainly CEP engines) which have
Pattern Matching and/or Entity State and Lifecycle capabilities incorporated
in them. It would be an almost impossible task to do a thorough research
into every CEP Engines that exist, so we will only analyze six engines, both
commercial and open-source, that through our research were referenced the
most, and also some that we had already some experience during our academic
curriculum - Esper and Streambase. In Figure 2.1 we can see a CEP market
player analysis, which includes the majority of the engines we will analyze. The
systems analyzed will be: Snoop, Streambase, Oracle Event Processing, Esper,
Siddhi CEP, and TIBCO Business Events.

2.1 Snoop

Snoop [37][38] is an event specification language for the rules in active databases.
An active database is a database in which we execute rules on data being ma-
nipulated. The rules follow the structure Event Condition Action (ECA), i.e.,
when the Event happens and if the Condition(s) apply, we will execute the
Action(s). What Snoop provides is a specification for several event types (refer
to Figure 2.2), operators to modify events and construct complex events. Even
though it is not a CEP engine, its operators served as the basis for many of the
clauses which, as we will see, are included in almost every CEP engine. Similar
event specification languages include SAMOS [44], ODE [45], and EPL [55].

2.1.1 Pattern Matching

We can define pattern matching rules in Snoop through the use of Event Oper-
ators. The following are the operators available:

Disjuntion - Or : We use this operator when we want one of the events to
occur. Example: E1 ∨E2, in this example either E1 occurs or E2 occurs.

Conjunction : The syntax for this operator is: Any(I, E1, E2, . . . , E
N

),
where I is the number of events we want to occur in any order, so I ≤ N
must apply. The authors also provided another operator All which is just
a shorthand for Any(N, E1, E2, . . . , E

N

).

4

Figure 2.1: CEP market players from 1996 until 2012 - taken from [3]

Figure 2.2: Snoop’s Event classification[37]

5

Sequence : This operator specifies a temporal constraint on the events, where
one event must occur after the other. Example: E1;E2, means event E1

must occur before E2.

Aperiodic : This operator expresses the occurrence of an aperiodic event be-
tween two arbitrary events (usually to provide an interval). The syntax is:
A(E1, E2, E3), here event E2 must occur between E1 and E3, yielding
results each time an E2 event happens - non-cumulative variation. There
is also a syntax for the cumulative variation: A∗(E1, E2, E3), meaning
that in the previous example multiple E2 events would be accumulated
and it would yield the results only when E3 occurred.

A(8 a .m. , Any(2 , modify−IBM, modify−DEC, modify−
Boeing) , 5 p .m.)

Listing 2.1: Aperiodic example taken from [38]

In listing 2.1, we have a more common real-life use for this clause, where
we want to compute the new Dow Jones index average when any two of
IBM, DEC, or Boeing stock prices change during the day[37].

Periodic : The syntax of this operator is very similar to the previous one. It is
also a ternary operator, where the first and third parameters have the same
functionality, i.e., the second event(E2) must occur within the interval
bounded by the first(E1) and third(E3) events - P (E1, E2, E3). Despite
this, in E2 we must specify a temporal event to indicate the periodicity
at which we will yield results, enclosed in square brackets.

P(8 a .m. , [30 min] : IBM−stock −pr i ce , 5 p .m.)

Listing 2.2: Periodic example taken from [37]

In listing 2.2 we have an example of this clause, where we will yield the
stock price of IBM every 30 minutes, between 8a.m. and 5p.m.

There is also the cumulative variant of this operator - denoted P ∗ - which
instead of yielding every 30 minutes the result, it would accumulate the
events and yield a single result when E3 occurs.

After the original paper for Snoop was published, there were some new additions
to the Snoop specification[36][31]:

Not : This is a ternary operator with the syntax: !(E1, E2, E3), meaning
event E2 must not occur between the interval specified by E1 and E3.

Plus : This operator is used to specify a relative time period. Example:
Plus(E1, [30min]), this will signal an event 30 minutes after the oc-
currence of event E1.

2.1.1.1 Parameter Contexts

The creators of Snoop decided to create four parameter contexts in order to
cope with di↵erent application requirements. These parameter contexts can be
thought of as event consumption policies, since they are in essence the rules
for the eviction of events. In order to comprehend the four di↵erent parameter

6

contexts, we will use the examples provided in [37]. For a sequence belonging
to three primitive events (E1, E2, E3):

E21, E12, E13, E24, E15, E36, E38, E29

and the following event expression:

• A = Any(2,E1,E2) ; E3

the four parameter contexts are:

Recent : In this context, only the most recent event belonging to the primitive
event type will be used for the result. Thus, the expression A will have the
events (E24, E15, E36), because E24 and E15 are the last occurrences
of E2 and E1, respectively, before an event of E3 occurs.

Chronicle : In this context, we will keep every event from the three primi-
tive events (E1, E2 and E3). When an event occurs which signals the
expression, it will use the oldest instance of every primitive event, and
delete it to prevent further usage. The expression A will have the events(E21, E12, E36) and (E13, E24, E36).

Continuous : In this context, every event which matches a start event for an
expression will set that event as the first event of a new possible result, as
well as a new event in a partial result. This can be more easily explained
event by event with the example provided below, where we will represent
the partial results within ():

1. (E21);

2. (E21, E12), (E12);

3. (E21, E12), (E12), (E13);

4. (E21, E12), (E12, E24), (E13, E24);

5. (E21, E12), (E12, E24), (E13, E24), (E15);

6. (E15); Results: (E21, E12, E36), (E12, E24, E36), (E13, E24,
E36).

In this parameter context an event may appear at least once in the results,
whereas in both Chronicle and Recent it will appear at most once.

Cumulative : In this context, after the first event to start a match occurs, we
will add all the events until an event terminates the expression. Thus, the
result in this context is: (E21, E12, E13, E24, E15, E36).

2.1.2 Entity State and Lifecycle

As stated earlier, Snoop is only a language specification for event operations
within rules, it was not designed to cope with this functionality.

7

2.2 Streambase

Streambase is one of the most popular CEP engines, and was recently acquired
by TIBCO, also a major player in the CEP field. Part of its popularity is
related to their decision to have also a Graphical User Interface (GUI) - called
EventFlow - to build the queries, inputs, outputs (refer to Figure 2.3). However,
it is still possible to write them in their query language - StreamSQL. Streambase
is available both as a 30-day free trial, as well as a paid Enterprise Edition.

Figure 2.3: Streambase EventFlow application example

2.2.1 Pattern Matching

In StreamSQL we can specify patterns by using the clause from pattern. There
are five di↵erent operators to define a pattern:

subpattern1 THEN subpattern2 : With this operator a temporal ordering
is imposed on the subpatterns, in which subpattern2 must occur after
subpattern1: timestamp

sp2 >= timestamp
sp1. Can also be written as

subpattern1 -> subpattern2;

NOT identifier : Indicates the absence of a tuple, i.e., a match occurs only
when an event from the stream identifier does not happen. Can also be
written as !identifier;

subpattern AND subpattern : There is a match only when the two subpat-
terns occur. Can also be written as subpattern && subpattern;

subpattern OR subpattern : There is a match if one of the two subpatterns
occur. Can also be written as subpattern || subpattern;

pattern WITHIN x units : By using this operator, a temporal constraint is
imposed on the whole pattern, meaning that a pattern must match within
x units of time.

As you may have noticed, we do not have any way of specifying constraints
on the attributes of the event received in the stream, within a pattern related
clause. To do that, we have to use the global where clause, as shown in listing
2.3.

SELECT A. id AS f i , C. id AS f o
FROMPATTERN A −> !B −> C WITHIN 5 TIME
WHERE B. id == A. id
INTO out ;

Listing 2.3: Streambase pattern query with filtering

One should keep in mind that the patterns in this engine are eager, i.e., for
every event being received, and as long as it passes the first condition, it will
start a new pattern as well as matching the already started patterns.

8

2.2.2 Entity State and Lifecycle

At the time of this writing, there is no support for this functionality.

2.3 Oracle Event Processing

This is the CEP engine developed by Oracle. Oracle has long been a major
player in the relational database world, but as more and more CEP engines
appeared, it was only a matter of time before there would be a product from
Oracle. One of the key features of this product is its Graphical User Interface
(GUI), which enables the users to create their queries with a simple drag-and-
drop of the query components, and joining them together (refer to Figure 2.4).

Figure 2.4: Oracle Event Processor’s query wizard

2.3.1 Pattern Matching

As for the pattern matching, the Oracle Event Processing has in its query lan-
guage - Oracle CQL [13] - a clause named MATCH RECOGNIZE for this very pur-
pose. MATCH RECOGNIZE is a proposal for the SQL standard [12], however it has
still to gain traction both on the DBMS side, as well as among the CEP engines
- up until this writing only Oracle and Esper implement it. Inside this clause
we can use the following clauses:

MEASURES : This identifies the fields to be used by the select clause;

DEFINE : In this clause we specify the conditions we want to match, as well
as its identifier to be used in the PATTERN clause. Do note that we can
reference other identifiers in the conditions - refer to the Listing 2.4.

DEFINE
A as A. p r i c e > 20 ,
B as B. p r i c e > A. p r i c e

Listing 2.4: Define example

9

prev : The syntax is the same as a function call, and it returns the previous
event in the identifier. Example: DEFINE B as B.price > prev(B.price),
this means that an event will be evaluated as a B if its price is greater
than the previous event evaluated to B.

PATTERN : As the name suggests, this will be used to specify the pattern
we want. The pattern must be defined within parenthesis and it may use
an identifier which is not present in the DEFINE clause, which will match
any event that arrives on the stream;

PARTITION BY : This is an optional clause, but what it does is similar to a
group by clause in SQL. Basically, it will apply the pattern independently
for each distinct value;

ALL MATCHES : This is an optional clause, enabling the engine to match
overlapping patterns;

WITHIN and WITHIN INCLUSIVE : A pattern must match within the
time frame provided, otherwise there will be no output;

DURATION : This is an optional clause. Its purpose is to specify a time
frame where the pattern must be satisfied completely, i.e., there can be
no other events aside from the ones specified in the PATTERN clause. With
this clause, the pattern only yields results after the specified time frame.

SUBSET : This is an optional clause. This is used to aggregate one or more
identifiers from the DEFINE clause, which can then be used in aggregation
functions, such as average or sum for instance. It is possible to use an
identifier in multiple subsets.

Let us focus now on the PATTERN clause, and analyze its operators:

Concatenation : This operator is used to define a sequence of events. Unlike
all the other operators, it does not have any character to represent it,
i.e., if we want to express the pattern A followed by B (concatenation) we
simply need to type: pattern (A B).

Alternation : This operator is denoted by the vertical bar character ‘�’. The
function of this operator is to represent the logical or. If we have a pattern:
(A � B) we will match either A or B, but not both.

Quantifiers : This operator is used to express the cardinalities expected for
the elements in the pattern. There are three quantifiers available, and
they are all based on the regex syntax:

1. *: The element must repeat zero or more times;

2. +: The element must repeat one or more times;

3. ?: The element must occur zero or one time.

When we specify the quantifiers * or + we can then use aggregation func-
tions on the attributes of those elements:

first : Retrieves the specified attribute of the first matched event;

10

last : Retrieves the specified attribute of the last matched event;

count : Returns the number of matched events;

sum : Returns the sum of the specified attribute for the matched events;

2.3.2 Entity State and Lifecycle

At the time of this writing, there is no support for this functionality in Oracle
Event Processing.

2.4 Esper

Esper is also a very popular CEP engine, and its popularity may lie in its Open
Source approach - there is also an enterprise edition though. It is available under
the GNU GPL license, and is written in Java. Esper is currently in version
4.10. In Figure 2.5 we have a high-level architecture of Esper, including the
components included in its enterprise edition (colored in red), and the EsperHA
component which provides high availability to Esper’s engine1.

Figure 2.5: Esper’s Architecture - taken from [8]

2.4.1 Pattern Matching

Esper and its query language - Event Processing Language (EPL) - has probably
the most complete set of operators for pattern matching. EPL is based of
project Rapide[51][50] which was developed by the reknown member of the
CEP community, David Luckham. In Rapide there were already operators for
pattern matching, despite having been developed almost 20 years ago.

In EPL there are two ways of expressing pattern matching queries: Esper’s
custom one [7], and the above mentioned Match Recognize [6].

1EsperHA is only available as an add-on for the enterprise edition.

11

Examples Matches

every (A ->B)
(A1, B1)(A2, B3)(A4, B4)

A ->every B
(A1, B1)(A2, B3) and (A3, B3)(A4, B4)

every A ->B

(A1, B1)(A1, B2)(A1, B3)(A1, B4)
every A ->every B

(A1, B1)(A1, B2)(A1, B3) and (A2, B3) and (A3, B3)(A1, B4) and (A2, B4) and (A3, B4) and (A4, B4)
Table 2.1: Esper’s every clause examples

2.4.1.1 Esper’s

The following are the clauses available:

Followed-by : Indicates that the expression on the left-hand side must occur
before the expression on the right-hand side. Example: A ->B ;

Every : In Esper a pattern is only tried to be matched once. The way of
circumventing this is to add the clause every to the desired pattern sub-
expression. Let us look at the following examples, taken from the Esper’s
documentation [7], to better grasp the functioning of this clause.

The table 2.1 is applied for the following sequence of events:

A1, B1, C1, B2, A2, D1, A3, B3, E1, A4, F1, B4

Every-distinct : Same as the previous one, but we only match, as the name
suggests, distinct events of the expression.

Repeat : Specifies the cardinality of the expression that follows. Example:[5]A, means that five events from A must occur.

Bounded and Unbounded Repeats : We can also have these kinds of car-
dinalities where we can specify upper and lower bounds, with the syn-
tax: [lower : upper]. For the unbounded we have the syntax [:upper] and
[lower :].

And : Both the left-hand and right-hand expressions must occur. There is one
caveat: if we have pattern A and A, then a single A event will match this
pattern.

Or : Either the left-hand or the right-hand expressions must occur.

Not : We use this when we do not want the expression to occur for the pattern
to match. Example: A and not C, means we want to match A without
occuring events matching C.

12

Within : When we want to impose a time limit on the expression we use
this clause with the syntax timer:within(x units). There is also a clause
timer:withinmax(x units, max count expression) which can also bound the
number of expression runs.

Timer interval : This clause is used when we want to wait for a while before
matching. Example: A ->timer:interval(10 seconds), we match A but
only notify of the match after 10 seconds. It can be useful when we want
to match an expression and then wait to verify if another expression does
not occur within the specified amount of time.

Timer at : This is used when we want to notify of the match at a given
time. The syntax is timer:at(minutes, hours, days of month, months,
days of week, seconds(optional), timezone) - if you are familiar with cron
expressions you will notice that the syntax is the same.

Filtering : In order to filter the events from di↵erent streams, the syntax
stream name(attribute 1 operator value, attribute 1 operator value, ...) is
used. Example: a=A ->B(id = a.id), here we have a pattern where an
event from stream A must be followed by an event from stream B, where
its id is equal to the one in the event from stream A.

2.4.1.2 Match Recognize

This clause has the same functionality as in the Oracle Event Processing (refer to
2.3.1), since Match Recognize was a proposed inclusion to the SQL standard [12].
Do note however, that in the case of Esper we have a simple way of matching
from multiple Streams, which is available in the public documentation [6].

2.4.2 Entity State and Lifecycle

At the time of this writing, there is no support for defining the states an Event
might be in, and its transitions in Esper.

2.5 Siddhi CEP / WSO2 Complex Event Pro-
cessor

Siddhi CEP was a research project initiated at the University of Moratuwa in
Sri Lanka [20]. It is now being developed at WSO2 Inc, and is included in one
of their products - WSO2 Complex Event Processor [27]. The WSO2 Complex
Event Processor is an open source project, and was developed using the Java
programming language.

2.5.1 Pattern Matching

Despite being a research project, Siddhi already had support for pattern match-
ing queries before it was integrated into WSO2. Because of that, we have some
research papers describing its architecture and algorithms. In order to have
pattern matching queries, the authors of Siddhi decided to implement it using
state machines [62]. In Siddhi we have two types of pattern matching related
queries:

13

Pattern Queries : These queries do a relaxed matching, i.e., suppose we have
a pattern as follows: A -> B -> C, meaning an event in stream A, followed
by an event from stream B, followed by an event from stream C, and a
sequence of events:

A1, B1, A2, A3, C1, A4, B2, B3, C2

The result of this query will be the events A1, B1 and C1. This means
that any event in between partial matches can be ignored if they do not
match the query.

Sequence Queries : Unlike the previous query type, this one will not match
any event given the same pattern and sequence of events, since an A event
must be strictly followed by a B event, followed by a C event. (Examples
taken from [62])

It is important to note that in Siddhi the pattern queries are not continuous
by default, i.e., once a pattern matches the query is no longer re-evaluated. If
we do not want the latter behavior, we must add the clause ‘every’ to the query.
This is similar to what is done in Esper. Let us take a closer look at the clauses
available for the Pattern Queries in Siddhi/WSO2 Event Processing[26]:

Every : As stated earlier, without this clause before a sequence expression, the
pattern will no longer be re-evaluated after the first match;

And : When this clause is used, the two events must occur in any order, i.e.,
if we have the expression A and B it will be matched either with A1, B1

as well as B1, A1.

Or : When this clause is used, we only need a single event from one of the sides
of the expression to occur.

Counting partial matches : In Siddhi we can specify the cardinalities of
the events, just like in Esper. The syntax however, is di↵erent from the
latter. Where in Esper we enclose the minimum and maximum limits
within square brackets (e.g. [2:3]A), in Siddhi we use the less and greater
characters (e.g. A<2:3>).

Within : With this clause we restrict the timespan of the pattern matching,
meaning that all the events for the pattern to match must occur in the
specified time window, defined in milliseconds.

Filtering : In Siddhi we have the possibility of matching events from di↵erent
streams. The way this is done is through the syntax: stream name[attribute
op value] - example: s1 = StockExchangeStream[price > 20]. In the
previous example, we introduced an alias to the event received - s1 - which
can then be used for the select clause, or even when we want to filter from
a stream based on an event already successfully matched.

The Sequence Queries are a little more restrictive, and thus do not have the
same clauses as in the Pattern Queries:

Every : Same as in the previous query type.

Counting partial matches : Since this is a strict matching, the authors of
Siddhi decided to have a syntax more similar to regular expressions:

14

*: The element must repeat zero or more times;

+: The element must repeat one or more times;

?: The element must occur zero or one time.

Within : Same as in the previous query type.

2.5.2 Entity State and Lifecycle

At the time of this writing, there is no support for defining the states an Event
might be in, and its transitions in Siddhi.

2.6 TIBCO Business Events

TIBCO Business Events[22] is a commercial CEP engine solution with several
add-on modules to suit di↵erent needs and use-cases (see Figure 2.6). The
current version of this CEP engine is version 5.1.1.

Figure 2.6: TIBCO Business Events 5.1.1 modules

In this thesis, we will only cover the Event Stream Processing module and the
Data Modeling module, for Pattern Matching and Entity State and Lifecycle,
respectively. We chose to analyze only these two modules because the remaining
do not actively contribute to the features we are interested in analyzing. Since
the previous modules are add-ons, these are not provided out of the box and
must be purchased separately.

2.6.1 Pattern Matching

The pattern queries are syntactically di↵erent from the other CEP engine we
covered before. In this CEP engine, the authors chose to provide a language
more similar to the English language, although it still has some similarities with
SQL and regular expression languages. Another di↵erence is the way we insert
the queries into the engine. In this engine, we have to explicitly start a Pattern

15

Matcher Service, and then we also have to explicitly send events to that service,
otherwise they will not be evaluated.

Let us look at the clauses provided[30]:

define pattern : This clause is used to give an unique identifier to the pattern.

using : In this clause we enumerate the event streams we want to subscribe,
i.e., the ones that will be used for event input. We must also provide an
alias for the stream to reference the event coming from it.

with : This clause is perhaps the more di�cult to grasp, especially if we are
already in the pattern matching mindset of the other CEP engines. Basi-
cally, with this clause we specify correlation variables, which are variables
that relate the di↵erent event streams. Example:

with a.id and b.id and c.id = “some string” - this means that we will
relate the stream of event a with the stream of event b according to their
id value; also, we will relate the stream of event c according to the id
value “some string” - if the value is di↵erent from “some string” we will
not consider that event for matching.

Another caveat of this clause is that the equal operation (=) is the only
one provided, so we cannot have a correlation defined as a.price > 20, for
instance, which is a significant limitation. Furthermore, an exact match
operation cannot belong to the first element in the pattern sequence.

starts with : In this clause we specify the ordering of the events by using the
then clause. Example: starts with a then b then c

We can also have then clauses inside other then. Some examples2:

1. starts with a then ((a then b))

2. starts with a then any one (a, b) then all (a, b)

3. starts with a then within 10 milliseconds — seconds — minutes —
hours — days b

4. starts with a then repeat 10 to 20 times a

5. starts with a then all ((a then b), b)

From the second example onward, we have new clauses to analyze, but
also a few which are missing:

any one : This states that any of the events specified must occur.3

all : This states that every event in this clause must occur.

within : This has the same behavior as in the other CEP engines, so it
enforces the occurrence of the events in the provided time frame.

after : This clause is used to specify that no event should occur during
the provided time frame.

2These examples were taken from the o�cial documentation[30]
3In the documentation there is no explanation as to whether this clause may match all the

events, or only one must match.

16

during : This has the same behavior as the within clause. However, it
enforces that the next event should occur after the provided time
frame, i.e., even though the subpattern already matched, it will still
stay in this clause until the time frame expires.

repeat : This clause imposes a lower and upper bound on the number of
repeats of the events that follow. In item 4 we have an example of
this clause, where first we match an event a and then it must occur
10 to 20 more times.

Negation : Although there is no clause to express the need of absence of
an event from a stream, all we have to do is subscribe to the stream by
specifying it in the using clause. If an event from that stream does occur,
and since the reference to that event will not be used in any other clause,
it will make the pattern fail.

2.6.2 Entity State and Lifecycle

TIBCO Business Events is the first of the CEP engines analyzed to provide us
with Entity state and lifecycle modeling, through its Data Modeling module.

2.6.2.1 Concept

In this engine, we have an important feature which is a Concept. A Concept can
be seen as a class in OOP, it has di↵erent properties and those same properties
can refer to other concepts. There are three types of relationships between
Concepts:

Inheritance : This acts just like inheritance in OOP, so every property in
the super class will be inherited by its subclasses. Nevertheless, there are
some restrictions which are not applied in OOP. Firstly, if two Concepts
inherit from the same Concept they cannot have properties (non-inherited)
with the same name. Secondly, there cannot exist an inheritance loop, i.e.,
Concept C1 inherits from Concept C2, which in turn inherits from Concept
C1.

Containment : This happens when a Concept is contained inside another
Concept. The classic example is of a car which has wheels, doors, engine,
windows, etc. There is one caveat however, which is that a Concept may
only be contained by a single Concept.

Reference : Unlike Containment, this relationship has no ownership over the
Concept, so as the name suggests a Concept C1 only holds a reference to
an instance of Concept C2 with the provided unique identifier.

An unexpected feature of Concepts is properties history, that is, we can define
how many previous values we want to store for a given property, and when
that limit is reached the oldest value will be evicted according to the timestamp
and date - both these values are generated when a new value is inserted. This
behavior is common in some NoSQL data-stores, namely HBase4.

In Figure 2.7 we have an example of a concept definition for modeling a bank
account - the full example is available at [29].

4https://hbase.apache.org/

17

Figure 2.7: Example of a concept definition - taken from https:
//docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_
be_getting_started/images/concept-editor.gif

2.6.2.2 State Modeler

As for the state definitions and transitions of a concept instance, they are done
in the State Modeler, which is based on the UML standard[21]. A concept may
have several state models, which contains the states and its transitions, but
there can be only a single main state model. Also, the state models cannot be
shared between concepts - it can only be owned by one concept. Every state
model of a concept can only have one start state, but can have multiple end
states.

From the previous section, we know that a concept can inherit from another
concept. Aside from the property inheritance, a concept will also inherit the
state models of its ancestors. If we add a new main state model to a concept
which inherits from another, we will never use the inherited one. Since we can
have multiple state models, it is also possible to use state models which were
defined in the concepts which it inherits from. However, a concept cannot use
the state models defined in a concept which inherits from it.

Every state can have an entry and exit actions. The only limitation that
exists is in the start and end state, where the start state cannot have an entry
action and the end state cannot have an exit action. The actions to be executed
are all defined using the rules language.

The transitions between di↵erent states are done in the rules language of
this engine. If a transition has no rule, then it is a lambda transition, and after
the exit action (if any) executes, the concept will transition to the next state. It
is also possible to specify a timeout on the transition, where if the rule defined
does not execute within the provided timeout value, there will be a transition
to the provided state. One caveat is that we cannot use timeouts on the start
and end states of a state model. The possible state timeout transitions are:

Current : The concept will continue in the state that it is in, and the timeout
timer will be reset. When this occurs, we will not execute the entry and
exit actions.

Specified : In this option, after the timeout occurs, the concept will transition

18

https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif
https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif
https://docs.tibco.com/pub/businessevents/5.0.0_april_2011/html/tib_be_getting_started/images/concept-editor.gif

to the state provided. However, we cannot transition to any state that is
not linked to the current one.

All : A state can have multiple next states. If we choose this option, it will
simulate the transition of the concept to every next state, and the one
which transitions first to another state will be the chosen one.

All the state and transition definitions are created using a GUI - an example
can be seen in Figure 2.8.

Figure 2.8: Example of state and transitions definition - taken from
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_
april_2011/html/tib_be_data_modeling_developers_guide/images/
state_transition.gif

2.7 Summary

Snoop Streambase Oracle Esper Siddhi TIBCO
And � � �5 � �
Cardinalities

Exact � � �
Interval � � �
Unbounded � � �

Not � � � � �
Or � � � � � �
Previous Event �
Referencing Elements � �
Sequence � � � � � �
Within � � � � �
Multi-stream � � � �

Table 2.2: Comparison of Pattern Matching clauses available in the CEP engines
analyzed.

5Do note that if the left-hand side and right-hand side expressions are the same, a single
event will match the pattern, which does not happen in the other systems.

19

https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif
https://docs.tibco.com/pub/businessevents_data_modeling/5.0.0_april_2011/html/tib_be_data_modeling_developers_guide/images/state_transition.gif

In table 2.2, we summarize this chapter with a comparison of the Pattern
Matching capabilities of the di↵erent systems analyzed, according to the clauses
which we believe are the most relevant ones. We clearly observe that Esper, Sid-
dhi and TIBCO are the engines which provide the most features. Overall, there
are some operations which are common amongst the majority of the engines
studied, such as: And, Not, Or, Sequence and Within.

There is no comparison of the Entity State and Lifecycle capabilities, since
we can only accomplish it in TIBCO Business Events.

20

Chapter 3

PKernel

In this chapter, we will provide a brief introduction to PQL, and then to the
internals of the CEP engine of Feedzai’s Pulse - PKernel. PKernel is composed
of five main modules: frontend, driver, backend, api, and test-framework. We
will not analyze the test-framework here, since it does not take part in the
compilation or runtime of a query, it is exclusively used for testing purposes. In
Appendix F, we have a high-level representation of the architecture of PKernel.

3.1 PQL

PQL has a syntax very similar to that of the standard SQL and Microsoft’s
LINQ [9] but, because it is specifically tailored for CEP, every query we declare
is continuous, i.e., once we declare a query, the engine will keep evaluating each
time an event occurs until it is removed from the engine. This behavior is not
specific to Pulse, rather it is common amongst the CEP engines.

stocks_apple_tesla_price_double =
from stocks
where symbol == "AAPL" or symbol == "TSLA"
select symbol, price_double: price * 2;

Listing 3.1: PQL query example

The query in listing 3.1 is an example of a PQL query, where we first filter
the events from the event stream stocks with the symbol AAPL - Apple Inc -
or TSLA - Tesla Motors Inc - and then, we project the symbol field as well as
the double of the price field. One thing that will stand out for people who are
familiar with SQL is that the order of the clauses is di↵erent. Indeed, in PQL
we take a sequential approach, i.e., the order of the clauses will be the order in
which they will be evaluated and performed.

The variable stocks apple tesla price double is now a new stream with
three fields:

timestamp This is done implicitly by the engine, which copies this field from
the original event;

symbol This is the same as the symbol field in the original event;

price double This is the value of the computation price * 2.

21

Furthermore, since it is a stream, it can be used in other from clauses to perform
any operation we like.

3.2 Frontend

This module is the entry point for the queries and stream (hereinafter referred
to as statements) definitions in PQL, and it generates an intermediate repre-
sentation of the statements of this language. This intermediate representation
will be a dependency graph of the di↵erent operators. In Figure 3.1, we can
examine the di↵erent components of this module, as well as the workflow for
any PQL statements. We will now provide a brief introduction for each of the
former components:

Lexer and Parser This is the first step in this module, and it performs the
lexing and parsing to analyze the syntax of the statements, and build its
Abstract Syntax Tree (AST).

Type Checker The AST which resulted from the previous step, is then passed
to this component which, as the name suggests, analyzes the types of the
statements and compares them to the expected ones.

Query Simplifier In this component we add to the AST new constructs for
the implicit fields, by making them explicit fields. As an example the
query:

from stocks
where price < 100

is replaced by:
from $ev in stocks
where let price = $ev.price in

price < 100
The $ev is later used in the code generation (refer to 3.3.1) to reference
the current event received, and the let clause can be used to simplify
the declaration of variables also in the code generation phase. Finally, it
is important to note that the latter query is also a valid one, albeit the
former is more user-friendly.

Plan Builder This step processes the updated AST and creates the logical
plan for a query. Every clause (from, where, group by, etc) will have its
own operator, and those operators can depend on other operators. By
creating a logical plan, we are able to abstract the dependencies of each
clause, thus providing an ordering for a correct execution. Let us look at
an example:
nasdaq index = from indexes

where name == "NASDAQ"
select price;

only aapl = from stocks
where nasdaq index.last().price > 4500 and symbol == "AAPL";

These queries will create the graphs portrayed in Figure 3.2. As we can

22

see, every time the nasdaq index changes, the update will be propagated
to the only aapl query, through the OpEventLast operator.

Plan Simplifier The idea behind the plan simplifier is minimizing redundancy
in the plans. For example, when using the group by clause, for every
distinct key value there will be a sub-plan, and without the plan simplifier
the use of an external variable would be replicated over all the sub-plans.

Graph Builder This is the final step where we create the dependency graph
for the operators from the query plan.

Figure 3.1: PKernel frontend workflow.

Figure 3.2: The plan graphs generated for each query.

3.3 Driver

This module is the core of PKernel, and it is responsible for all the engine run-
time logic, and coordinating the di↵erent compilation steps of a PQL statement.

23

In other words, this module manages all the statement operations - submitting,
removing, validating, updating; as well as posting events to the di↵erent streams.

3.3.1 Code Generation

The templates for the code generation of a query logic are available in this mod-
ule - one for each operator. After the Graph Builder phase (Frontend), we will
return the operator’s dependency graph, and using the information contained in
the operators, we will fill the templates using this data. The gist of generating
Java code is the reduction in the number of function calls and memory usage,
since we will not need to have the operator graph in memory, nor have the
events passing from operator to operator. This is all the more important in a
CEP engine, where queries may be evaluated every time a new event arrives in
their inputs. Figure 3.3 illustrates the workflow of the code generation phase.

Figure 3.3: Code generation workflow.

3.4 Backend

It is this PKernel module that contains the queries’ runtime logic, data struc-
tures, and other intermediate objects (POJOs6) to be used within the generated
code.

3.5 API

As the name suggests, this module provides the interfaces for interacting with
the di↵erent functionalities supported by the engine. In other words, it is PKer-
nel’s entry point for the other modules of Pulse which need to interact with the
engine.

6Plain Old Java Object

24

Chapter 4

Pattern Matching

In this chapter we will provide the implementation details for the first new PQL
capability - Pattern Matching.

This chapter’s sections will follow the order we took when starting the im-
plementation. First, we started with language drafts. After that, we identified
the requirements for the new additions to PQL. Then, we investigated the algo-
rithms other CEP engines used for pattern matching queries. And finally, the
last step was the implementation itself.

4.1 Drafts

The Pattern Matching capabilities were first found as a requirement to the
State-Based Programming (expounded in the next chapter) in order to have the
means to express more complex transitions between the states. As part of the
last draft (refer to Appendix H), we also defined how the pattern queries would
be used in a PQL query. There are two new clauses:

define
We will define the pattern elements which will be used in the next
clause. A pattern element is nothing more than an identifier followed
by a condition. If one event passes its condition, then it will be assigned
that pattern element.

pattern
After defining the pattern elements, we will use the elements defined in
the previous clause in order to specify the sequence of events that will be
matched.

Some examples of possible patterns were also drafted, taking into account the
way pattern matching queries were made in other CEP engines (refer to chapter
2):

A -> B
The first A which appears, followed by B

last A -> B
The last A which appears, followed by B

25

every A -> B
For every A followed by B

A -> (B or C)
The first A followed by the first B or C

[4] A -> [3] B
4 A’s, followed by 3 B’s

[:4] A -> [3:] B
At most 4 A’s, followed by at least 3 B’s

A -> B and !C
The first A followed by B, where a C does not happen between A and B

A -> B within 10 seconds
The first A where a B appears within 10 seconds

A -> B after 20 seconds
The first A where B appears after 20 seconds

A -> B(a.bandwidth > bandwidth)
A followed by B where its bandwidth is less than A’s

4.2 Requirements

In any software development project, the requirements phase is probably one
of the most important ones, since it helps to get an early view of the system,
and it will help in validating the work done. Based on the language drafts
created and the study done in Chapter 2, we created the requirements for the
new capabilities in PQL - which can be found in Appendix B.

4.2.1 Functional Requirements

The functional requirements of this work are defined using user stories [23][2],
with the following structure:

As a(n) type of user

I want some action

So that achievement (optional).

In our work, there is only one type of user which is the developer of the PQL
statements, so we will omit this field in the user stories defined. We will also
divide the user stories into two groups: the ones used for pattern matching, and
the ones used for state-based programming.

The prioritization of the user stories will be done by using the MoSCoW
method [10][11]. In MoSCoW, we have four di↵erent prioritization levels:

MUST (M) “Defines a requirement that has to be satisfied for the final solu-
tion to be acceptable.”[10]

26

SHOULD (S) “This is a high-priority requirement that should be included if
possible, within the delivery time frame. Workarounds may be available
for such requirements and they are not usually considered as time-critical
or must-haves”[10]

COULD (C) “This is a desirable or nice-to-have requirement (time and re-
sources permitting) but the solution will still be accepted if the function-
ality is not included”[10]

WON’T (W) “This represents a requirement that stakeholders want to have,
but have agreed will not be implemented in the current version of the
system. That is, they have decided it will be postponed till the next
round of developments”[10]

4.2.2 Nonfunctional Requirements

Nonfunctional requirements define “how well the software will work (...) how
easy the software is to use, how quickly it executes, how reliable it is, and
how well it behaves when unexpected conditions arise” [61]. The nonfunctional
requirements for this work are available in Appendix C.

4.3 Implementation Approaches

There are two main approaches when implementing Pattern Matching queries
amongst the CEP engines. One is through the use of rules, usually using an
algorithm called RETE[42], or one of its variants. JBoss Drools, for instance,
uses a custom implementation of RETE called RETE-OO[5]. TIBCO Business
Events’ (refer to 2.6) rules engine is also based on RETE. The other approach
is Finite State Machines (FSM), in a way similar to the implementation of
regular expressions. This approach is the one taken by the creators of Siddhi
and, according to [49], Snoop. There are other approaches [56][65], but some
are application-specific and thus, would not make sense applying them in other
domains, e.g. there are algorithms which only apply for events representing
spatial relations. Furthermore, in a CEP engine we have an implicit requirement
which is real-time capabilities, so any algorithm which relies on stored data
should not be used in this context.

In Esper (refer to section 2.4), the pattern matching is done using dynamic
state trees [24]. However, there is no documentation detailing the implementa-
tion. In the case of Esper’s match-recognize queries they are built using nonde-
terministic finite automaton (NFA) - which is a type of FSM.

4.3.1 RETE and its variants

In this section we will briefly analyze the RETE algorithm, as well as some of
its variants, which were proposed throughout the years in order to improve its
performance.

4.3.1.1 RETE

RETE [42] (pronounced [ree-tee]) is a well known algorithm amongst the rules
engine community. It was developed by Dr. Charles L. Forgy in 1979. In RETE

27

we have data stored in memory and a set of rules, and the objective is to match
the rules against the data. However, the main advantage of this algorithm is
that upon a new data entry, update or delete, it will only re-evaluate the rules
which can be applied to that specific entry, instead of all the rules available, as
well as all the previous elements received.

In order not to evaluate all the rules, RETE creates a network of nodes,
which will form a direct acyclic graph (DAG). These nodes can be of four distinct
types:

Root This is the first node in the network, and forwards the data to all the
Kind nodes.

Kind The Kind node receives the data and only forwards it if the kind/type of
the data matches the one associated with it.

Alpha In an Alpha node, the data will be filtered according to the conditions
of the rule. For example, if we have a Kind People with attributes: age,
name and country; then in the Alpha node we could have a condition such
as age > 30.

Beta We can think of Beta nodes as join nodes, since they are responsible
for joining the data received from the Alpha and Beta nodes linked to
it. Do note that in this node type, there must exist two inputs, when we
only have one input there is a dummy element in the input that would
otherwise be empty, to circumvent this demand.

At the end of the paths in the network we have the rules which successfully
applies to the data received. For every Alpha node path we also have alpha
memories (AM) for storing the working memory elements (WME), thus elim-
inating the need for re-evaluating all the past elements. Beta nodes also have
beta memories, however they exist after each node, unlike the Alpha nodes, and
they store tokens which represent a sequence of working memory elements.

Figure 4.1: Example of a RETE network with two rules (r1 and r2) - taken from
[39]

In Figure 4.1 we have an example of a RETE network for two rules which
globally specify eight conditions: rule r1 has conditions C1, C2, C3, C4 and C5 ;

28

and rule r2 has the remaining C6, C7 and C8. We can see the alpha memory
re-usability when the conditions are the same between rules, such as conditions
C1 and C6.

After the initial version of the RETE algorithm, the author developed per-
formance improved versions of the algorithm [17][15] - RETE-II [18], RETE-III
[25], and RETE-NT [16], in this order. Nevertheless, these newer algorithms
are all proprietary and consequently, there is no publicly detailed information
as to the optimizations that were made.

It is important to note however, that RETE does not possess temporal se-
mantics and operators out of the box. In order to tailor RETE for a CEP
environment, we could adapt some proposals of extensions to RETE, such as
[58][63].

According to [1] and [53], the space complexity of RETE per iteration is
O(RFP), where R is the number of rules, P the average number of patterns per
rule, and F is the number of facts on the knowledge base. The näıve approach
space complexity, according to [1], is O(RFP). This näıve approach consists
in keeping the rules in a list and continuously evaluating them, regardless of a
need to re-evaluate a rule.

4.3.1.2 RETE/UL

RETE/UL [40] is a variant of RETE created in 1995 by Robert B. Doorenbos.
The basic idea of this algorithm is to limit the number of joins we have to
perform in the original RETE, by unlinking beta memories and alpha memories
in two approaches:

Right Unlinking In this approach, we unlink the alpha memory from the
join with an empty beta memory. This happens when we have a lot of
conditions, and the ones further down the network are still waiting for the
conditions above it to be matched.

Left Unlinking This approach is similar, albeit the unlinking is done in the
left node, i.e., the beta memory is unlinked from an empty alpha memory.

When both the nodes are empty, which might occur when we add the rule to
the RETE network, the author states in [40] that we “‘can pick one side by any
convenient method”. The performance benefits of this approach become more
noticeable when we have a lot of rules in the RETE network, because if a WME
is added to the network, then we will have a large number of nodes a↵ected by
that single WME, and it can happen that many of the join nodes will contain
an empty input.

4.3.1.3 TREAT

Created by Daniel P. Miranker, the objective of this algorithm was to be a
better algorithm than RETE - in the conclusion of [54] the author states that
“TREAT is a better production system algorithm in both time and space”. In
this algorithm, there are no beta nodes nor beta memories, and thus there exists
a single generated network for a given rule, whereas in RETE there can be
di↵erent networks depending on how we arrange the beta nodes, i.e. the order
of the conditions in the rule. Furthermore, as a result of the removal of beta

29

nodes, every time a new working memory element enters the network it will
have to join with all of the alpha nodes. This behavior will also make the delete
operation faster than in RETE, since we do not have to remove it from every
beta memory. The observation made by the author was that, in some cases, the
beta memories would have the same elements stored, thus storing redundant
information. By removing the beta memories there will no longer be redundant
information.

Despite the conclusion made by Daniel P. Mirander in [54], in [57] their re-
sults show that in most cases the performance of RETE is better than TREAT’s.
In another study comparing RETE and TREAT performance [64], the authors
conclude that TREAT outperforms RETE “as a rule condition testing algorithm
for a database rule system”.

4.3.1.4 LEAPS

LEAPS [34] stands for Lazy Evaluation Algorithm for Production Systems, and
was developed by Don Batory in 1994. In this algorithm, we are interested
in firing one rule as soon as possible. In RETE and TREAT, when there is a
new element in the network the fundamental idea is that any rule might fire.
Nevertheless, when a rule is fired, the actions executed by this rule might change
an element already in the network, possibly making other rules that would fire
useless.

One limitation of this algorithm is that it does not take into account a pos-
sible ordering of the rules priority, since it will fire the first rule that matches
which may restrict the use of this algorithm in certain applications. This be-
havior is not present in RETE, where it tries to match all the possible rules and
then choose one according to the agenda.

4.3.1.5 Gator

This algorithm was created by Eric N. Hanson and Mohammed S. Hasan in 1993.
The main idea of Gator (Generalized TREAT/RETE) [47][48] is the removal of
the double input constraint in beta memory nodes. With this, a better network
can be built taking into account heuristics related to the costs of joins - just like
it happens in a DBMS when building the query plan. Also, since we can have
multiple inputs, we are no longer constrained to a binary-tree structure (refer
to Figure 4.2).

Figure 4.2: Example of RETE, TREAT and Gator networks - taken from [48]

30

4.3.2 Finite State Machines

4.3.2.1 Siddhi

Siddhi implements FSM in their sequence and pattern queries [62][60], already
analyzed in this thesis - refer to section 2.5. Even though this approach is used
in both query types, there are some di↵erences in the way the processing is
done.

In a pattern query, every time an event is received we will send it to the active
executors of the event’s stream7 - this behavior deviates from the definition of a
FSM where a single state is active. The executors are the units responsible for
evaluating the event. If the event passes its conditions all the previous events
that matched the pattern will be copied to the next executor if there is one,
otherwise we reached the end of the pattern and we will output according to
the projection made in the select clause.

In the sequence query, the first change is that the event is forwarded to all
active executors, even though some of them are not related to the event’s stream.
According to [62], this decision was made due to the functional restrictions of
this query type - remember from section 2.5 that in a sequence query the order
of the events must be equal to the one defined in the pattern, there cannot
be other events in-between otherwise the pattern fails. So, instead of storing
the executors in a Map data structure, the executors are stored in a Linked List
data structure, and all the active executors will be removed whether the pattern
succeeds or fails.

4.3.2.2 SASE

SASE (Stream-based And Shared Event processing) was a CEP engine and
query language developed at the University of Massachusetts [19]. In [46] the
authors propose a new version of the language, called SASE+, which extends
SASE with Kleene closure8. In the same paper, the authors introduce the
name of the algorithm they created - NFAb - albeit without going into great
detail on the implementation. It is in [32] that we have a more comprehensive
overview of the algorithm. NFAb is an nondeterministic automaton and a match
bu↵er (thus the name). The states in this automaton correspond to the pattern
sequence provided in the query, e.g. for the query in Listing 4.1 we would get
the automaton displayed in Figure 4.3.

PATTERN SEQ(Stock+ a[], Stock b)
WHERE skip_till_next_match(a[], b) {

[symbol]
and a[1].volume > 1000
and a[i].price > avg(a[..i-1].price)
and b.volume < 80% * a[a.LEN].volume

}
WITHIN 1 hour

Listing 4.1: SASE Query 3 from [32]

7In Siddhi each event is represented by a tuple containing the stream name, timestamp of
the event, and all the attributes of the event.

8Kleene closure is a notation which has two operators - the plus ‘+’ and the star ‘*’ - to
denote the cardinalities of an element, one or more occurrences, and zero or more occurrences,
respectively. This notation is also used in regular expressions.

31

Figure 4.3: Automaton generated - taken from [32]

Moreover, the ignore transitions simply illustrate the fact that we may ignore
incoming events which do not match the conditions of the query - similar to the
pattern queries in Siddhi.

In order to construct the automaton, the first step is to create the states
by analyzing the PATTERN clause. Then, it uses the conditions defined in
the WHERE clause to derive the edges between the states and to rewrite them
into conjunctive normal form (CNF). A sort is also performed in the rewritten
conditions according to their last identifiers - an identifier being the variables
in the WHERE clause. In the case of the query presented, the order will be
a[1], a[i], a[a.LEN], b. Since there are di↵erent event selection strategies, we
need to adapt the ignore edges according to the one chosen. Finally, if there is
a WITHIN clause, we will add the respective timestamp constraint to the begin
and proceed edges.

4.4 PQL

In the following subsections we will analyze (in this order): the new clauses
introduced in PQL, and the operators for defining temporal relationships be-
tween events. As defined in drafts section 4.1, the two new clauses are: define
and pattern - Listing 4.2 contains the grammar rules for these clauses. The
lexing and parsing for PQL is done using ANTLRv39, and throughout the next
subsections we will provide some snippets of the grammar rules. The complete
grammar definition is available in Appendix I.

clause: ...
| DEFINE^ defineExpr partitionBy?
| PATTERNMATCH^ patternMatchExpr
;

Listing 4.2: The two new clauses

The clause rule is where we have the rules for all the other available query
clauses - select, where, group by etc.

4.4.1 Define Clause

In the rule for the define clause we have two additional rules - defineExpr and
partitionBy. The former is just a simple rule which states that we must have an
identifier followed by an expression, and these two components separated by the
character ‘:’. Moreover, we have to specify at least one identifier and condition.

9ANTLR stands for ANother Tool for Language Recognition, and the parser generated is
a LL(*) parser. www.antlr.org

32

www.antlr.org

The latter rule states that we must write the tokens ‘partition’ and ‘by’,
followed by one or more identifiers. However, this latter rule is optional.

defineExpr
: patternElements+
;

patternElements
: id ’:’ expr ’;’
;

partitionBy : ’partition’! ’by’! groupKeys
;

For example, the following:
define

A: price > 200;
B: price > A.price;

means that we will have two pattern elements A and B, and for an event to
be evaluated to a pattern element it must pass its condition. It is important
to note that the condition must always return a boolean value, i.e., either true
or false, but that restriction check is not done in the grammar, rather it is done
in the Type Checking phase - refer to section 3.2. Another check performed is
the existence of repeated pattern elements, since they must be unique within
a query.

The gist of the partition by is to have distinct patterns executing for every
distinct fields provided. This is useful because otherwise a single pattern would
be active. For example, in a stock market scenario this means di↵erent stock
quotes can have each their own pattern if we specify a partition by according
to the stock symbol, so a stock price tick for Apple does not interfere with a
pattern for the stock price ticks from Tesla - refer to Figure 4.4, where the three
bottom lines refer to individual patterns for each stock symbol, while the first
line ‘All Stocks’ would be the sequence of events evaluated had we not specified
the partition by. When using the partition by we will also check in the
Type Checking phase if all the fields specified belong to the stream or window
we are performing the pattern matching over.

Figure 4.4: Partition By behavior example.

In the condition of a pattern element we can have two special token types.
The first one is prev, which contains the previous event which matched an
element in the pattern 10. The other special token(s), is the name of each of
the pattern elements defined. So, if we defined a pattern element A, then
A.price will correspond to the price field of the last event matching the pattern

10This may be di↵erent from the last event which occurred in the stream, since the default
match strategy is relaxed - this topic will be addressed in the next section concerning the
pattern clause.

33

with the A pattern element. One caveat is that the pattern elements which
depend on the prev operator are the last to be evaluated - refer to Table 4.1.

4.4.2 Pattern Clause

The pattern clause, as the name suggests, is where we specify the pattern
we want to match. We will now analyze the operations available for pattern
matching added to PQL. Do note that in the examples we will use the conven-
tion pattern element

i

to indicate the ith event received which matched the
corresponding pattern element.

Sequence This is the main operation, since the objective of the new clauses is
to define temporal relations between the events. This operator is denoted
by a right arrow “->” - e.g. pattern A -> B -> C.

patternMatchExpr
: patternMatchElement (’->’ patternMatchElement)*
;

patternMatchElement
: matchPolicy? retentionPolicy? (ALL)=>matchElementExpr timePeriod?
;

matchPolicy
: STRICT^
;

retentionPolicy
: LAST^
;

timePeriod
: AFTER^ INT_LIT ID?
| WITHIN^ INT_LIT ID?
| ALL WITHIN INT_LIT ID?
;

matchElementExpr
: matchElementOr
;

matchElement
: cardinalityExpr? id

-> ^(PATTERNELEMENT id cardinalityExpr?)
| NOT cardinalityExpr? id

-> ^(PATTERNELEMENT id NOT cardinalityExpr?)
| ’(’! matchElementExpr ’)’!
;

And We use this operator when we want every pattern element to occur, re-
gardless of their order. For example, in pattern A -> B and C and D,
after an A event, B, C and D must occur but the order may be (B,D,C),(D,C,B), etc. This should not be confused with the logical and operator,
since each pattern element is a di↵erent event. However, the logical and
may be applied in the condition of a pattern element.

matchElementAnd
: matchElement (AND^ matchElement)*
;

Or With this operator we provide pattern elements that can occur, but only
the first one will be matched. For example, in a sequence B1, C1, A1 and
with a pattern A or B or C; only B1 will be added to the final result. As
can be seen from the grammar, we give priority to the And operation.

34

matchElementOr
: matchElementAnd (OR^ matchElementAnd)*
;

Cardinalities When we need to specify that an event matching a given pattern
element must occur more than once, we will use this operator. Its syntax
is equal to Esper’s equivalent - [2]A means two events A must occur,
while [2:]A means at least two events A must occur, and A[2:5] means
between two and five occurrences of A.
cardinalityExpr

: ’[’ INT_LIT ’]’
| ’[’ strt=INT_LIT? ’:’ end_=INT_LIT? ’]’
;

Negation There may be cases where we need to test the non-occurrence of
a given pattern element, so we will use this operator. For example, !A
means an event A must not occur. Do note that this operator can only
be used in conjunction with the And operator, but this restriction is not
done at the grammar level.

There are five optional keywords strict, last, within, all within and after that can
be used in a Sequence - as can be seen in the grammar snippet for this element.
These are used to specify policies. The first one - strict - is of help when we
need the matching to be the exact match of the pattern, i.e., there cannot occur
events other than the ones specified. One should be mindful that this only
applies for a single sequence in the pattern, e.g., if we have a pattern strict
A and B -> C, and a sequence of events A1, C1, B1, A2, D1, C2, the pattern
will not match with events (A1, B1, C2) since C1 occurs after the A1, instead
of a B event. However, this pattern does match with events (B1, A2, C2), and
D1 does not make the pattern restart like it happened with C1, owing to the
fact that the second sequence in the pattern is not a strict one.

The second keyword - last - represents a Retention Policy, i.e., it indicates
that we want to keep the last occurrence of a particular pattern element11, if
there is no last clause, a first retention policy is implicit. For example, in a
pattern last A -> B and a sequence of events A1, A2, A3, B1, the pattern
will match with the events (A3, B1). In the previous example, if we removed
the last keyword, the pattern would match with the events (A1, B1).

The last three keywords - within, all within and after - constitute Time
Policies. The within has a similar behavior as in the CEP engines analyzed
in Chapter 2, i.e., the pattern only matches if the events fit the provided time
frame. Nevertheless, this policy is applied on a pattern sequence basis, so if we
have a pattern with two contiguous sequences (seq

n

, seq
n+1) and seq

n+1 has a
within time policy, then this condition must be met:

t
last event seqn +�t

within

> t
last event seqn+1

the timestamp of the last event of seq
n+1 must be lower than the timestamp of

the last event of seq
n

plus the provided time frame. The all within policy is
similar to the previous one. The idea behind this policy is to have the whole
pattern match inside a timespan, and not just limit the timespan on a sequence
basis. If we have N sequences then this condition must be followed:

11 Currently, we can only apply this clause on a single pattern element, i.e., we cannot have
a pattern such as: last A and B -> C, for instance.

35

Events E1 E2 E3 E4 E5 E6

Events’ price 210 220 230 225 228 205
PE attributed A (A, B) (A, B) A A C
PE chosen A B B C
prev ’price 210 220 230 – –
A’s price 210 – – – –
B’s price 220 230 – –
C’s price

Table 4.1: Query pattern elements and prev evaluation step by step. The
event’s occurrences are ordered from left to right, and the character “–” means

there is no update in the value.

t
first event seq1 +�t

all within

> t
last event seqN

Because of this, when using this policy we must specify it in the last sequence of
a pattern. The after policy states that a particular sequence should only start
after the given time units from the previous sequence. In a strict sequence if
an event arrives before the time frame provided, the matching will break and
restart, whereas in a relaxed sequence the event will simply be ignored:

t
last event seqn +�t

after

< t
last event seqn+1

In all these Time Policies, a time unit must be provided (milliseconds, seconds,
minutes, hours, days, weeks or months).

Listing 4.3 contains a pattern matching query using the previously described
operators, and in table 4.1 we provide a step-by-step evaluation for the values
of these operators in the query - where the Event’s price row corresponds to
the price attribute six di↵erent events arriving in that order (from left to right).
For every event we will also indicate the pattern element (PE) attributed and
the one matched (chosen).

from stocks
define A: price > 200 and price <= 300;

B: price > prev.price;
C: price < A.price;

pattern A -> [2:]B -> C
select asymbol: A.symbol, aprice: A.price,

bAvgPrice: B.avg(price), cAvgPrice: C.avg(price);

Listing 4.3: Pattern matching query example with the prev and pattern element
operators

Finally, there are a few checks performed when analyzing this clause in
the Type Checking phase. The first one is the need to use the define clause
immediatelly before the pattern, since we must declare the pattern elements
before using them in the pattern. We must also check whether we are using
pattern elements which have been declared in define, otherwise an exception
will be raised.

36

4.5 Our Algorithm

After analyzing the pattern matching clauses of several CEP engines (refer to
Chapter 2), as well as the implementation details of some engines and languages,
we designed our own algorithm for doing pattern matching queries. The decision
for doing our own algorithm was due, on the one hand, to the complexity of some
implementations (for instance RETE) and on the other hand, to the PKernel
query plan design. Nevertheless, the algorithm has some similarities with both
the approaches analyzed earlier.

In PKernel a query is ultimately composed of operators which will be con-
nected in a dependency graph, such that the operations defined in the operators
are executed in the correct order (refer to Chapter 3). Then, when we have the
dependency graph created, each operator will generate the code according to its
template, which will all be in the class generated for the query they belong to.

For the pattern matching queries, we have created two new operators -OpDe-
finePatternElements and OpPatternMatch. The former will be responsible for
generating the code for the boolean expression of each pattern element, as well
as the code for testing if the event(s) received match each pattern element. The
latter operator will be responsible for generating the graph with the nodes cor-
responding to each operation. It also receives from OpDefinePatternElements a
List data structure, where for every event there will be a Pair12 containing the
event itself, and another list containing the pattern elements which the event
matched. Before analyzing all the node types, it is important to note that apart
from the Root node, every node will extend an AbstractNode class that provides
the abstract method receives13. This method will be used to pass the events
between the di↵erent nodes. Furthermore, we have an Enum data structure
containing the di↵erent return types of the receive method:

MATCH Returned when the event matched in the node it was sent to.

NO MATCH Returned when the event does not match in the node it was sent
to. If the node pertains to a strict sequence and if no other node returned
a MATCH, it will make the pattern break and restart the evaluation (if a
restart has not occurred already).

BREAK Returned when the event makes the pattern break. If it is the first
time the event was evaluated by the network then the pattern will re-
evaluate from the beginning, otherwise we will discard the event.

The available nodes for building the graph are:

Root This is the entry point for all the events coming from the stream. When
an event arrives, it will be forwarded to the corresponding Type nodes by
the order in which they are in the list. This behavior is similar to what
RETE does with its Root node. The Root node is the most important
node in the network, and it holds a lot of the logic of the algorithm.

Type These nodes represent each pattern element in the define clause, and
will forward the events to every child nodes. The order in which they are

12 A Pair is a data structure available in PKernel which holds two values (first and second)
having any type, since it is also a generic class.

13 A class diagram for all the nodes is available in Appendix D.

37

forwarded is from the last to the first sequences in the pattern. For exam-
ple, if we have a pattern A -> B -> A, then the Type node corresponding
to A will have two output nodes, one for each appearance in the pattern,
which are stored in a list data structure in order to maintain the order
defined in the pattern. In this example, illustrated in Figure 4.5, the first
output node will be the node SEQ #1 and the second output node will
be SEQ #2, but the order in which the event is sent is first SEQ #2 and,
if there is no MATCH or BREAK, SEQ #1.

Figure 4.5: Type nodes’ output node order example.

And This node represents the And operator described earlier. For every pat-
tern element in the operator, there will be an input in this node - A and B
and C, will have three inputs (the Type nodes A, B, C). Do note that a
pattern such as A and A will only have a single A type node, if we want two
events matching A in the And operator we need the to use cardinalities.
Moreover, when there is a Negation operator in the sequence defined, e.g.
A and !B, we have an additional node list for the nodes which represent
this operator (Not nodes). When an event arrives to this node, we check
if it came from a Not node, and if so we return a BREAK. Otherwise, we
will check if we have already received from the node, store the event and
return MATCH if we had not received, or return NO MATCH otherwise.

Or This node represents the Or operator described earlier. Just like it happens
in the And node, for every pattern element used with this operator there
will be a corresponding input.

Not When we have a negation operator, we will create this node type. A
negation operation can only be applied to a single pattern element, so we
will always have the Type node corresponding to the pattern element as
its input. Moreover, since this operator is always used within the And
operator, we will always link this node to an And node.

Cardinalities As the name suggests, this node represents the Cardinalities
operator. Since a cardinality operator is always related with a single

38

pattern element, this node has always a Type node as its single input. In
cardinalities we have three types: exact ([2]A), interval ([2:3]A), and
unbounded ([2:]A); nevertheless, all of these types will be represented
by this node type, with all the di↵erent implementations being contained
within it.

Seq This node always has two inputs (left and right), where the events received
from the left must occur before the ones on the right. In a pattern with
N sequences (pattern seq1 -> seq2 -> ...-> seq

N

), there will exist
N − 1 Seq nodes. The first one will have seq1 and seq2 as its input, but
the second one will have the first Seq node as its left input and seq3 as
its right input.

Single Seq This node exists when we have a pattern with only one sequence,
e.g., pattern A and B. Since we have a single sequence, we do not need
all the logic already implemented in Seq node, so we created this newer
node for this specific case.

For the queries defined in listings 4.4 and 4.5, the graphs built will be figures
4.6a and 4.6b, respectively.

from stocks
define A: price > 200 and price <= 300;

B: price > 300 and price <= 400;
C: price > 400;

pattern A -> [2:]B -> [1:3]C
select asymbol: A.symbol, aprice: A.price, bAvgPrice: B.avg(price),

cAvgPrice: C.avg(price);

Listing 4.4: Pattern matching query example

from stocks
define A: price > 200 and price <= 300;

B: price > 300 and price <= 400;
C: price > 400 and price <= 500;
D: price > 500;

pattern A and B or C -> D
select dSymbol: D.symbol, dPrice: D.price;

Listing 4.5: Pattern matching query example

The workflow of every node type is available in Appendix E.

4.6 Use-Cases

One of the most commonly known use-cases for Pattern Matching queries are
stock patterns. There are a significant amount of such patterns, therefore we
will only focus on two - Double Bottom and Head and Shoulders. Another
important use-case is fraud detection, which is one of Feedzai’s core businesses.

There is however one caveat. Since the stock prices are volatile and eratic,
it is very di�cult to make a pattern su�ciently permissive to accomodate the

39

(a) (b)

Figure 4.6: Generated graphs for two pattern matching queries.

changes in the stock prices. In our approach, we must assume there is some kind
of sampling of the events, in order not to have all the changes being analyzed
by the pattern. In [13][33], all the examples containing stock patterns also have
identical approaches for the pattern definitions.

4.6.1 Stock Patterns

4.6.1.1 Double Bottom

A Double Bottom pattern occurs when we have a pattern resembling the shape
of a ‘W’ - refer to Figure 4.7. When this pattern arises, it means that the stock
will start an uptrend. Let us translate this pattern into a PQL query, which

Figure 4.7: Double Bottom example. Source: http://www.investopedia.com/
university/charts/charts4.asp

will output a result when the pattern occurs. The final query can be found in
Listing 4.6. The idea behind the final query is to constantly compare the current
stock price with the previous one in order to get the expected ‘W’ shape. So,
we needed four conditions, each representing a trend - upward or downward.
When we want an upward trend that means the previous price is lower than
the current, this is translated by the following condition of a pattern element:

40

http://www.investopedia.com/university/charts/charts4.asp
http://www.investopedia.com/university/charts/charts4.asp

price >= prev.price;. For a downward trend the condition is the opposite
one, i.e., the previous price must be greater than the current one. Additionally,
to signal the buy event, which is the objective of this pattern, we needed a
new condition to know when we have reached a price greater than the previous
maximum value - this is depicted in Figure 4.7 by the horizontal black line.
This condition is translated in the query by the buy pattern element, where
we compare the current price with the last event of the first upward trend which
occurs after the Bottom #1.

In the pattern clause we define all the upward and downward trends with a
cardinality of at least one event - [1:]. The first downward pattern element
needs two events because the first event will always match the condition - its
prev event is always null. So, as long as an event keeps passing the condition
of the trend we will keep appending it to the list data structure of that pattern
element. When the pattern finally matches, we can get the event corresponding
to the Bottom #1 by getting the last event of the first downward pattern
element - this corresponds to bottom 1 in the select clause. Since it is a list,
we can use the methods available in PQL to query it: get, avg, sum, stddev,
max, min, maxBy, minBy, map and contains.

double_bottom =
from stocks
define

first_downward: price <= prev.price;
first_upward: price >= prev.price;
second_downward: price <= prev.price;
buy: price >= first_upward.price;
-- we need to give priority to the previous pattern element

second_upward: price >= prev.price;
partition by symbol
pattern [2:]first_downward -> [1:]first_upward ->

[1:]second_downward -> [1:]second_upward -> buy
select bottom_1: first_downward.last().price,

peak: first_upward.last().price,
bottom_2: second_downward.last().price, buy_price: buy.price;

Listing 4.6: Double Bottom query

4.6.1.2 Head and Shoulders

The Head and Shoulders stock pattern is used to signal a sell order. The pat-
tern finds three peaks, where the first and third have similar values, and the
middle one has a value greater than the first peak - refer to Figure 4.8. Listing
4.7 contains the PQL query which translates this pattern. Like the previous
stock pattern, we use the prev and the last event of a pattern element quite
extensively, the main reason being the need to compare the current values with
the ones obtained earlier. For example, in the upward trend where we might
reach the head, we must make sure the current price is greater than the price
of the first shoulder - translated by this condition: upward head: price >=
prev.price and price >= first upward.price;

41

Figure 4.8: Head and Shoulders example. Source: http://www.investopedia.
com/university/charts/charts2.asp

head_shoulders =
from stocks
define

first_upward: price >= prev.price;
first_downward: price <= prev.price;
upward_head: price >= prev.price and price >= first_upward.price;
-- we need to give priority to the previous pattern element

upward_shoulder: price >= prev.price;
downward_shoulder: price <= first_upward.price;
-- we need to give priority to the previous pattern element

downward_head: price <= prev.price;
upward_shoulder_2: price >= prev.price and price <= upward_head.price;
sell: price <= downward_head.price;
-- we need to give priority to the previous pattern element

downward_shoulder_2: price <= prev.price
partition by symbol
pattern [2:]first_upward -> [1:]first_downward ->

[1:]upward_shoulder -> [1:]upward_head -> [1:]downward_head ->
[1:]downward_shoulder -> [1:]upward_shoulder_2 ->
[1:]downward_shoulder_2 -> sell

select first_shoulder: first_upward.last().price,
head: upward_head.last().price,
second_shoulder: upward_shoulder_2.last().price
sell: sell.price;

Listing 4.7: Head and Shoulders query

In the pattern clause, we also have all the trend pattern elements with an
unbounded cardinality of at least one. Similar to the previous query analyzed,
the first trend first upward needs two events because the first event reaching
the pattern will always match the condition - prev event is null. As stated
in the previous query, since these trends have cardinalities when we access one
of these pattern elements it will be a list, and we can apply the available
methods for this data structure.

Finally, in the condition for the sell pattern element we are only com-
paring its price with the lowest price reached between the head and the second
shoulder - which corresponds to the last event of the downward head pattern
element. So, we are assuming the black line portrayed in Figure 4.8 - usually

42

http://www.investopedia.com/university/charts/charts2.asp
http://www.investopedia.com/university/charts/charts2.asp

called neckline - in our case is only equal to that last minimal price, and is not
created also based on the lowest price between the first shoulder and the head.

4.6.2 Fraud Detection

One of the most commonly known rules for fraud detection in card transactions
is the check for two transactions in a relatively short period of time, and in quite
distant locations. This rule can easily be translated into a PQL query - refer to
Listing 4.8.

fraud = from transactions
define

first: true; -- any transaction

fraud: distance(location, first.location) > LIMIT;
partition by card_number
pattern first -> fraud within 1 hour
select first_loc: first.location, fraud_loc: fraud.location,

time_span: fraud.timestamp - first.timestamp;

Listing 4.8: Fraud detection query example

The distance is an UDF14 to calculate the distance between the two locations
provided, and the LIMIT is a PQL immutable variable that is defined outside
the query.

The result of this query will be a stream of tuples containing: the location of
the first purchase, the location of the fraudulent purchase and the time interval
between these two purchases.

4.7 Current Limitations

As of this writing, there is still no support for multi-stream pattern matching,
since a query can only receive events from one stream, or receive from more than
one stream joining them. It is still unclear if we will really need this feature,
however an elaborate way to do it would be to forward the events from the
di↵erent stream into a single one with the use of the clause insert into. This
is just a workaround, and if this operation proves to be a requirement, then a
possible syntax would be to declare all the streams in the from clause with a
mandatory alias in order to refer to that event in the define clause, e.g. from
s in stocks, n in news.

Another limitation is that the sequence operator “->” is not a freely used
operator, i.e., it is not at same level as an and or an or operators, and thus
we cannot create a pattern such as: A -> (B -> C) or (C -> A). This was
not elicited as a requirement, and there are still cases where we can convert
to a similar pattern with the current available operators. However, to surpass
this limitation we will have to change not only the grammar, but the algorithm
itself.

14
User Defined Function.

43

4.8 Benchmark

With the implementation finalized, we began idealizing and implementing a
benchmark for the new capabilities. In order to have a better grasp of the actual
performance, it was decided that we needed to run the same benchmark on other
engines. The engines evaluated were: Esper and Siddhi. The Streambase engine
was not comprised in this benchmark since its pattern matching capabilities
are not equivalent to ours, nor Esper’s and Siddhi’s. In Streambase, when we
specify a pattern, for every event reaching its inputs we may start a new pattern
execution, as well as match the already started ones - refer to 2.2.

For this benchmark, we created sixteen queries for testing each operation
- and, cardinalities, pattern conditions, and so forth. Furthermore, an
additional test was made where all the queries were registered in the engine.
The basis for this test was to investigate the scalability of each engine, and it
also better represents a real-world environment where we are receiving a large
number of events and they are evaluated by di↵erent queries.

Finally, each of these seventeen tests were repeated thirty times in order to
get a better statistical significance.

4.8.1 Setup

• Hardware

– 8x Intel Core i7-3770K CPU @ 3.50GHz

– 15.4 GiB RAM

• Software

– Ubuntu 13.04

– Java HotSpot VM - 1.7.0 45

– Scala - 2.10.3

– PKernel - 13.1.0

– Siddhi - 2.0.0

– Esper - 4.11.0

• Stream Definition

stocks = Stream(
timestamp: long,
symbol: string,
index: string,
price: double

);

• Dataset

– 1 million events - 25.2 MB

– 5 million events - 130.6 MB

44

– 10 million events - 261.9 MB

– 20 million events - 534.4 MB

• Measures

– Latency

– Time

– Throughtput

4.8.2 Result Analysis

The result of the test with all the queries registered is shown in Figures 4.9 and
4.10. Besides the total time spent processing the events and the throughput,
another important measure is latency, i.e., the time spent processing each indi-
vidual event. For calculating the latency each test was run five times with the
20 million event dataset. The latency results for the test with all the queries
registered are shown in Figure 4.11.

In both the Figures, we clearly observe that PKernel has the best perfor-
mance out of the three engines being benchmarked. Moreover, if we analyze
the PKernel throughput from Figure 4.10, we easily notice that it is actually
increasing the more events we inject, meaning we did not reach its saturation
point. This contrasts with the two other engines, where their throughput re-
mains almost constant, especially Siddhi. From Figure 4.11, we also notice
PKernel gets the lowest latency value for all percentiles except 50th and 99.9th,
where Esper has the best values. Furthermore, Siddhi consistently achieves the
highest latency values for all the percentiles analyzed.

In table 4.2, we observe that the standard deviation obtained for the Esper
engine is very high when we injected the datasets with 10 and 20 million events,
reaching 38 and 84 seconds, respectively.

Figure 4.9: Time spent processing the events.

The results for each individual query can be found in Appendix G.

45

Figure 4.10: Throughput achieved.

Figure 4.11: Latencies for each of the specified percentiles, in nanoseconds.

Engine Events Throughput (ev/s) x
milliseconds

�
milliseconds

PKernel 1M 82361 12141,63333 133,8116235
5M 101584 49220,03333 915,0722784
10M 105469 94814,16667 1901,574395
20M 110587 180852,6 3358,939114

Siddhi 1M 29272 34161,93333 772,8226336
5M 30119 166006,4333 5162,180151
10M 30943 323170,3333 6177,103329
20M 31506 634780,7 4225,995326

Esper 1M 62689 15951,63333 325,2181743
5M 70858 70563,6 2904,600757
10M 65171 153440,7333 38297,01129
20M 67072 298185,8667 84786,37186

Table 4.2: Throughput, mean time and standard deviation of time spent.

46

4.9 Tests

In this project a Test-Driven Development (TDD) approach was used (refer
to 6.3.2). For validating the pattern matching clauses and operations, we im-
plemented several unit tests for each of these features using the module test-
framework of PKernel. In total, the number of system tests implemented was
8, with a total of 35 PQL queries. In all the 35 queries, we provide the events
constituting the input for the stream(s), and for each of the queries we declare
the expected output events at each timestamp.

47

Chapter 5

State-Based PQL

State-Based programming is a new capability of PQL, where the focus is given
to instances of entities, and their states. The basic unit in Event Processing is, of
course, the events themselves. However, this approach does have its limitations,
perhaps the most flagrant one being event correlation. Over the years, new
clauses were added to resolve this issue, the most well known of them being
the group by clause. Pattern Matching and joins also play a major role in the
event correlation field.

The main objective of State-Based programming is to take event correlation
even further, and give the users the ability of treating events as instances of
a higher well defined structure, which we will call entities. These entities are
similar to classes in the OOP programming paradigm, and in a way, they can be
thought of as an enhanced group by. In a group by clause, we aggregate events
with the same values for the key fields, but there is no way of specifying a life-
cycle for each of these events. In State-Based programming we will accomplish
this by specifying the states an instance might be in, as well as provide ways of
getting more information from these states, such as: timers, in order to know
how much time an instance is in a given state; counters, which will correspond
to the number of times an instance reached a state; and finally members which
will be new fields - similar to instance variables.

In the next sections, we will give a more detailed description of State-Based
programming, also providing an overview of its implementation in the overall
architecture of PKernel. Finally, in the last section, we will present some use-
cases.

5.1 Drafts

We started the development of this new capability by doing a thorough research
into this field. However, there is very little developments in this area - as can be
depicted by the lack of information we presented in chapter 2. The main source
of contributions to the features and requirements were the TIBCO Business
Events Data Modeling module (refer to 2.6.2), and a use-case provided by Prof.
Paulo Marques for a telecommunication company network management system.
In this use-case, there were several networks and routers, and we wanted to
know the state of a connection in the whole network (idle, connected, discon-

48

nected). An important feature was the possibility of knowing how many times
a connection remained in a given state, as well as how much time it stood in
that state.

While doing our research, we also started developing drafts for the definition
of the entities and their states. For the basis of the language draft, we took a
look at some Domain-Specific Languages (DSL) literature - mainly by the well-
known computer scientist Martin Fowler[43][4]. Furthermore, we also tried to
make the new additions to the language coherent with the clauses that already
existed in PQL.

All the drafts produced can be found in Appendix H.

5.2 Requirements

The functional and non-functional requirements for the State-Based Program-
ming are available in Appendixes B and C, respectively. They were defined in
the same manner as the ones for Pattern Matching (refer to 4.2), i.e., using user
stories and the MoSCoW method [10][11] for classifying the priorities of each
requirement.

5.3 Entity Definition

Based on the drafts developed and the requirements elicited, a final formal
entity definition was decided. The complete grammar definition is available in
Appendix I.

There are nine possible constructs to define an entity, and we must respect
their order. The nine constructs are:

create from This is the first construct and it is here we specify the input
stream, as well as the fields to aggregate the events over - translated by
the groupKeys element in the grammar definition shown below. This
construct is mandatory. Do note that only streams are allowed to be the
input for an entity - windows and dictionaries are not permitted at the
moment.
createFrom

: CREATE FROM id SEMICOLON
| CREATE FROM id ON groupKeys SEMICOLON
;

If we have a stream named stocks, this construct could be defined as:
create from stocks on symbol;. Notice in the grammar definition that
the originating stream is a single id, meaning that at this moment we can
only create instances from a single stream.

states After the previous construct we must provide a list of states for the
instances of the entity. The grammar definition follows:

49

states:
STATES ’{’ state (’,’ state)* ’}’
;

state
: id
| id TIMER
| id COUNTER
| id TIMER COUNTER
| id COUNTER TIMER
;

We must specify at least one state, and this state can contain a timer, a
counter, or both. As a convention, if we want to access the timer of a
state the identifier is created as follows: state timer. The same applies
to a counter.

If we specify repeated states, then an exception will be raised at the time
of the compilation. Furthermore, we must make sure the name of the state
does equal one of the fields of the stream.

start at After declaring the possible states, we can specify the state in which
all the instances start - e.g. start at first state;. This clause is
optional, so if we do not use it, a default state - START - is chosen as the
first one. In the Type Checking phase, we will check if the provided state
does belong to the states declared before.

startAt
: START ATT id SEMICOLON
;

end at Similar to the previous construct, here we specify the last state of the
instances. This is also an optional construct, and the default state is END.
Furthermore, we also check if the state provided is a valid one.

endAt
: ENDACTION ATT id SEMICOLON
;

timers and counters The timers and counters specified in the states con-
struct only apply to a single state. In this construct, we can compose
more complex timers and counters by defining a path, i.e., a sequence of
(valid) states the instance must go through - separated by the characters
‘=>’, as shown in the grammar rule below. Although not perceptible in the
grammar, we have the possibility of using a wildcard - using the under-
score character ‘ ’ - when we are not interested in the state the instance
passes through. Furthermore, we can mark them as being global, which
indicates that there will be a single timer or counter for the whole entity.
This behavior is similar to the static variables in OOP.

At the moment, the non-global timers are not cumulative, i.e., each time an
event occurs the value of the timer contains its start and end timestamps.
Notwithstanding, the counters, both global and local, are cumulative.

timerOrCounter
: TIMER name=id id (’=>’ id)+ SEMICOLON
| GLOBAL TIMER name=id id (’=>’ id)+ SEMICOLON
| COUNTER name=id id (’=>’ id)+ SEMICOLON
| GLOBAL COUNTER name=id id (’=>’ id)+ SEMICOLON
;

50

members Members can be thought of as additional instance variables. Just
like the previous construct, we can mark a member as global. Do note
that once a member is defined, we cannot change its type in the actions
of the constructs transition and expires. This check is done at compile
time, so a Runtime Exception will be avoided due to incompatible types.
Also, we must check whether there are no duplicate members, or its name
is already associated with a stream field.

member
: GLOBAL MEMBER ID ’=’ expr SEMICOLON
| LOCAL? MEMBER ID ’=’ expr SEMICOLON
;

define This construct is similar to the define clause added in the Pattern
Matching (refer to 4.4.1), but without the partition by clause since we
already have that information in the create from. It will be responsi-
ble for creating the pattern elements which will be used in the next
construct - transitions.

transitions To express a transition between one state to another we will use
this construct. One of the key features in the transition is the ability to
express its condition using the pattern matching capabilities implemented
earlier. The condition for the transition is stipulated after the when token.
We can also have wildcard transitions, i.e., when we specify a from state
named ‘ ’, we will create transitions from each individual state to the one
specified after the to token. Both the from and the to states must have
been defined in the states construct.
transition

: TRANSITION FROM from=id TO to=id
WHEN patternMatchExpr
(DO transAction* ENDACTION)?
;

If we look closer at the grammar definition above, we can see the rule
transAction*. This is used to define the actions we will execute upon
the transition, and currently must be present inside a do ...end block15.

Let us look at an example to get a better idea of the syntax:

transition from buy to sell
when good_news -> bad_news
do

post to alerts (index, stock, "SELL!")
alert_type = 4; -- member assign

end

The post action was one of the actions we established as possible in this
context. What it does is send an event to the stream indicated and the
fields or literals chosen - in the example above we have a string literal that
will be included as a field of the event. Under the hood, there are a few
checks being made, mainly related with the types of the fields provided
which must match the ones from the receiving stream. If the type expected
is not equal to one given but they are promotable, then we will change the

15If you are familiar with the Ruby programming language, you may be familiar with this
syntax

51

expression to a cast expression, thus changing the type to the expected
one.

The other action implemented was the assign, which enables us to change
the value associated with a member. However, the new value type must
match the type associated with the member upon its creation. We also
check if the types are promotable if they do not match, i.e., we can promote
an integer value to a long value, however, we cannot promote a string into
an integer, nor the other way around.

Finally, we must keep in mind that the order in which we specify the
transitions matters, since that will be the order in which we will evaluate
the patterns. So, if we have two transitions t1 and t2, and we want to give
priority to the pattern in t2, then we must write the transition t2 before
t1.

expires This construct is a special type of a transition, where we do not specify
any pattern, we only provide a timeout after which the instance changes
its state. An example of its usage follows: expire state1 after 10 min
to state2.
expire

: EXPIRE from=id AFTER x=INT_LIT units=id TO to=id
(DO transAction* ENDACTION)?

Similar to the transitions construct, we can declare actions to be per-
formed when the expire occurs. The actions available are also the same
- post and assign.

One should be mindful that we can only have one expire per state, the
main reason being that since we are registering a timeout, the only one
which may occur will be the one with the lowest timespan.

5.4 Implementation

We will now take a closer look at the implementation of the State-Based Pro-
gramming into PQL. This new capability involved more changes to PKernel
than the implementation of Pattern Matching. The main reason was the cre-
ation of new types and new clauses, contrasting with Pattern Matching where
its scope was limited to queries.

The first change performed was the addition of a new high level definition:
the entity. Previously, there were only two of these: the stream definition,
and the query definition. In an entity definition parsing, we only have the
overall type after the member statements, since we inherit the fields from the
originating stream, and we also add a field for every timer, counter and member
defined. This contrasts with the previous two definitions, where we have the
type immediately: in the stream definition we provide the schema for every
event in that stream which includes the name of the field and its type; and in
the query definition, we always have an input which must be already registered
in the environment :

-- stream definition example

stocks = Stream(timestamp: long, symbol: string, price: int);
-- query definition example

query = from stocks select symbol;

52

As stated in Chapter 3, a query is ultimately composed of operators to build
a dependency graph. When defining a stream, for example, we will create an
operator called OpInputStream containing the stream name and the type of its
events - which will always be a tuple. In the entity case, we needed a new
operator which would be used as input in queries. The new operator created
was the OpEntity.

The OpEntity operator has all the information about an entity. At first, we
thought about creating di↵erent operators for every construct (create from,
states, etc) and link them sequentially, but decided it would be much simpler
to have all the components in one place rather than evaluating every operator
one by one. Furthermore, it will make it easier to generate the resulting Java
code, since we have all the information needed in one place and there are no
complex mechanisms to deal with possible dependencies between each construct.
The OpEntity contains the following components:

source This will be the source operator for the entity. If the create from
specifies the stream stocks defined in an example above, then it will be
the OpInputStream of that stream.

tyTuple This will be the type which will represent an instance of an entity, in
this case it will always a tuple type. As stated earlier, it will contain all the
fields from the source stream plus all the timers, counters and members
defined.

entity Contains the entity name.

states Contains a list of all the states which were defined for this entity.

startAt The starting state.

endAt The final state.

timers This is a list of all the timers for this entity. If none were defined, then
this will be empty.

counters This is a list of all the counters for this entity. If none were defined,
then this will be empty.

members This is a list of all the members for this entity. If none were defined,
then this will be empty.

patternElements Contains all the pattern elements defined, as well as the
expressions for the conditions.

transitions A list containing all the transitions, by the order in which they
were defined. In the code generation phase, each transition will have its
own method and its own RootNode (refer to section 4.5).

expires A list containing all the expire transitions, by the order in which they
were defined. In the code generation phase, each expire will have its own
method which may be called if the timeout does occur.

deps The operator dependencies for the entity definition. If we have a condition
of a pattern elements which requires the average of a field in a stream,
then this average will be an operator and we must be informed of changes
when we check the condition.

53

depsTransitions This is similar to the previous component, but we are only
interested in the operators OpPatternSelectList (refer to section 4.5). So,
for each transition we will have a list of these operators. The motiva-
tion for this component was the need to keep these OpPatternSelectList
operators out of the dependency graph, because they will have as their
source operator the same OpEntity which also depends on them, creating
a circular-dependency.

stocks = Stream(timestamp:long, symbol: string,
index: string, price: int, opinion: string,);

entity StockItem {
create from stocks on symbol;

states {
buy timer,
hold timer,
sell timer

}

define
opinion_buy: opinion == "buy";
opinion_hold: opinion == "hold";
opinion_sell: opinion == "sell";

transition from _ to buy
when opinion_buy

transition from _ to hold
when opinion_hold

transition from _ to sell
when opinion_sell

};

Listing 5.1: Example of an entity definition

Listing 5.1 is an example of an entity definition for a stock symbol. We have
three states which depict an analyst’s opinion on that specific stock: buy, hold
and sell. Also, each of these states has a timer associated with it, so we can
keep track of how long it stays on the given state.

5.4.1 Code Generation and Instance Workflow

Upon filling the information for the OpEntity operator in the Plan Builder
phase (refer to Chapter 3), we will generate the code for receiving an event
from the source stream, and output the entity instance related with the event.
This behavior is depicted in the activity diagram in Figure 5.1. We start by
receiving the event from the originating stream. With the fields provided in
the create from we build a tuple containing the values of those fields, which
will be the key. Every entity has a map data structure which holds, for every
key, the last tuple for that instance. After we build the key, we query the
previously mentioned map to get the instance. If none is found, then this is the
first event for that instance and we must initialize all the timers, counters and
members, set the current state to be state provided in start at, and register

54

Figure 5.1: Activity diagram representing the behavior in an entity partition.

the expire callback. If the instance already existed, then we do not need to
initialize anything. The next step is sending the instance to every RootNode
of transitions that start at the current state, while keeping the order in which
they were defined. If one of these RootNodes returns a value, then it means
we have matched the whole pattern and the transition must be performed, i.e.,
we update the current state, the timers and counters, and execute the actions
stipulated, cancel any expire transition registered, and finally register a expire
transition if one was defined, in this order.

5.4.2 Query Interaction

With the entity definition dealt with, we must now give the ability of interacting
with it in the queries. The type of an entity is a TyEntity. This is a type created
in the compiler (it will not be translated to any type in the code generation)
which contains:

• A TyDict, which represents a dictionary, where the keys are the fields
provided in the create from, and the value is the type of the instance.

• A TyTuple, which represents a tuple, containing the names and types of
the global timers, counters and members, if any.

To make it easier, all the operations available for the dictionaries (TyDict)
can also be applied to the entities: we can use it in the from clause, we can
access a specific instance by its key (entity[key]), use the clause select and

55

where over it, and so forth. The entity also inherits its shortcomings. With
a dictionary we do not have any historical track, we only have access to the
current instances. To overcome this, we create a new operator for dictionaries
called OpDictUpdated. What this does is it creates a stream of the updates being
made to the dictionary - inserts, deletes and updates. Since it is a stream, we
can create windows over it, e.g. entity.updated()[10 min] creates a window
of the changes made in the dictionary in the last 10 minutes.

Additionally, we can access the global variables of an entity similar to static
variables in the Java programming language - entity.global variable. To
achieve this we created a new operator - OpEntityGlobalGet - which contains
three fields:

query The name of the query where we call the global variable.

source The OpEntity operator corresponding to the entity for which the global
variable belongs.

field The name of the global variable.

We will now present some query examples with some common operations.
They assume we are using the entity defined in listing 5.1.

• Current number of instances in each state
instance_count_by_state =

from StockItem
group by state
select count: count();

• Time spent at state buy by all instances currently in that state

total_time_by_state =
from StockItem
where state == "buy"
select total_time: sum(buy_timer);

• Time spent at state buy by all instances in the last 24 hours

total_time_by_state =
from StockItem.updated()[1 day]
where state == "buy"
select total_time: sum(buy_timer);

• A continuous value of the current state for stock AAPL

current_state_aapl = StockItem["AAPL"].state;

In the case of a timer, we have additional operations available. In PQL, we
defined the timer with the type TyTimer, which can be thought of as a tuple
with two elements, or a pair. The two elements constituting a timer are the
start and end. There are three operations which can be called on a timer :

start Returns the start timestamp. If the timer has not started yet, then it
will return the default value 0.

interval Returns the di↵erence between the end and the start. If the timer
has not ended yet, then it will return the default value 0.

56

end Returns the end timestamp. If the timer has not ended yet, then it will
return the default value 0.

As an example:
aapl_buy_timestamp = StockItem["AAPL"].buy_timer.start();

The previous query aapl buy timestamp would give us the timestamp of when
the AAPL stock entered the buy state.

5.5 Use-Case

5.5.1 Shipping Company

In this use-case, we will model the process of an order in a shipping company.
We have defined six states: make order, payment, shipped, arrived destination,
order cancelled and lost. All these states, except lost, have transitions defined.
In the case of the lost state we will transition to it through the expires timeout,
where we will consider a package as being lost if the shipping is taking more
than two weeks.

Moreover, we have a stream orders received which will receive events when
an order has been successfully received by the customer. Besides the mandatory
timestamp, order id and client id, we also have a field called number warehouses
which represents the number of warehouses where the package stayed until it
reached the customer’s destination. The posts to this stream are being made in
the transition shipped to arrived destination.

Since we are interested in receiving alerts of lost packages, we created a
new stream lost alerts where we receive information on the time at which we
reported the order as being missing, as well as information on the order and
respective client.

orders = Stream(
timestamp: long,
order_id: long,
client_id: long,
type: string,
success: boolean

);

orders_received = Stream(
timestamp: long,
order_id: long,
client_id: long,
number_warehouses: int

);

lost_alerts = Stream(
timestamp: long,
order_id: long,
client_id: long,

);

entity Order {
create from orders on order_id;

states {
make_order,
payment timer, -- time waiting for shipping

57

shipped timer,
arrived_destination,
order_cancelled,
lost

}

global counter shipments_lost shipped => lost;

define
order: type == "make";
payment: type == "payment" and success == true;
shipment: type == "shipped";
warehouse: type == "warehouse";
arrived: type == "arrived";
cancelled: type == "cancelled" or (type == "payment" and success == false);

transition from START to make_order
when order

transition from make_order to payment
when payment

transition from payment to shipped
when shipment

transition from shipped to arrived_destination
when warehouse[1:] -> arrived
do

post to orders_received (timestamp, order_id, client_id, warehouse.count(), shipped_timer);
end

transition from _ to order_cancelled
when cancelled

expire shipped after 2 weeks to lost
do

post to lost_alerts (timestamp, order_id, client_id);
end

}

58

Chapter 6

Work Plan and
Methodology

This chapter explains the planning made for the first semester and its changes
and delays, as well as planning for the second semester. Furthermore, we intro-
duce the methodologies used in the development of this project.

6.1 First Semester

In Figure A.1 of Appendix A.1 we can see the initial high-level plan for the
work to be done during the first semester. However, during the actual work
there were a few changes to this planning, as shown in Figure A.2. There
are a couple of reasons for the delays. First, the PKernel engine is a complex
system with a lot of di↵erent modules. It is also written primarily in the Scala
programming language16 and in a functional programming way. We already had
some experience with Scala, but not so much on its functional programming
side. The MOOC17 Functional Programming Principles in Scala18 hosted by
the creator of Scala, Prof. Martin Odersky, was a great help in overcoming these
hurdles.

6.2 Second Semester

The plan stipulated for the second semester is available in Appendix A.2. There
were no major changes in the planning made. The only significant one was the
Benchmarking Entities task which was not performed at this time.

16http://www.scala-lang.org/
17Massive open online course
18https://www.coursera.org/course/progfun

59

http://www.scala-lang.org/
https://www.coursera.org/course/progfun

6.3 Methodology

6.3.1 Scrum

In both semesters an agile software development methodology was adopted -
more specifically Scrum. Scrum is “framework within which people can address
complex adaptive problems, while productively and creatively delivering prod-
ucts of the highest possible value. (...) The Scrum framework consists of Scrum
Teams and their associated roles, events, artifacts, and rules.” [59, p. 3].

• Roles

– Product Owner: Paulo Marques (CTO)

– Scrum Master: Ricardo Ferreira

• Events

– The sprints.

• Artifacts

– The monthly reports sent to the supervisors.

At Feedzai there is a weekly status meeting, deviating from Scrum principles
where there exists a Daily Scrum - a daily 15 minute meeting to synchronize
the work done in the previous day, as well as the plan for the next 24 hours [59].

6.3.2 Test-Driven Development

Test-Driven Development (TDD) is a software development process in which
the developers first write a test case for a given feature or improvement, and
only after this step start its implementation, writing the minimum amount of
code in order to pass the test. Once the developed code is accepted the code,
the developer may refactor the code. All these steps are illustrated in Figure
6.1.

Figure 6.1: Test-driven development workflow - taken from https://en.
wikipedia.org/wiki/File:Test-driven_development.PNG.

60

https://en.wikipedia.org/wiki/File:Test-driven_development.PNG
https://en.wikipedia.org/wiki/File:Test-driven_development.PNG

In this work, for the pattern matching capabilities we started by creating
tests with some simple pattern queries, and their corresponding expected results.
At the end of the implementation phase we created more complex tests.

6.3.3 Git

The version control system used throughout this work was Git19, using the
branching model already adopted at Feedzai (refer to Figure 6.2)20. In this

Figure 6.2: Git branching model used at Feedzai.

branching model, there exist five main branch types. The develop branch is the
main branch for development, and contains code which may not be ready for
production. The feature branch is used to implement new features isolated from
the other branches, and once the feature is complete the branch will merge back
into the develop branch. The quality branch is only only for quality assurance
related code. Hot Fixing branches are created for bug fixing existing releases,
and for each Hot Fix release there will be a corresponding branch. Finally, we
have the master branch which contains the latest stable version of the product.

6.3.4 Code Review

At Feedzai, we use Phabricator21 as our code review platform. With this plat-
form we get useful features like a view of the changes performed in each file, the
possibility of commenting the overall work or just a specific line in the code. Ad-
ditionally, for a commit to be accepted, we must provide at least two developers
to do the review, and at least one of them must do the review.

During this thesis, we got involved in some code reviews, which helped in
getting more familiarized with the overall product. Plus, our own developed
code was also reviewed by other software engineers at Feedzai.

19http://git-scm.com/
20The branching model adopted is a variation of the one presented at the following link

http://nvie.com/posts/a-successful-git-branching-model/
21http://phabricator.org/

61

http://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/

Chapter 7

Conclusion and Future
Work

In this chapter we will present a summary of the conclusion and findings of our
work. In the final section, we will give possible future paths for the work done.

7.1 Summary

In this work, we started by implementing the Pattern Matching capabilities into
PQL. This is a major feature addition since previously to achieve similar results
we would need to use the rules engine embedded in Feedzai Pulse, which is a
separate module from PKernel. However, this workaround did not have the
same level of abstraction as Pattern Matching, e.g. we do not have time policies
clauses (within, after) nor their consumption policies (strict, relaxed); in order
to achieve this in the rules engine we would have to utilize broader operations,
thus being more verbose and more prune to errors and bugs. Furthermore,
we proved that this implementation can be applied in a real-time scenario, as
demonstrated by the results of the benchmark performed. Finally, this feature
has been included in the latest release of Feedzai Pulse - 14.0.

The State-Based programming was always a much talked about and ideal-
ized feature amongst Feedzai’s engineers, since it would provide them a much
higher level language to model a common use-case amongst the Pulse’s client
deployments. This feature will be included in the upcoming release of Feedzai
Pulse - 14.1.

On a more personal note, this work was an amazing journey where I had
the chance of getting in touch with new technologies and concepts, as well as
improve my knowledge on subjects I already had contact with. Overall, this
was a truly rewarding experience.

7.2 Future Work

Concerning the pattern matching there are a few possible future paths which
can be taken:

• Evaluate the need for more operators;

62

• Evaluate pattern matching in field-programmable gate array (FPGA).
Some work with regard to this approach can already be seen in [66].

Furthermore, we may also choose to mitigate the limitations currently present
in the implementation - refer to section 4.7.

The State-Based Programming implementation still lacks a performance bench-
mark, however, we are confident the performance will be adequate in a real-time
environment, especially since the operations being made have already proven to
be e↵ective in this environment. As possible future paths, we have the creation
of a Graphical User Interface (GUI) for the entity definition to be more user-
friendly, and consequently be used by a much broader audience, not just people
who are familiar with PQL.

Finally, we will also submit a paper to conferences on the Event Processing
field.

63

References

[1] 10. The Rete Algorithm. http://herzberg.ca.sandia.gov/docs/52/
rete.html. Last accessed: 30/06/2014.

[2] Advantages of the ”As a user, I want” user story tem-
plate. http://www.mountaingoatsoftware.com/blog/
advantages-of-the-as-a-user-i-want-user-story-template. Last
accessed: 30/06/2014.

[3] CEP market players end 2012. http://buki79.tumblr.com/
post/41611299435/cep-market-players-end-2012. Last accessed:
30/06/2014.

[4] Domain-Specific Languages: An Introductory Example. http://www.
informit.com/articles/article.aspx?p=1592379&seqNum=2. Last ac-
cessed: 30/06/2014.

[5] Drools - ReteOO. http://legacy.drools.codehaus.org/ReteOO. Last
accessed: 30/06/2014.

[6] EPL Reference: Match Recognize. http://esper.codehaus.org/
esper-4.10.0/doc/reference/en-US/html/match-recognize.html.
Last accessed: 30/06/2014.

[7] EPL Reference: Patterns. http://esper.codehaus.org/esper-4.10.
0/doc/reference/en-US/html/event_patterns.html. Last accessed:
30/06/2014.

[8] EsperTech Technical Datasheet. http://www.espertech.com/download/
public/EsperTech%20technical%20datasheet.pdf. Last accessed:
30/06/2014.

[9] LINQ (Language-Interpreted Query). http://msdn.microsoft.com/
en-us/library/bb397926.aspx. Last accessed: 30/06/2014.

[10] MoSCoW : Requirements Prioritization Technique. http:
//businessanalystlearnings.com/ba-techniques/2013/3/5/
moscow-technique-requirements-prioritization. Last accessed:
30/06/2014.

[11] MoSCoW Method for Requirements Prioritization. http://www.
businessanalysis.in/2013/06/moscow-method-for-requirements.
html. Last accessed: 30/06/2014.

64

http://herzberg.ca.sandia.gov/docs/52/rete.html
http://herzberg.ca.sandia.gov/docs/52/rete.html
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
http://buki79.tumblr.com/post/41611299435/cep-market-players-end-2012
http://buki79.tumblr.com/post/41611299435/cep-market-players-end-2012
http://www.informit.com/articles/article.aspx?p=1592379&seqNum=2
http://www.informit.com/articles/article.aspx?p=1592379&seqNum=2
http://legacy.drools.codehaus.org/ReteOO
http://esper.codehaus.org/esper-4.10.0/doc/reference/en-US/html/match-recognize.html
http://esper.codehaus.org/esper-4.10.0/doc/reference/en-US/html/match-recognize.html
http://esper.codehaus.org/esper-4.10.0/doc/reference/en-US/html/event_patterns.html
http://esper.codehaus.org/esper-4.10.0/doc/reference/en-US/html/event_patterns.html
http://www.espertech.com/download/public/EsperTech%20technical%20datasheet.pdf
http://www.espertech.com/download/public/EsperTech%20technical%20datasheet.pdf
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
http://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
http://businessanalystlearnings.com/ba-techniques/2013/3/5/moscow-technique-requirements-prioritization
http://www.businessanalysis.in/2013/06/moscow-method-for-requirements.html
http://www.businessanalysis.in/2013/06/moscow-method-for-requirements.html
http://www.businessanalysis.in/2013/06/moscow-method-for-requirements.html

[12] Pattern Matching in sequences of rows. http://dist.codehaus.
org/esper//row-pattern-recogniton-11-public.pdf. Last accessed:
30/06/2014.

[13] Pattern Recognition With MATCH RECOGNIZE. http://docs.oracle.
com/cd/E14571_01/apirefs.1111/e12048/pattern_recog.htm.

[14] Pulse Query Language. https://docs.feedzai.com/display/pulse/
Pulse+Query+Language. Last accessed: 30/06/2014.

[15] Rete Algorithm Demystified. http://techondec.wordpress.com/
2011/03/14/rete-algorithm-demystified-part-2/. Last accessed:
30/06/2014.

[16] Rete NT - 10x faster than Rete 2. http://blog.athico.com/2010/08/
rete-nt-10-x-faster-than-rete-2.html. Last accessed: 30/06/2014.

[17] Rete, Rete II, Rete III & Rete in TIBCO Business Events. http://www.
slideshare.net/TimBassCEP/ss-presentation-716373. Last accessed:
30/06/2014.

[18] RETE2. http://www.pst.com/rete2.htm. Last accessed: 30/06/2014.

[19] SASE website. http://avid.cs.umass.edu/sase. Last accessed:
30/06/2014.

[20] Siddhi website. http://siddhi.sourceforge.net/. Last accessed:
30/06/2014.

[21] State Machine Diagrams. http://www.uml-diagrams.org/
state-machine-diagrams.html. Last accessed: 30/06/2014.

[22] TIBCO Business Events website. http://www.tibco.com/products/
event-processing/complex-event-processing/businessevents/
default.jsp. Last accessed: 30/06/2014.

[23] User stories: a beginners guide. http://www.boost.co.nz/blog/2010/
09/user-stories/. Last accessed: 30/06/2014.

[24] What algorithms does Esper use? Is it based on research? http://esper.
codehaus.org/tutorials/faq_esper/faq.html#what-algorithms. Last
accessed: 30/06/2014.

[25] What is Rete III? http://dmblog.fico.com/2005/09/what_is_rete_ii.
html. Last accessed: 30/06/2014.

[26] WSO2 Complex Event Processor Documentation - Patterns. http://docs.
wso2.org/display/CEP300/Patterns. Last accessed: 30/06/2014.

[27] WSO2 Complex Event Processor website. http://wso2.com/products/
complex-event-processor/. Last accessed: 30/06/2014.

[28] Event Processing Glossary - Version 2.0. www.complexevents.com/
wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.
pdf, 2011. Last accessed: 30/06/2014.

65

http://dist.codehaus.org/esper//row-pattern-recogniton-11-public.pdf
http://dist.codehaus.org/esper//row-pattern-recogniton-11-public.pdf
http://docs.oracle.com/cd/E14571_01/apirefs.1111/e12048/pattern_recog.htm
http://docs.oracle.com/cd/E14571_01/apirefs.1111/e12048/pattern_recog.htm
https://docs.feedzai.com/display/pulse/Pulse+Query+Language
https://docs.feedzai.com/display/pulse/Pulse+Query+Language
http://techondec.wordpress.com/2011/03/14/rete-algorithm-demystified-part-2/
http://techondec.wordpress.com/2011/03/14/rete-algorithm-demystified-part-2/
http://blog.athico.com/2010/08/rete-nt-10-x-faster-than-rete-2.html
http://blog.athico.com/2010/08/rete-nt-10-x-faster-than-rete-2.html
http://www.slideshare.net/TimBassCEP/ss-presentation-716373
http://www.slideshare.net/TimBassCEP/ss-presentation-716373
http://www.pst.com/rete2.htm
http://avid.cs.umass.edu/sase
http://siddhi.sourceforge.net/
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.boost.co.nz/blog/2010/09/user-stories/
http://www.boost.co.nz/blog/2010/09/user-stories/
http://esper.codehaus.org/tutorials/faq_esper/faq.html#what-algorithms
http://esper.codehaus.org/tutorials/faq_esper/faq.html#what-algorithms
http://dmblog.fico.com/2005/09/what_is_rete_ii.html
http://dmblog.fico.com/2005/09/what_is_rete_ii.html
http://docs.wso2.org/display/CEP300/Patterns
http://docs.wso2.org/display/CEP300/Patterns
http://wso2.com/products/complex-event-processor/
http://wso2.com/products/complex-event-processor/
www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

[29] TIBCO Business Events Getting Started. https://docs.tibco.com/pub/
businessevents/5.1.1_dec_2012/pdf/tib_be_getting_started.pdf,
2012. Last accessed: 30/06/2014.

[30] TIBCO Business Events Pattern Matching Developer’s Guide.
https://docs.tibco.com/pub/businessevents_event_stream_
processing/5.1.1_dec_2012/pdf/tib_be_event_stream_processing_
pattern_matcher_developers_guide.pdf, 2012. Last accessed:
30/06/2014.

[31] Adaikkalavan, R. SNOOP Event Specification: Formalization Algo-
rithms, and Implementation Using Interval-Based Semantics. Master’s the-
sis, The University of Texas at Arlington, 2002.

[32] Agrawal, J., Diao, Y., Gyllstrom, D., and Immerman, N. E�cient
pattern matching over event streams. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data - SIGMOD ’08
(2008), p. 147.

[33] Balkesen, C., Dindar, N., Wetter, M., and Tatbul, N. Rip: Run-
based intra-query parallelism for scalable complex event processing. In
Proceedings of the 7th ACM International Conference on Distributed Event-
based Systems (New York, NY, USA, 2013), DEBS ’13, ACM, pp. 3–14.

[34] Batory, D. The LEAPS Algorithm. Tech. rep., University of Texas at
Austin, 1994.

[35] Bizarro, P. Use Case Tutorial - Lessons Learned
(7/7). http://www.slideshare.net/pedrobizarro/
use-case-tutorial-lessons-learned-77. Last accessed: 30/06/2014.

[36] Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.,
Gehani, N. H., Jagadish, H. V., and Shmueli, O. Composite Events
for Active Databases : Contexts and Detection Semantics. In Proceedings of
the 20th International Conference on Very Large Data Bases, (VLDB’94),
September 12-15, 1994, Santiago de Chile, Chile. (1994), pp. 606–617.

[37] Chakravarthy, S., and Mishra, D. Snoop: An expressive event speci-
fication language for active databases, 1993.

[38] Chakravarthy, S., and Mishra, D. Snoop: An expressive event speci-
fication language for active databases, 1994.

[39] Challand, Y. A Real Time Expert System - Adapting Match Algorithms
and Implementing a Tailored Rule Language. Tech. rep., Aalborg Univer-
sity, Aalborg, 2011.

[40] Doorenbos, R. B. Production Matching for Large Learning Systems.
PhD thesis, Carnegie Mellon University, 1995.

[41] Etzion, O., and Niblett, P. Event Processing in Action. Manning
Publications, 2010.

[42] Forgy, C. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artificial Intelligence 19 (1982), 17–37.

66

https://docs.tibco.com/pub/businessevents/5.1.1_dec_2012/pdf/tib_be_getting_started.pdf
https://docs.tibco.com/pub/businessevents/5.1.1_dec_2012/pdf/tib_be_getting_started.pdf
https://docs.tibco.com/pub/businessevents_event_stream_processing/5.1.1_dec_2012/pdf/tib_be_event_stream_processing_pattern_matcher_developers_guide.pdf
https://docs.tibco.com/pub/businessevents_event_stream_processing/5.1.1_dec_2012/pdf/tib_be_event_stream_processing_pattern_matcher_developers_guide.pdf
https://docs.tibco.com/pub/businessevents_event_stream_processing/5.1.1_dec_2012/pdf/tib_be_event_stream_processing_pattern_matcher_developers_guide.pdf
http://www.slideshare.net/pedrobizarro/use-case-tutorial-lessons-learned-77
http://www.slideshare.net/pedrobizarro/use-case-tutorial-lessons-learned-77

[43] Fowler, M. Domain Specific Languages, 1st ed. Addison-Wesley Profes-
sional, 2010.

[44] Gatziu, S., and Dittrich, K. Detecting composite events in active
database systems using Petri nets. Proceedings of IEEE International
Workshop on Research Issues in Data Engineering: Active Databases Sys-
tems (1994).

[45] Gehani, N., Jagadish, H., and Shmueli, O. Composite event specifi-
cation in active databases: Model & implementation. In Proceedings of the
International Conference on Very Large Data Bases (1992), pp. 327–337.

[46] Gyllstrom, D., Agrawal, J., Diao, Y. D. Y., and Immerman, N.
On Supporting Kleene Closure over Event Streams. 2008 IEEE 24th In-
ternational Conference on Data Engineering (2008).

[47] Hanson, E. Gator: A discrimination network structure for active database
rule condition matching. Tech. rep., University of Florida, 1993.

[48] Hanson, E., and Hasan, M. S. Gator: An optimized discrimination
network for active database rule condition testing. Tech. rep., University
of Florida, 1993.

[49] Hasan, M. Z. The management of data, events, and information presen-
tation for network management. Tech. rep., in Computer Science, 1996.

[50] Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., and
Mann, W. Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering 21 (1995).

[51] Luckham, D. C. Rapide: A language and toolset for simulation of dis-
tributed systems by partial orderings of events. Tech. rep., Stanford Uni-
versity, Stanford, CA, USA, 1996.

[52] Luckham, D. C. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, vol. 2003. Addison-Wesley
Professional, 2002.

[53] Madden, N. Optimising rete for low-memory multiagent systems. In
GAME-ON (2003), Q. H. Mehdi, N. E. Gough, and S. Natkin, Eds., EU-
ROSIS, pp. 77–.

[54] Miranker, D. P. TREAT: A better match algorithm for AI production
systems. Elements 1 (1987), 42–47.

[55] Motakis, I., and Zaniolo, C. Composite temporal events in active
database rules: A logic-oriented approach. In Deductive and Object-
Oriented Databases, vol. 1013. Springer Berlin Heidelberg, 1995, pp. 19–37.

[56] Müller, A. Event Correlation Engine. Master’s thesis, ETH Zürich, 2009.

[57] Nayak, P., Gupta, A., and Rosenbloom, P. Comparison of the Rete
and Treat production matchers for Soar (A summary). In Proceedings of the
Seventh National Conference on Artificial Intelligence (1988), pp. 693–698.

67

[58] Schmidt, K.-U., Stühmer, R., and Stojanovic, L. Blending Complex
Event Processing with the RETE Algorithm. iCEP2008 1st International
workshop on Complex Event Processing for the Future Internet colocated
with the Future Internet Symposium FIS2008 Vol-412 (2008), 1–10.

[59] Schwaber, K., and Sutherlan, J. The Scrum Guide - The Definitive
Guide to Scrum: The Rules of the game. https://www.scrum.org/
Portals/0/Documents/ScrumGuides/2013/Scrum-Guide.pdf#zoom=100,
2013.

[60] Sriskandarajah, S., Gajasinghe, K., Loku Narangoda, I., and
Chaturanga, S. Siddhi-CEP - High Performance Complex Event Pro-
cessing Engine. Master’s thesis, University of Moratuwa, Sri Lanka, 2011.

[61] Stellman, A. Understanding Nonfunctional Requirements. http://
broadcast.oreilly.com/2010/02/nonfunctional-requirements-how.
html. Last accessed: 30/06/2014.

[62] Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chatu-
ranga, S., Perera, S., Nanayakkara, V., and Narangoda, I. Sid-
dhi: a second look at complex event processing architectures. In Proceedings
of the 2011 ACM workshop on Gateway computing environments - GCE ’11
(2011), p. 43.

[63] Walzer, K., Breddin, T., and Groch, M. Relative temporal con-
straints in the Rete algorithm for complex event detection. In Proceedings
of the second . . . (2008), pp. 147–155.

[64] Wang, Y.-W. W. Y.-W., and Hanson, E. A performance comparison
of the Rete and TREAT algorithms for testing database rule conditions.
[1992] Eighth International Conference on Data Engineering (1992).

[65] Widder, A., von Ammon, R., Schaeffer, P., and Wolff, C. Com-
bining discriminant analysis and neural networks for fraud detection on the
base of complex event processing. In Fast Abstract, Second International
Conference on Distributed Event-Based Systems, DEBS 2008, Rom, Juli
2008 (2008).

[66] Woods, L., Teubner, J., and Alonso, G. Real-time pattern matching
with fpgas. 2013 IEEE 29th International Conference on Data Engineering
(ICDE) 0 (2011), 1292–1295.

68

http://broadcast.oreilly.com/2010/02/nonfunctional-requirements-how.html
http://broadcast.oreilly.com/2010/02/nonfunctional-requirements-how.html
http://broadcast.oreilly.com/2010/02/nonfunctional-requirements-how.html

